Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthesis of axially chiral alkenylboronates through combined copper- and palladium-catalysed atroposelective arylboration of alkynes

Abstract

The incorporation of alkenylboronates into axially chiral compounds increases their structural diversity and provides a synthetic handle for late-stage functionalizations. Despite advances made in the synthesis of axially chiral acyclic alkenes, catalytic enantioselective synthesis of tetrasubstituted axially chiral acyclic alkenylboronates still remains a challenge. Here, we report a combined copper- and palladium-catalysed atroposelective arylboration of alkynes, providing access to tetrasubstituted axially chiral alkenylboronates. The process can tolerate a broad range of functional groups and substrates, including unsymmetrical alkynes, providing products with excellent Z-/E-selectivity, regiocontrol and enantiocontrol. The synthetic use of the products has been demonstrated through onwards synthetic transformations to generate various new axially chiral olefins including axially chiral 1,3-enynes. Mechanistic experiments reveal a potential combined copper and palladium catalytic cycle, with the observed stereocontrol originating from a higher-order active palladium catalyst.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Background and our strategy.
Fig. 2: Downstream applications and transformations.
Fig. 3: Mechanism experiments and possible catalytic cycle.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article and its Supplementary Information files. Crystallographic data for the structures reported in this Article have been deposited at the CCDC, under deposition numbers CCDC 2171042 (3), 2171044 (12), 2171040 (17), 2171047 (36), 2171041 (51), 2171043 (70), 2171046 (126) and 2171045 (ent-3). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures.

References

  1. Kumarasamy, E., Raghunathan, R., Sibi, M. P. & Sivaguru, J. Nonbiaryl and heterobiaryl atropisomers: molecular templates with promise for atropselective chemical transformations. Chem. Rev. 115, 11239–11300 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Smyth, J. E., Butler, N. M. & Keller, P. A. A twist of nature-the significance of atropisomers in biological systems. Nat. Prod. Rep. 32, 1562–1583 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Bringmann, G., Gulder, T., Gulder, T. A. M. & Breuning, M. Atroposelective total synthesis of axially chiral biaryl natural products. Chem. Rev. 111, 563–639 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Li, Y., Kwong, F., Yu, W. & Chan, A. Recent advances in developing new axially chiral phosphine ligands for asymmetric catalysis. Coord. Chem. Rev. 251, 2119–2144 (2007).

    Article  CAS  Google Scholar 

  5. Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Toenjes, S. T. & Gustafson, J. L. Atropisomerism in medicinal chemistry: challenges and opportunities. Future Med. Chem. 10, 409–422 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lassaletta, J. M. (ed.). Atropisomerism and Axial Chirality 1st edn (World Scientific, 2019).

  8. Bao, X., Rodriguez, J. & Bonne, D. Enantioselective synthesis of atropisomers with multiple stereogenic axes. Angew. Chem. Int. Ed. 59, 12623–12634 (2020).

    Article  CAS  Google Scholar 

  9. Wencel-Delord, J., Panossian, A., Leroux, F. R. & Colobert, F. Recent advances and new concepts for the synthesis of axially stereoenriched biaryls. Chem. Soc. Rev. 44, 3418–3430 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Liao, G., Zhou, T., Yao, Q.-J. & Shi, B.-F. Recent advances in the synthesis of axially chiral biaryls via transition metal-catalysed asymmetric C–H functionalization. Chem. Commun. 55, 8514–8523 (2019).

    Article  CAS  Google Scholar 

  11. Liu, C. X., Zhang, W. W., Yin, S. Y., Gu, Q. & You, S. L. Synthesis of atropisomers by transition-metal-catalyzed asymmetric C-H functionalization reactions. J. Am. Chem. Soc. 143, 14025–14040 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Cheng, J. K., Xiang, S. H., Li, S., Ye, L. & Tan, B. Recent advances in catalytic asymmetric construction of atropisomers. Chem. Rev. 121, 4805–4902 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Wu, Y.-J., Liao, G. & Shi, B.-F. Stereoselective construction of atropisomers featuring a C–N chiral axis. Green Synth. Catal. 3, 117–136 (2022).

    Article  Google Scholar 

  14. Mori, K., Ohmori, K. & Suzuki, K. Hydrogen-bond control in axially chiral styrenes: selective synthesis of enantiomerically pure C2-symmetric paracyclophanes. Angew. Chem. Int. Ed. 48, 5638–5641 (2009).

    Article  CAS  Google Scholar 

  15. Gu, Z. & Feng, J. Atropisomerism in styrene: synthesis, stability, and spplications. SynOpen 5, 68–85 (2021).

    Article  Google Scholar 

  16. Wu, S., Xiang, S.-H., Cheng, J. K. & Tan, B. Axially chiral alkenes: atroposelective synthesis and applications. Tetrahedron Chem. 1, 100009 (2022).

    Article  Google Scholar 

  17. Defieber, C., Grutzmacher, H. & Carreira, E. M. Chiral olefins as steering ligands in asymmetric catalysis. Angew. Chem. Int. Ed. 47, 4482–4502 (2008).

    Article  CAS  Google Scholar 

  18. Feng, X. & Du, H. Synthesis of chiral olefin ligands and their application in asymmetric catalysis. Asian J. Org. Chem. 1, 204–213 (2012).

    Article  CAS  Google Scholar 

  19. Li, Y. & Xu, M. H. Simple sulfur-olefins as new promising chiral ligands for asymmetric catalysis. Chem. Commun. 50, 3771–3782 (2014).

    Article  CAS  Google Scholar 

  20. Zhang, Z.-X., Zhai, T.-Y. & Ye, L.-W. Synthesis of axially chiral compounds through catalytic asymmetric reactions of alkynes. Chem Catalysis 1, 1378–1412 (2021).

    Article  Google Scholar 

  21. Zheng, S. C. et al. Organocatalytic atroposelective synthesis of axially chiral styrenes. Nat. Commun. 8, 15238 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jia, S. et al. Organocatalytic enantioselective construction of axially chiral sulfone-containing styrenes. J. Am. Chem. Soc. 140, 7056–7060 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Tan, Y. et al. Enantioselective construction of vicinal diaxial styrenes and multiaxis system via organocatalysis. J. Am. Chem. Soc. 140, 16893–16898 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Wang, Y.-B. et al. Rational design, enantioselective synthesis and catalytic applications of axially chiral EBINOLs. Nat. Catal. 2, 504–513 (2019).

    Article  CAS  Google Scholar 

  25. Huang, A. et al. Asymmetric one-pot construction of three stereogenic elements: chiral carbon center, stereoisomeric alkenes, and chirality of axial styrenes. Org. Lett. 21, 95–99 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Wang, C. S. et al. Axially chiral aryl‐alkene‐indole framework: a nascent member of the atropisomeric family and its catalytic asymmetric construction. Chin. J. Chem. 38, 543–552 (2020).

    Article  CAS  Google Scholar 

  27. Li, Q. Z. et al. Organocatalytic enantioselective construction of heterocycle-substituted styrenes with chiral atropisomerism. Org. Lett. 22, 2448–2453 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, C. et al. Access to axially chiral styrenes via a photoinduced asymmetric radical reaction involving a sulfur dioxide insertion. Chem. Catalysis 2, 164–177 (2022).

    Article  Google Scholar 

  29. Zhang, W., Song, R., Yang, D. & Lv, J. Construction of axially chiral styrenes linking an indole moiety by chiral phosphoric acid. J. Org. Chem. 87, 2853–2863 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Yan, J. L. et al. Carbene-catalyzed atroposelective synthesis of axially chiral styrenes. Nat. Commun. 13, 84 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu, S. et al. Urea group-directed organocatalytic asymmetric versatile dihalogenation of alkenes and alkynes. Nat. Catal. 4, 692–702 (2021).

    Article  CAS  Google Scholar 

  32. Mi, R. et al. Rhodium-catalyzed atroposelective access to axially chiral olefins via C−H bond activation and directing group migration. Angew. Chem. Int. Ed. 61, e202111860 (2022).

    Article  CAS  Google Scholar 

  33. Song, H. et al. Synthesis of axially chiral styrenes through Pd-catalyzed asymmetric C-H olefination enabled by an amino amide transient directing group. Angew. Chem. Int. Ed. 59, 6576–6580 (2020).

    Article  CAS  Google Scholar 

  34. Jin, L. et al. Atroposelective synthesis of axially chiral styrenes via an asymmetric C–H functionalization strategy. Chem 6, 497–511 (2020).

    Article  CAS  Google Scholar 

  35. Yang, C. et al. Facile synthesis of axially chiral styrene-type carboxylic acids via palladium-catalyzed asymmetric C-H activation. Chem. Sci. 12, 3726–3732 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang, J. et al. Tandem iridium catalysis as a general strategy for atroposelective construction of axially chiral styrenes. J. Am. Chem. Soc. 143, 10686–10694 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Jin, L., Zhang, P., Li, Y., Yu, X. & Shi, B. F. Atroposelective synthesis of conjugated diene-based axially chiral styrenes via Pd(II)-catalyzed thioether-directed alkenyl C-H olefination. J. Am. Chem. Soc. 143, 12335–12344 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Dai, D. T., Yang, M. W., Chen, Z. Y., Wang, Z. L. & Xu, Y. H. Chelation-controlled stereospecific cross-coupling reaction between alkenes for atroposelective synthesis of axially chiral conjugated dienes. Org. Lett. 24, 1979–1984 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Yang, C. et al. Development of axially chiral styrene-type carboxylic acid ligands via palladium-catalyzed asymmetric C-H alkynylation. Org. Lett. 23, 8132–8137 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Wang, Y. B. et al. Asymmetric construction of axially chiral 2-arylpyrroles by chirality transfer of atropisomeric alkenes. Angew. Chem. Int. Ed. 58, 13443–13447 (2019).

    Article  CAS  Google Scholar 

  41. Ma, C. et al. Atroposelective access to oxindole-based axially chiral styrenes via the strategy of catalytic kinetic resolution. J. Am. Chem. Soc. 142, 15686–15696 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Miyaura, N. & Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev. 95, 2457–2483 (1995).

    Article  CAS  Google Scholar 

  43. Suzuki, A. Cross-coupling reactions of organoboranes: an easy way to construct C-C bonds. Angew. Chem. Int. Ed. 50, 6722–6737 (2011).

    Article  CAS  Google Scholar 

  44. Lennox, A. J. & Lloyd-Jones, G. C. Selection of boron reagents for Suzuki-Miyaura coupling. Chem. Soc. Rev. 43, 412–443 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Armstrong, R. & Aggarwal, V. 50 years of Zweifel olefination: a transition-metal-free coupling. Synthesis 49, 3323–3336 (2017).

    Article  CAS  PubMed Central  Google Scholar 

  46. Candeias, N. R., Montalbano, F., Cal, P. M. S. D. & Gois, P. M. P. Boronic acids and esters in the petasis-borono mannich multicomponent reaction. Chem. Rev. 110, 6169–6193 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Shade, R. E., Hyde, A. M., Olsen, J.-C. & Merlic, C. A. Copper-promoted coupling of vinyl boronates and alcohols: a mild synthesis of allyl vinyl ethers. J. Am. Chem. Soc. 132, 1202–1203 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Carreras, J., Caballero, A. & Perez, P. J. Alkenyl boronates: synthesis and applications. Chem. Asian J. 14, 329–343 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Zhou, Y., You, W., Smith, K. B. & Brown, M. K. Copper-catalyzed cross-coupling of boronic esters with aryl iodides and application to the carboboration of alkynes and allenes. Angew. Chem. Int. Ed. 53, 3475–3479 (2014).

    Article  CAS  Google Scholar 

  50. Yang, K. & Song, Q. Tetracoordinate boron intermediates enable unconventional transformations. Acc. Chem. Res. 54, 2298–2312 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Yang, K. et al. Construction of axially chiral arylborons via atroposelective miyaura borylation. J. Am. Chem. Soc. 143, 10048–10053 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Jin, S., Liu, K., Wang, S. & Song, Q. Enantioselective cobalt-catalyzed cascade hydrosilylation and hydroboration of alkynes to access enantioenriched 1,1-silylboryl alkanes. J. Am. Chem. Soc. 143, 13124–13134 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Lesieur, M., Bidal, Y. D., Lazreg, F., Nahra, F. & Cazin, C. S. J. Versatile relay and cooperative palladium(0) N-heterocyclic carbene/copper (I) N-heterocyclic carbene catalysis for the synthesis of tri- and tetrasubstituted alkenes. Chem. Cat. Chem. 7, 2108–2112 (2015).

    CAS  Google Scholar 

  54. Semba, K., Yoshizawa, M., Ohtagaki, Y. & Nakao, Y. Arylboration of internal alkynes by cooperative palladium/copper catalysis. Bull. Chem. Soc. Jpn 90, 1340–1343 (2017).

    Article  CAS  Google Scholar 

  55. Huang, Y., Bergmann, A. M. & Brown, M. K. (Hetero)arylboration of alkynes: a strategy for the synthesis of alpha, alpha-bis(hetero)arylketones. Org. Biomol. Chem. 17, 5913–5915 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu, Z.-S. et al. Construction of axial chirality via palladium/chiral norbornene cooperative catalysis. Nat. Cat. 3, 727–733 (2020).

    Article  CAS  Google Scholar 

  57. Satyanarayana, T., Abraham, S. & Kagan, H. B. Nonlinear effects in asymmetric catalysis. Angew. Chem. Int. Ed. 48, 456–494 (2009).

    Article  CAS  Google Scholar 

  58. Yoshida, H., Takemoto, Y. & Takaki, K. Direct synthesis of boron-protected alkenyl- and alkylborons via copper-catalyzed formal hydroboration of alkynes and alkenes. Asian J. Org. Chem. 3, 1204–1209 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support came from National Natural Science Foundation of China (grant nos. 21931013 to Q.S. and 22001038 to K.Y.), the Natural Science Foundation of Fujian Province (grant no. 2022J02009 to Q.S.) and Open Research Fund of School of Chemistry and Chemical Engineering, Henan Normal University (to Q.S.) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Q.S. designed and directed the project. W.L. performed the experiments and developed the reactions. S.C., J.X., Z.F. and K.Y. helped collecting some experimental data. Q.S. and W.L. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Qiuling Song.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Tables 1–14, Figs. 1–9 and starting material preparation, experimental procedures, synthetic transformations, mechanistic studies and product characterization.

Supplementary Data 1

Crystallographic data of complex 3 (CCDC 2171042).

Supplementary Data 2

Crystallographic data of complex 12 (CCDC 2171044).

Supplementary Data 3

Crystallographic data of complex 17 (CCDC 2171040).

Supplementary Data 4

Crystallographic data of complex 36 (CCDC 2171047).

Supplementary Data 5

Crystallographic data of complex 51 (CCDC 2171041).

Supplementary Data 6

Crystallographic data of complex 70 (CCDC 2171043).

Supplementary Data 7

Crystallographic data of complex 126 (CCDC 2171046).

Supplementary Data 8

Crystallographic data of complex ent-3 (CCDC 2171045).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Chen, S., Xie, J. et al. Synthesis of axially chiral alkenylboronates through combined copper- and palladium-catalysed atroposelective arylboration of alkynes. Nat. Synth 2, 140–151 (2023). https://doi.org/10.1038/s44160-022-00201-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00201-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing