Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Palladium-catalysed branch- and enantioselective allylic C–H alkylation of α-alkenes

Abstract

Enantioselective functionalization of alkenes is an attractive and straightforward method to assemble molecular complexity from readily available chemical feedstocks. Although regio- and enantioselective transformations of the C=C bond of alkenes have been extensively studied, those of the allylic C–H bonds of unactivated alkenes are yet to be explored. Here we report a palladium-catalysed branch- and enantioselective allylic C–H alkylation that is capable of accommodating diverse types of α-alkenes, ranging from feedstocks annually manufactured on a million-tonne scale to olefins tethering a wide scope of appended functionalities, providing unconventional access to chiral γ,δ-unsaturated amides. Notably, mechanistic studies reveal that regioselectivity is not only governed by the coordination pattern of nucleophiles but also regulated by the ligational behaviours of ligands, highlighting the importance of the monoligation of chiral phosphoramidite ligands in provoking high levels of stereo- and branch-selectivity via a nucleophile coordination-enabled inner-sphere allylation pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Asymmetric allylic C–H functionalization of α-alkenes.
Fig. 2: Asymmetric allylic C−H alkylation catalysed by palladium-phosphoramidite complex.
Fig. 3: Synthetic applications of chiral α-alkylated products.
Fig. 4: Mechanistic investigation.
Fig. 5: DFT-computed relative energy profiles of plausible inner-sphere pathways.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article and its Supplementary Information. Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition no. CCDC 2142298 (16). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Carruthers, W. & Coldham, I. in Modern Methods of Organic Synthesis (Cambridge Univ. Press, Cambridge, 2004).

  2. Beller, M., Seayad, J., Tillack, A. & Jiao, H. Catalytic Markovnikov and anti-Markovnikov functionalization of alkenes and alkynes: recent developments and trends. Angew. Chem. Int. Ed. 43, 3368–3398 (2004).

    Article  CAS  Google Scholar 

  3. Dong, Z., Ren, Z., Thompson, S. J., Xu, Y. & Dong, G. Transition-metal-catalyzed C–H alkylation using alkenes. Chem. Rev. 117, 9333–9403 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. McDonald, R. I., Liu, G. & Stahl, S. S. Palladium(II)-catalyzed alkene functionalization via nucleopalladation: stereochemical pathways and enantioselective catalytic applications. Chem. Rev. 111, 2981–3019 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Newton, C. G., Wang, S. G., Oliveira, C. C. & Cramer, N. Catalytic enantioselective transformations involving C–H bond cleavage by transition-metal complexes. Chem. Rev. 117, 8908–8976 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Qin, Y., Zhu, L. & Luo, S. Organocatalysis in inert C–H bond functionalization. Chem. Rev. 117, 9433–9520 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Qi, X., Chen, P. & Liu, G. Advances and challenges in palladium-catalyzed intermolecular selective allylic C–H functionalization of alkenes. Sci. China Chem. 58, 1249–1251 (2015).

    Article  CAS  Google Scholar 

  8. Andrus, M. B. & Zhou, Z. Highly enantioselective copper-bisoxazoline-catalyzed allylic oxidation of cyclic olefins with tert-butyl p-nitroperbenzoate. J. Am. Chem. Soc. 124, 8806–8807 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Li, J. et al. Site-specific allylic C–H bond functionalization with a copper-bound N-centred radical. Nature 574, 516–521 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Kubiak, R. W. II et al. Enantioselective intermolecular C–H functionalization of allylic and benzylic sp3 C–H bonds using N-sulfonyl-1,2,3-triazoles. Org. Lett. 18, 3118–3121 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vaitla, J., Boni, Y. T. & Davies, H. M. L. Distal allylic/benzylic C–H Functionalization of silyl ethers using donor/acceptor rhodium(II) carbenes. Angew. Chem. Int. Ed. 59, 7397–7402 (2020).

    Article  CAS  Google Scholar 

  12. Farr, C. M. B. et al. Designing a planar chiral rhodium indenyl catalyst for regio- and enantioselective allylic C–H amidation. J. Am. Chem. Soc. 142, 13996–14004 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, P.-S. & Gong, L.-Z. Palladium-catalyzed asymmetric allylic C–H functionalization: mechanism, stereo- and regioselectivities, and synthetic applications. Acc. Chem. Res. 53, 2841–2854 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Ammann, S. E., Liu, W. & White, M. C. Enantioselective allylic C–H oxidation of terminal olefins to isochromans by palladium(II)/chiral sulfoxide catalysis. Angew. Chem. Int. Ed. 55, 9571–9575 (2016).

    Article  CAS  Google Scholar 

  15. Liu, W., Ali, S. Z., Ammann, S. E. & White, M. C. Asymmetric allylic C–H alkylation via palladium(II)/cis-ArSOX catalysis. J. Am. Chem. Soc. 140, 10658–10662 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Teichert, J. F. & Feringa, B. L. Phosphoramidites: privileged ligands in asymmetric catalysis. Angew. Chem. Int. Ed. 49, 2486–2528 (2010).

    Article  CAS  Google Scholar 

  17. Trost, B. M., Thaisrivongs, D. A. & Donckele, E. J. Palladium-catalyzed enantioselective allylic alkylations through C–H activation. Angew. Chem. Int. Ed. 52, 1523–1526 (2013).

    Article  CAS  Google Scholar 

  18. Wang, P.-S. et al. Asymmetric allylic C–H oxidation for the synthesis of chromans. J. Am. Chem. Soc. 137, 12732–12735 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Lin, H.-C. et al. Nucleophile-dependent Z/E- and regioselectivity in the palladium-catalyzed asymmetric allylic C–H alkylation of 1,4-dienes. J. Am. Chem. Soc. 141, 5824–5834 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Trost, B. M., Machacek, M. R. & Aponick, A. Predicting the stereochemistry of diphenylphosphino benzoic acid (DPPBA)-based palladium-catalyzed asymmetric allylic alkylation reactions: a working model. Acc. Chem. Res. 39, 747–760 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Bai, D.-C. et al. Palladium/N-heterocyclic carbene catalysed regio and diastereoselective reaction of ketones with allyl reagents via inner-sphere mechanism. Nat. Commun. 7, 11806 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cusumano, A. Q., Stoltz, B. M. & Goddard, W. A. III Reaction mechanism, origins of enantioselectivity, and reactivity trends in asymmetric allylic alkylation: a comprehensive quantum mechanics investigation of a C(sp3)–C(sp3) cross-coupling. J. Am. Chem. Soc. 142, 13917–13933 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fan, L.-F. et al. Nucleophile coordination enabled regioselectivity in palladium-catalyzed asymmetric allylic C–H alkylation. Angew. Chem. Int. Ed. 58, 16806–16810 (2019).

    Article  CAS  Google Scholar 

  24. Wang, T.-C., Fan, L.-F., Shen, Y., Wang, P.-S. & Gong, L.-Z. Asymmetric allylic C–H alkylation of allyl ethers with 2-acylimidazoles. J. Am. Chem. Soc. 141, 10616–10620 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Wang, T.-C., Wang, P.-S. & Gong, L.-Z. Palladium-catalyzed asymmetric allylic C–H alkylation of 1,4-dienes and glycine Schiff bases. Sci. China Chem. 63, 454–459 (2020).

    Article  CAS  Google Scholar 

  26. Dai, Z.-Y., Wang, P.-S. & Gong, L.-Z. Access to chiral gamma-butenolides via palladium-catalyzed asymmetric allylic C–H alkylation of 1,4-dienes. Chem. Commun. 57, 6748–6751 (2021).

    Article  CAS  Google Scholar 

  27. Lin, H.-C. et al. Highly enantioselective allylic C–H alkylation of terminal olefins with pyrazol-5-ones enabled by cooperative catalysis of palladium complex and Bronsted acid. J. Am. Chem. Soc. 138, 14354–14361 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Qin, L., Sharique, M. & Tambar, U. K. Controllable, sequential, and stereoselective C–H allylic alkylation of alkenes. J. Am. Chem. Soc. 141, 17305–17313 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lin, S., Song, C.-X., Cai, G.-X., Wang, W.-H. & Shi, Z.-J. Intra/intermolecular direct allylic alkylation via Pd(II)-catalyzed allylic C–H activation. J. Am. Chem. Soc. 130, 12901–129003 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Young, A. J. & White, M. C. Catalytic intermolecular allylic C–H alkylation. J. Am. Chem. Soc. 130, 14090–14091 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Sharma, A. & Hartwig, J. F. Enantioselective functionalization of allylic C–H bonds following a strategy of functionalization and diversification. J. Am. Chem. Soc. 135, 17983–17989 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pan, S. et al. Palladium-catalyzed allylic substitution reaction of benzothiazolylacetamide with allylic alcohols in water. J. Org. Chem. 84, 10111–10119 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Franck, G., Brodner, K. & Helmchen, G. Enantioselective modular synthesis of cyclohexenones: total syntheses of (+)-crypto- and (+)-infectocaryone. Org. Lett. 12, 3886–3889 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Helmchen, G., Gnamm, C., Förster, S., Miller, N. & Brödner, K. Enantioselective iridium-catalyzed allylic alkylations—improvements and applications based on salt-free reaction conditions. Synlett 2007, 0790–0794 (2007).

    Article  Google Scholar 

  35. Saito, A., Kogure, N., Kitajima, M. & Takayama, H. Total synthesis of (-)-14-hydroxygelsenicine and six biogenetically related gelsemium alkaloids. Org. Lett. 21, 7134–7137 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Stork, G. et al. The first stereoselective total synthesis of quinine. J. Am. Chem. Soc. 123, 3239–3242 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Ito, H. et al. Enantioselective total synthesis of both diastereomers of preclavulone-A methyl ester. Tetrahedron 62, 10425–10433 (2006).

    Article  CAS  Google Scholar 

  38. Trost, B. M. & Vranken, Van, D. L. Asymmetric transition metal-catalyzed allylic alkylations. Chem. Rev. 96, 395–422 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Pamies, O. et al. Recent advances in enantioselective Pd-catalyzed allylic substitution: from design to applications. Chem. Rev. 121, 4373–4505 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang, Z.-F., Xie, F., Yang, B., Yu, H. & Zhang, W.-B. Chiral phosphoramidite ligand and Its application in asymmetric catalysis. Chin. J. Org. Chem. 31, 429–442 (2011).

    CAS  Google Scholar 

  41. Boele, M. D. et al. Bulky monodentate phosphoramidites in palladium-catalyzed allylic alkylation reactions: aspects of regioselectivity and enantioselectivity. Chem. Eur. J. 10, 6232–6246 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. van Leeuwen, P. W., Kamer, P. C., Reek, J. N. & Dierkes, P. Ligand bite angle effects in metal-catalyzed C–C bond formation. Chem. Rev. 100, 2741–2770 (2000).

    Article  PubMed  Google Scholar 

  43. Ogasawara, M., Takizawa, K.-i & Hayashi, T. Effects of bidentate phosphine ligands on syn−anti isomerization in π-allylpalladium complexes. Organometallics 21, 4853–4861 (2002).

    Article  CAS  Google Scholar 

  44. Amatore, C., Jutand, A., Mensah, L. & Ricard, L. On the formation of Pd(II) complexes of Trost modular ligand involving N–H activation or P,O coordination in Pd-catalyzed allylic alkylations. J. Organomet. Chem. 692, 1457–1464 (2007).

    Article  CAS  Google Scholar 

  45. Behenna, D. C. & Stoltz, B. M. The enantioselective Tsuji allylation. J. Am. Chem. Soc. 126, 15044–15045 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Young, C. M. et al. The importance of 1,5-oxygen···chalcogen interactions in enantioselective isochalcogenourea catalysis. Angew. Chem. Int. Ed. 59, 3705–3710 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the NSFC (grant nos. 22188101), Youth Innovation Promotion Association CAS and Anhui Provincial Natural Science Foundation (grant no. 2108085MB58).

Author information

Authors and Affiliations

Authors

Contributions

Z.-S.N., P.-S.W. and L.-Z.G. conceived the project. Z.-S.N., T.-C.W. and L.-F.F. performed the experiments and analysed the data. L.Z. and P.-S.W. designed and performed the DFT calculations. P.-S.W. and L.-Z.G. supervised the research and co-wrote the manuscript.

Corresponding authors

Correspondence to Pu-Sheng Wang or Liu-Zhu Gong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Per-Ola Norrby and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–20, Discussion, NMR spectra, HPLC data, references and Tables 1–12.

Supplementary Data 1

Computational data

Supplementary Data 2

Crystallographic data for compound 16 CCDC 2142298

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nong, ZS., Zhu, L., Wang, TC. et al. Palladium-catalysed branch- and enantioselective allylic C–H alkylation of α-alkenes. Nat. Synth 1, 487–496 (2022). https://doi.org/10.1038/s44160-022-00084-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00084-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing