Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enantioselective synthesis of γ-butenolides through Pd-catalysed C5-selective allylation of siloxyfurans

Abstract

Metal-catalysed asymmetric allylic alkylation reactions have played a pivotal role in the construction of chiral compounds. When applied to the synthesis of butenolides, a common moiety present in many biologically active compounds, this reaction has always provided the C3-allylated products and only traces of the C5-allylated analogues. Here we report a Pd-catalysed C5-selective method that provides direct and highly enantioselective (up to >99% e.e.) access to a wide range of substituted butenolides using 2-substituted allyl acetates as the allylic partner. Mechanistic studies supported by density functional theory calculations have shown that the C5-selectivity observed is the result of a steric constraint induced by the substituent on the central carbon of the π–allyl complex forcing the reactive dienolate intermediate to expose its C5-reactive centre. The practicality, scalability and synthetic utility of the process was demonstrated through the total synthesis of three O-terpenoidal natural products: excavacoumarin B, D and E.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental screening and rationalization of the C5-selective allylation.
Fig. 2: Access to unsubstituted allylic groups.
Fig. 3: Total synthesis of excavacoumarins B, D and E.

Similar content being viewed by others

Data availability

The experimental data as well as the characterization data for all the compounds prepared during this study, including NMR spectra and HPLC traces, are provided in the Supplementary Information. Crystallographic data for one of the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition no. CCDC 2102893 (7). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Pàmies, O. et al. Recent advances in enantioselective Pd-catalyzed allylic substitution: from design to applications. Chem. Rev. 121, 4373–4505 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Cheng, Q. et al. Iridium-catalyzed asymmetric allylic substitution reactions. Chem. Rev. 119, 1855–1969 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Süsse, L. & Stoltz, B. M. Enantioselective formation of quaternary centers by allylic alkylation with first-row transition-metal catalysts. Chem. Rev. 121, 4084–4099 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. James, J., Jackson, M. & Guiry, P. J. Palladium-catalyzed decarboxylative asymmetric allylic alkylation: development, mechanistic understanding and recent advances. Adv. Synth. Catal. 361, 3016–3049 (2019).

    Article  CAS  Google Scholar 

  5. Pritchett, B. P. & Stoltz, B. M. Enantioselective palladium-catalyzed allylic alkylation reactions in the synthesis of aspidosperma and structurally related monoterpene indole alkaloids. Nat. Prod. Rep. 35, 559–574 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Enquist, J. A. & Stoltz, B. M. The total synthesis of (−)-cyanthiwigin F by means of double catalytic enantioselective alkylation. Nature 453, 1228–1231 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Trost, B. M. & Crawley, M. L. Asymmetric transition-metal-catalyzed allylic alkylations: applications in total synthesis. Chem. Rev. 103, 2921–2943 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Behenna, D. C. & Stoltz, B. M. The enantioselective Tsuji allylation. J. Am. Chem. Soc. 126, 15044–15045 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Trost, B. M. & Xu, J. Regio- and enantioselective Pd-catalyzed allylic alkylation of ketones through allyl enol carbonates. J. Am. Chem. Soc. 127, 2846–2847 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Trost, B. M., Schäffner, B., Osipov, M. & Wilton, D. A. A. Palladium-catalyzed decarboxylative asymmetric allylic alkylation of β-ketoesters: an unusual counterion effect. Angew. Chem. Int. Ed. 50, 3548–3551 (2011).

    Article  CAS  Google Scholar 

  11. Behenna, D. C. et al. Enantioselective decarboxylative alkylation reactions: catalyst development, substrate scope and mechanistic studies. Chem. Eur. J. 17, 14199–14223 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Trost, B. M. & Quancard, J. Palladium-catalyzed enantioselective C-3 allylation of 3-substituted-1H-indoles using trialkylboranes. J. Am. Chem. Soc. 128, 6314–6315 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sun, A. W., Hess, S. N. & Stoltz, B. M. Enantioselective synthesis of gem-disubstituted N-Boc diazaheterocycles via decarboxylative asymmetric allylic alkylation. Chem. Sci. 10, 788–792 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. James, J. & Guiry, P. J. Highly enantioselective construction of sterically hindered α-allyl-α-aryl lactones via palladium-catalyzed decarboxylative asymmetric allylic alkylation. ACS Catal. 7, 1397–1402 (2017).

    Article  CAS  Google Scholar 

  15. Tu, H. F., Zhang, X., Zheng, C., Zhu, M. & You, S. L. Enantioselective dearomative prenylation of indole derivatives. Nat. Catal. 1, 601–608 (2018).

    Article  CAS  Google Scholar 

  16. Tao, Z. L., Zhang, W. Q., Chen, D. F., Adele, A. & Gong, L. Z. Pd-catalyzed asymmetric allylic alkylation of pyrazol-5-ones with allylic alcohols: the role of the chiral phosphoric acid in C−O bond cleavage and stereocontrol. J. Am. Chem. Soc. 135, 9255–9258 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Song, T., Arseniyadis, S. & Cossy, J. Highly enantioselective, base-free synthesis of α-quaternary succinimides through catalytic asymmetric allylic alkylation. Chem. Eur. J. 24, 8076–8080 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Nascimento de Oliveira, M., Arseniyadis, S. & Cossy, J. Palladium-catalyzed asymmetric allylic alkylation of 4-substituted isoxazolidin-5-ones: a straightforward access to β2,2-amino acids. Chem. Eur. J. 24, 4810–4814 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Behenna, D. C. et al. Enantioselective construction of quaternary N-heterocycles by palladium-catalysed decarboxylative allylic alkylation of lactams. Nat. Chem. 4, 130–133 (2012).

    Article  CAS  Google Scholar 

  20. Trost, B. M. & Schultz, J. E. Palladium-catalyzed asymmetric allylic alkylation strategies for the synthesis of acyclic tetrasubstituted stereocenters. Synthesis 51, 1–30 (2019).

    Article  CAS  Google Scholar 

  21. Fujita, T. et al. Chemo- and enantioselective Pd/B hybrid catalysis for the construction of acyclic quaternary carbons: migratory allylation of O-allyl esters to α-C-allyl carboxylic acids. J. Am. Chem. Soc. 140, 5899–5903 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Davis, D. C. et al. Total synthesis, biological evaluation, and target identification of rare Abies sesquiterpenoids. J. Am. Chem. Soc. 140, 17465–17473 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Trost, B. M. et al. Total synthesis of bryostatin 3. Science 368, 1007–1011 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Yang, P. et al. Elucidation of the structure of pseudorubriflordilactone B by chemical synthesis. J. Am. Chem. Soc. 142, 13701–13708 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Xiao, Q. et al. Potent antitumor mimetics of annonaceous acetogenins embedded with an aromatic moiety in the left hydrocarbon chain part. J. Med. Chem. 54, 525–533 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Bouwmeester, H. J., Fonne-Pfister, R., Screpanti, C. & De Mesmaeker, A. Strigolactones: plant hormones with promising features. Angew. Chem. Int. Ed. 58, 12778–12786 (2019).

    Article  CAS  Google Scholar 

  27. Strand, M. et al. Isolation and characterization of anti-adenoviral secondary metabolites from marine actinobacteria. Mar. Drugs 12, 799–821 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Roethle, P. A. & Trauner, D. The chemistry of marine furanocembranoids, pseudopteranes, gersolanes and related natural products. Nat. Prod. Rep. 25, 298–317 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Shi, Y. M., Xiao, W. L., Pu, J. X. & Sun, H. D. Triterpenoids from the Schisandraceae family: an update. Nat. Prod. Rep. 32, 367–410 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Chen, W. & Hartwig, J. F. Iridium-catalyzed regioselective and enantioselective allylation of trimethylsiloxyfuran. J. Am. Chem. Soc. 134, 15249–15252 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mao, B. et al. Highly enantioselective synthesis of 3-substituted furanones by palladium-catalyzed kinetic resolution of unsymmetrical allyl acetates. Angew. Chem. Int. Ed. 51, 3168–3173 (2012).

    Article  CAS  Google Scholar 

  32. Fournier, J., Lozano, O., Menozzi, C., Arseniyadis, S. & Cossy, J. Palladium-catalyzed asymmetric allylic alkylation of cyclic dienol carbonates: efficient route to enantioenriched γ-butenolides bearing an all-carbon α-quaternary stereogenic center. Angew. Chem. Int. Ed. 52, 1257–1261 (2013).

    Article  CAS  Google Scholar 

  33. Wang, Y.-N. et al. Inverse-electron-demand palladium-catalyzed asymmetric [4 + 2] cycloadditions enabled by chiral P,S-ligand and hydrogen bonding. Angew. Chem. Int. Ed. 58, 11013–11017 (2019).

    Article  CAS  Google Scholar 

  34. Dai, Z.-Y., Wang, P.-S. & Gong, L.-Z. Access to chiral γ-butenolides via palladium-catalyzed asymmetric allylic C–H alkylation of 1,4-dienes. Chem. Commun. 57, 6748–6751 (2021).

    Article  CAS  Google Scholar 

  35. Cui, H.-L. et al. Direct asymmetric allylic alkylation of butenolides with Morita–Baylis–Hillman carbonates. Org. Lett. 12, 720–723 (2010).

  36. Aubert, S., Katsina, T. & Arseniyadis, S. A sequential Pd-AAA/cross-metathesis/Cope rearrangement strategy for the stereoselective synthesis of chiral butenolides. Org. Lett. 21, 2231–2235 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Xie, X., Li, Y. & Fox, J. M. Selective syntheses of Δα,β and Δβ,γ butenolides from allylic cyclopropenecarboxylates via tandem ring expansion/[3,3]-sigmatropic rearrangements. Org. Lett. 15, 1500–1503 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Simlandy, A. K. & Mukherjee, S. Catalytic asymmetric formal γ-allylation of deconjugated butenolides. Org. Biomol. Chem. 14, 5659–5664 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Butts, C. P. et al. Structure-based rationale for selectivity in the asymmetric allylic alkylation of cycloalkenyl esters employing the Trost ‘standard ligand’ (TSL): isolation, analysis and alkylation of the monomeric form of the cationic η3-cyclohexenyl complex [(η3-c-C6H9)Pd(TSL)]+. J. Am. Chem. Soc. 131, 9945–9957 (2009).

  40. Zhang, Y., Zhang, X. & Ma, S. Stretchable chiral pockets for palladium-catalyzed highly chemo- and enantioselective allenylation. Nat. Commun. 12, 2416 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu, J., Mishra, S. & Aponick, A. Enol acetates: versatile substrates for the enantioselective intermolecular Tsuji allylation. J. Am. Chem. Soc. 140, 16152–16158 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Reeves, C. M., Behenna, D. C. & Stoltz, B. M. Development of (trimethylsilyl)ethyl ester protected enolates and applications in palladium-catalyzed enantioselective allylic alkylation: intermolecular cross-coupling of functionalized electrophiles. Org. Lett. 16, 2314–2317 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Trost, B. M., Osipov, M. & Dong, G. A concise enantioselective synthesis of (−)-ranirestat. Org. Lett. 12, 1276–1279 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Oliver, S. & Evans, P. A. Transition-metal-catalyzed allylic substitution reactions: stereoselective construction of α- and β-substituted carbonyl compounds. Synthesis 45, 3179–3198 (2013).

    Article  CAS  Google Scholar 

  45. Pratap, R. & Ram, V. J. Natural and synthetic chromenes, fused chromenes and versatility of dihydrobenzo[h]chromenes in organic synthesis. Chem. Rev. 114, 10476–10526 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Grover, J. & Jachak, S. M. Coumarins as privileged scaffold for anti-inflammatory drug development. RSC Adv. 5, 38892–38905 (2015).

    Article  CAS  Google Scholar 

  47. He, H. et al. Six new O-terpenoidal coumarins, excavacoumarins B-G from Clausena excavata. Heterocycles 53, 2067–2070 (2000).

    Article  CAS  Google Scholar 

  48. Wang, Y. S., Xu, H. Y., Wang, D. X. & Yang, J. H. A new O-terpenoidal coumarin from Clausena anisum-olens Merr. Molecules 14, 771–776 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Geenen, S. R., Presser, L., Hölzel, T., Ganter, C. & Müller, T. J. J. Electronic finetuning of 8-methoxy psoralens by palladium-catalyzed coupling: acidochromicity and solvatochromicity. Chem. Eur. J. 26, 8064–8075 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Huang, J. et al. DMPDAB-Pd-MAH: a versatile Pd(0) source for precatalyst formation, reaction screening and preparative-scale synthesis. ACS Catal. 11, 5636–5646 (2021).

    Article  CAS  Google Scholar 

  51. Soriano, S., Escudero-Casao, M., Matheu, M. I., Díaz, Y. & Castillón, S. Substrate-regiocontrolled synthesis of enantioenriched allylic amines by palladium-catalysed asymmetric allylic amination: formal synthesis of fagomine. Adv. Synth. Catal. 358, 4057–4066 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Queen Mary University of London and Eli Lilly are acknowledged for financial support. We also gratefully acknowledge I. Abrahams for X-ray diffraction analysis, H. Toms for support and guidance in NMR analysis and J. Ciesielski and A. Martin at Eli Lilly for fruitful discussions. We dedicate this work to the memory of Prof. J. Tsuji.

Author information

Authors and Affiliations

Authors

Contributions

F.R., S. Aubert and S. Arseniyadis conceived the project. F.R., S. Aubert, T.K. and L.R. conducted the experiments and analysed the data. F.R. conducted the synthesis of all three excavacoumarins. J.H. and D.C.L. designed and prepared the DMPDAB-Pd-MAH complex. R.C.-O. and D.P. conducted the computational studies. F.R., D.C.L., C.M. and S. Arseniyadis wrote the manuscript with input from all authors. S. Arseniyadis directed the project.

Corresponding author

Correspondence to Stellios Arseniyadis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

All the data reported in the paper are available in the Supplementary Information file.

Supplementary Data 1

Crystallographic data for compound 7, CCDC 2102893.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richard, F., Aubert, S., Katsina, T. et al. Enantioselective synthesis of γ-butenolides through Pd-catalysed C5-selective allylation of siloxyfurans. Nat. Synth 1, 641–648 (2022). https://doi.org/10.1038/s44160-022-00109-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00109-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing