Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lithiation–borylation methodology in the total synthesis of natural products

Abstract

Robust synthetic methods that show a broad substrate scope are of great utility in the synthesis of complex organic molecules. Within this arena, synthetic methods that employ boronic esters are especially useful because they undergo a wide variety of transformations with very high levels of stereoselectivity. In particular, boronic esters can undergo single or multiple homologations using enantioenriched metal carbenoids. The addition of a suitable enantioenriched lithium or magnesium carbenoid to a boronic ester, with subsequent 1,2-migration, gives a homologated boronic ester with high stereocontrol. This process, termed lithiation–borylation, can be iterative, which allows a carbon chain to be extended one atom at a time with remarkable precision. The iterative homologation has been likened to a molecular assembly line and resembles the way nature assembles natural products, for example, in polyketide synthase machinery. The application of lithiation–borylation chemistry to the synthesis of a broad variety of natural products is discussed in this Review.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Introduction to homologation of boronic esters.
Fig. 2: Preparation and use of metal carbenoid precursors.
Fig. 3: Exploiting selective invertive and retentive pathways of trapping benzylic carbamates in lithiation–borylation reactions.
Fig. 4: Homologation of boronic esters using primary alkyl substrates to construct alkaloid and polyketide natural products.
Fig. 5: Rapid construction of natural products through desymmetrization of bis-boronic esters.
Fig. 6: Enabling the rapid construction of natural products with high efficiency through iterative homologations (assembly-line synthesis).
Fig. 7: Synthesis of the originally proposed structures of baulamycins A and B.
Fig. 8: Determination of the relative and absolute configurations of baulamycins A and B through synthesis and NMR spectroscopic analysis52.

Similar content being viewed by others

References

  1. Defrancesco, H., Dudley, J. & Coca, A. in Boron Reagents in Synthesis 1–25 (ACS, 2016).

  2. Matteson, D. S. Stereodirected Synthesis with Organoboranes (Springer, 1995).

  3. Kalita, S. J., Cheng, F. & Huang, Y.-Y. Recent advances of applying boron-reagents in asymmetric total syntheses of natural products and bio-active molecules. Adv. Synth. Catal. 362, 2778–2800 (2020).

    Article  CAS  Google Scholar 

  4. Matteson, D. S. α-Halo boronic esters: Intermediates for stereodirected synthesis. Chem. Rev. 89, 1535–1551 (1989).

    Article  CAS  Google Scholar 

  5. Matteson, D. S. et al. Directed asymmetric synthesis with boronic esters. J. Organomet. Chem. 281, 15–23 (1985).

    Article  CAS  Google Scholar 

  6. Matteson, D. S. Boronic esters in asymmetric synthesis. J. Org. Chem. 78, 10009–10023 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Fasano, V. & Aggarwal, V. K. Origin of stereocontrol in the Matteson reaction: importance of attractive electrostatic interactions. Tetrahedron 78, 131810 (2021).

    Article  CAS  Google Scholar 

  8. Corey, E. J., Barnes-Seeman, D. & Lee, T. W. The mechanistic basis for diastereoselectivity in the Matteson rearrangement. Tetrahedron Asymm. 8, 3711–3713 (1997).

    Article  CAS  Google Scholar 

  9. Midland, M. M. Ab initio investigation of the transition state for asymmetric synthesis with boronic esters. J. Org. Chem. 63, 914–915 (1998).

    Article  CAS  Google Scholar 

  10. Leonori, D. & Aggarwal, V. K. Lithiation−borylation methodology and its application in synthesis. Acc. Chem. Res. 47, 3174–3183 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Aiken, S. G., Bateman, J. M. & Aggarwal, V. K. in Science of Synthesis: Advances in Organoboron Chemistry towards Organic Synthesis (ed. Fernández, E.) 393–458 (Georg Thieme, 2019).

  12. Burns, M. et al. Assembly-line synthesis of organic molecules with tailored shapes. Nature 513, 183–188 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Thomas, S. P., French, R. M., Jheengut, V. & Aggarwal, V. K. Homologation and alkylation of boronic esters and boranes by 1,2-metallate rearrangement of boron ate complexes. Chem. Rec. 9, 24–39 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Beckmann, E., Desai, V. & Hoppe, D. Stereospecific reaction of α-carbamoyloxy-2-alkenylboronates and α-carbamoyloxy-alkylboronates with Grignard reagents—synthesis of highly enantioenriched secondary alcohols. Synlett 13, 2275–2280 (2004).

    Google Scholar 

  15. Besong, G., Jarowicki, K., Kocienski, P. J., Sliwinski, E. & Boyle, F. T. Synthesis of (S)-(–)-N-acetylcolchinol using intramolecular biaryl oxidative coupling. Org. Biomol. Chem. 4, 2193–2207 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Leonori, D. & Aggarwal, V. K. Reagent-controlled lithiation–borylation. in Topics in Organometallic Chemistry (eds Fernández, E. & Whiting, A.) 271–295 (Springer, 2015).

  17. Blakemore, P. R., Marsden, S. P. & Vater, H. D. Reagent-controlled asymmetric homologation of boronic esters by enantioenriched main-group chiral carbenoids. Org. Lett. 8, 773–776 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Blakemore, P. R. & Burge, M. S. Iterative stereospecific reagent-controlled homologation of pinacol boronates by enantioenriched α-chloroalkyllithium reagents. J. Am. Chem. Soc. 129, 3068–3069 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Rayner, P. J., O’Brien, P. & Horan, R. A. J. Preparation and reactions of enantiomerically pure α-functionalized Grignard reagents. J. Am. Chem. Soc. 135, 8071–8077 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Casoni, G. et al. α-Sulfinyl benzoates as precursors to Li and Mg carbenoids for the stereoselective iterative homologation of boronic esters. J. Am. Chem. Soc. 139, 11877–11886 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Pulis, A. P. et al. Asymmetric synthesis of tertiary alcohols and thiols via nonstabilized tertiary α-oxy-and α-thio-substituted organolithium species. Angew. Chem. Int. Ed. 56, 10835–10839 (2017).

    Article  CAS  Google Scholar 

  22. Carstens, A. & Hoppe, D. Generation of a configurationally stable, enantioenriched α-oxy-α-methylbenzyllithium: stereodivergence of its electrophilic substitution. Tetrahedron 50, 6097–6108 (1994).

    Article  CAS  Google Scholar 

  23. Stymiest, J. L., Bagutski, V., French, R. M. & Aggarwal, V. K. Enantiodivergent conversion of chiral secondary alcohols into tertiary alcohols. Nature 456, 778–783 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Varela, A., Garve, L. K. B., Leonori, D. & Aggarwal, V. K. Stereocontrolled total synthesis of (–)-stemaphylline. Angew. Chem. Int. Ed. 56, 2127–2131 (2017).

    Article  CAS  Google Scholar 

  25. Stymiest, J. L., Dutheuil, G., Mahmood, A. & Aggarwal, V. K. Lithiated carbamates: chiral carbenoids for iterative homologation of boranes and boronic esters. Angew. Chem. Int. Ed. 46, 7491–7494 (2007).

    Article  CAS  Google Scholar 

  26. Larouche-Gauthier, R., Fletcher, C. J., Couto, I. & Aggarwal, V. K. Use of alkyl 2,4,6-triisopropylbenzoates in the asymmetric homologation of challenging boronic esters. Chem. Commun. 47, 12592–12594 (2011).

    Article  CAS  Google Scholar 

  27. Kimbrough, R. D. Toxicity and health effects of selected organotin compounds: a review. Environ. Health Perspect. 14, 51–56 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Emerson, C. R., Zakharov, L. N. & Blakemore, P. R. Investigation of functionalized α-chloroalkyllithiums for a stereospecific reagent-controlled homologation approach to the analgesic alkaloid (–)-epibatidine. Chem. Eur. J. 19, 16342–16356 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Hoyt, A. L. & Blakemore, P. R. On the nature of the chain-extending species in organolithium initiated stereospecific reagent-controlled homologation reactions using α-chloroalkyl aryl sulfoxides. Tetrahedron Lett. 56, 2980–2982 (2015).

    Article  CAS  Google Scholar 

  30. Elford, T. G., Nave, S., Sonawane, R. P. & Aggarwal, V. K. Total synthesis of (+)-erogorgiaene using lithiation–borylation methodology, and stereoselective synthesis of each of its diastereoisomers. J. Am. Chem. Soc. 133, 16798–16801 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Hou, S.-H., Prichina, A. Y., Zhang, M. & Dong, G. Asymmetric total syntheses of di- and sesquiterpenoids by catalytic C−C activation of cyclopentanones. Angew. Chem. Int. Ed. 59, 7848–7856 (2020).

    Article  CAS  Google Scholar 

  32. Fandrick, K. R. et al. Addressing the configuration stability of lithiated secondary benzylic carbamates for the development of a noncryogenic stereospecific boronate rearrangement. Org. Lett. 16, 4360–4363 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Pulis, A. P. & Aggarwal, V. K. Synthesis of enantioenriched tertiary boronic esters from secondary allylic carbamates. Application to the synthesis of C30 botryococcene. J. Am. Chem. Soc. 134, 7570–7574 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Partridge, B. M., Chausset-Boissarie, L., Burns, M., Pulis, A. P. & Aggarwal, V. K. Enantioselective synthesis and cross-coupling of tertiary propargylic boronic esters using lithiation–borylation of propargylic carbamates. Angew. Chem. Int. Ed. 51, 11795–11799 (2012).

    Article  CAS  Google Scholar 

  35. Pulis, A. P., Blair, D. J., Torres, E. & Aggarwal, V. K. Synthesis of enantioenriched tertiary boronic esters by the lithiation/borylation of secondary alkyl benzoates. J. Am. Chem. Soc. 135, 16054–16057 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Mykura, R. C. et al. Investigation of the deprotonative generation and borylation of diamine-ligated α-lithiated carbamates and benzoates by in situ IR spectroscopy. J. Am. Chem. Soc. 140, 14677–14686 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Yang, M., Peng, W., Guo, Y. & Ye, T. Total synthesis of dysoxylactam A. Org. Lett. 22, 1776–1779 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Lu, Z. et al. Total synthesis of aplysiasecosterol A. J. Am. Chem. Soc. 140, 9211–9218 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Millán, A., Smith, J. R., Chen, J. L.-Y. & Aggarwal, V. K. Tandem allylboration–Prins reaction for the rapid construction of substituted tetrahydropyrans: application to the total synthesis of (–)-clavosolide A. Angew. Chem. Int. Ed. 55, 2498–2502 (2016).

    Article  Google Scholar 

  40. Roesner, S., Blair, D. J. & Aggarwal, V. K. Enantioselective installation of adjacent tertiary benzylic stereocentres using lithiation–borylation–protodeboronation methodology. Application to the synthesis of bifluranol and fluorohexestrol. Chem. Sci. 6, 3718–3723 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fordham, J. M., Grayson, M. N. & Aggarwal, V. K. Vinylidene homologation of boronic esters and its application to the synthesis of the proposed structure of machillene. Angew. Chem. Int. Ed. 58, 15268–15272 (2019).

    Article  CAS  Google Scholar 

  42. Rasappan, R. & Aggarwal, V. K. Synthesis of hydroxyphthioceranic acid using a traceless lithiation–borylation–protodeboronation strategy. Nat. Chem. 6, 810–814 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Schulte, M. L. et al. Total synthesis of stemaphylline N-oxide and related C9a-epimeric analogues. Chem. Eur. J. 19, 11847–11852 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Matteson, D. S. & Lu, J. Asymmetric synthesis of 1-acyl-3,4-disubstituted pyrrolidine-2-boronic acid derivatives. Tetrahedron: Asymm. 9, 2423–2436 (1998).

    Article  CAS  Google Scholar 

  45. Arnold, K. The first example of enamine–Lewis acid cooperative bifunctional catalysis: application to the asymmetric aldol reaction. Chem. Commun. 2008, 3879–3881 (2008).

    Article  Google Scholar 

  46. Linne, Y., Bonandi, E., Tabet, C., Geldsetzer, J. & Kalesse, M. The total synthesis of chondrochloren A. Angew. Chem. Int. Ed. 60, 6938–6942 (2021).

    Article  CAS  Google Scholar 

  47. Evans, D. A., Rieger, D. L., Bilodeau, M. T. & Urpi, F. Stereoselective aldol reactions of chlorotitanium enolates. An efficient method for the assemblage of polypropionate-related synthons. J. Am. Chem. Soc. 113, 1047–1049 (1991).

    Article  CAS  Google Scholar 

  48. Evans, D. A., Dart, M. J., Duffy, J. L. & Rieger, D. L. Double stereodifferentiating aldol reactions. The documentation of ‘partially matched’ aldol bond constructions in the assemblage of polypropionate systems. J. Am. Chem. Soc. 117, 9073–9074 (1995).

    Article  CAS  Google Scholar 

  49. Linne, Y., Schönwald, A., Weißbach, S. & Kalesse, M. Desymmetrization of C2‐symmetric bis(boronic esters) by Zweifel olefinations. Chem. Eur. J. 26, 7998–8002 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Staunton, J. & Weissman, K. J. Polyketide biosynthesis: a millennium review. Nat. Prod. Rep. 18, 380–416 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Balieu, S. et al. Toward ideality: The synthesis of (+)-kalkitoxin and (+)-hydroxyphthioceranic acid by assembly-line synthesis. J. Am. Chem. Soc. 137, 4398–4403 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Wu, J. et al. Synergy of synthesis, computation and NMR reveals correct baulamycin structures. Nature 547, 436–440 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Noble, A., Roesner, S. & Aggarwal, V. K. Short enantioselective total synthesis of tatanan A and 3-epi-tatanan A using assembly-line synthesis. Angew. Chem. Int. Ed. 55, 15920–15924 (2016).

    Article  CAS  Google Scholar 

  54. Brown, C. A. & Aggarwal, V. K. Short convergent synthesis of the mycolactone core through lithiation–borylation homologations. Chem. Eur. J. 21, 13900–13903 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Rogers, J. J. & Aggarwal, V. K. Synthesis of dysoxylactam A using iterative homologation of boronic esters. Asian J. Org. Chem. 10, 2338–2341 (2021).

    Article  CAS  Google Scholar 

  56. Geerdink, D. et al. Total synthesis, stereochemical elucidation and biological evaluation of Ac2SGL; a 1,3-methyl branched sulfoglycolipid from Mycobacterium tuberculosis. Chem. Sci. 4, 709–716 (2013).

    Article  CAS  Google Scholar 

  57. López, F., Minnaard, A. J. & Feringa, B. L. Catalytic enantioselective conjugate addition with Grignard reagents. Acc. Chem. Res. 40, 179–188 (2007).

    Article  PubMed  Google Scholar 

  58. ter Horst, B., Feringa, B. L. & Minnaard, A. J. Catalytic asymmetric synthesis of phthioceranic acid, a heptamethyl-branched acid from Mycobacterium tuberculosis. Org. Lett. 9, 3013–3015 (2007).

    Article  PubMed  Google Scholar 

  59. Geerdink, D. & Minnaard, A. J. Total synthesis of sulfolipid-1. Chem. Commun. 50, 2286–2288 (2014).

    Article  CAS  Google Scholar 

  60. Pischl, M. C., Weise, C. F., Müller, M.-A., Pfaltz, A. & Schneider, C. A convergent and stereoselective synthesis of the glycolipid components phthioceranic acid and hydroxyphthioceranic acid. Angew. Chem. Int. Ed. 52, 8968–8972 (2013).

    Article  CAS  Google Scholar 

  61. Tripathi, A. et al. Baulamycins A and B, broad-spectrum antibiotics identified as inhibitors of siderophore biosynthesis in Staphylococcus aureus and Bacillus anthracis. J. Am. Chem. Soc. 136, 1579–1586 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bootwicha, T., Feilner, J. M., Myers, E. L. & Aggarwal, V. K. Iterative assembly line synthesis of polypropionates with full stereocontrol. Nat. Chem. 9, 896–902 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Millán, A., Grigol Martinez, P. D. & Aggarwal, V. K. Stereocontrolled synthesis of polypropionate fragments based on a building block assembly strategy using lithiation-borylation methodologies. Chem. Eur. J. 24, 730–735 (2018).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

R.C.M. thanks the Bristol Chemical Synthesis Centre for Doctoral Training, funded by the EPSRC (EP/L015366/1) and AstraZeneca. We thank EPSRC (EP/T033584/1) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

K.Y., R.C.M. and V.K.A. wrote the manuscript.

Corresponding author

Correspondence to Varinder K. Aggarwal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Iain Coldham and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peter Seavill was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeung, K., Mykura, R.C. & Aggarwal, V.K. Lithiation–borylation methodology in the total synthesis of natural products. Nat Synth 1, 117–126 (2022). https://doi.org/10.1038/s44160-021-00012-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-021-00012-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing