Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of auditory source and action representations in segmenting experience into events

Abstract

Sounds are generated by interactions between objects in the world and carry information about the sound’s sources and the objects’ sound-generating actions. This dual nature of auditory information poses a problem for defining and investigating auditory object representations in staged theories of perception. In this Review, we describe a framework for separating auditory source and action representations. Auditory source and action representations differ from each other in how they are formed, their relation to prediction, the information they carry, how they are experienced and remembered, and the brain responses associated with them. We also suggest that auditory source and action representations are part of event segmentation: structuring information about the environment and what is happening in it. In real life, auditory scenes are resolved together with other modalities, producing an integrated episodic description of the environment. Thus, event segmentation can guide the integration of information from different modalities and mediate the effects of learned knowledge on auditory scene analysis. We end by discussing how these insights offer important advantages for the development of more comprehensive theories and computational models of sound perception in natural scenes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sounds on a noisy street.
Fig. 2: Source-related sound processing effects.
Fig. 3: Action-related sound processing effects.

Similar content being viewed by others

References

  1. Bregman, A. S. Auditory Scene Analysis. The Perceptual Organization of Sound (MIT Press, 1990).

  2. Nudds, M. What are auditory objects? Rev. Philos. Psychol. 1, 105–122 (2010).

    Article  Google Scholar 

  3. Lahav, A., Saltzman, E. & Schlaug, G. Action representation of sound: audiomotor recognition network while listening to newly acquired actions. J. Neurosci. 27, 308–314 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pennartz, C. M. A. Consciousness, representation, action: the importance of being goal-directed. Trends Cogn. Sci. 22, 137–153 (2018).

    Article  PubMed  Google Scholar 

  5. Grinfeder, E., Lorenzi, C., Haupert, S. & Sueur, J. What do we mean by “soundscape”? A functional description. Front. Ecol. Evol. 10, 894232 (2022).

    Article  Google Scholar 

  6. Bizley, J. K. & Cohen, Y. E. The what, where and how of auditory-object perception. Nat. Rev. Neurosci. 14, 693–707 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Green, E. J. A theory of perceptual objects. Philos. Phenomenol. Res. 99, 663–693 (2019).

    Article  Google Scholar 

  8. Griffiths, T. D. & Warren, J. D. What is an auditory object? Nat. Rev. Neurosci. 5, 887–892 (2004).

    Article  PubMed  Google Scholar 

  9. Hermes, D. J. The Perceptual Structure of Sound (Springer, 2023).

  10. O’Callaghan, C. Object perception: vision and audition. Philos. Compass 3–4, 803–829 (2008).

    Article  Google Scholar 

  11. Santarcangelo, V. Auditory objects as higher-order objects. Riv. Estet. 66, 8–21 (2017).

    Google Scholar 

  12. Snyder, J. S., Gregg, M. K., Weintraub, D. M. & Alain, C. Attention, awareness, and the perception of auditory scenes. Front. Psychol. 3, 15 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Winkler, I., Denham, S. L. & Nelken, I. Modeling the auditory scene: predictive regularity representations and perceptual objects. Trends Cogn. Sci. 13, 532–540 (2009).

    Article  PubMed  Google Scholar 

  14. Shams, L. & Beierholm, U. Bayesian causal inference: a unifying neuroscience theory. Neurosci. Biobehav. Rev. 137, 104619 (2022).

    Article  PubMed  Google Scholar 

  15. Gregory, R. L. Perceptions as hypotheses. Philos. Trans. R. Soc. Lond. B Biol. Sci. 290, 181–197 (1980).

    Article  PubMed  Google Scholar 

  16. Friston, K. J. The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11, 127–138 (2010).

    Article  PubMed  Google Scholar 

  17. Denham, S. L. & Winkler, I. Predictive coding in auditory perception: challenges and unresolved questions. Eur. J. Neurosci. 51, 1151–1160 (2020).

    Article  PubMed  Google Scholar 

  18. Köhler, W. Gestalt Psychology: An Introduction to New Concepts in Modern Psychology (Liveright, 1947).

  19. Treisman, A. M. Feature binding, attention and object perception. Philos. Trans. R. Soc. Lond. B Biol. Sci. 353, 1295–1306 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cowan, N. On short and long auditory stores. Psychol. Bull. 96, 341–370 (1984).

    Article  PubMed  Google Scholar 

  21. Zacks, J. M. Event perception and memory. Annu. Rev. Psychol. 71, 165–191 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pressnitzer, D., Patterson, R. D. & Krumbholz, K. The lower limit of melodic pitch. J. Acoust. Soc. Am. 109, 2074–2084 (2001).

    Article  PubMed  Google Scholar 

  23. Marrone, N., Mason, C. R. & Kidd, G. Jr Tuning in the spatial dimension: evidence from a masked speech identification task. J. Acoust. Soc. Am. 124, 1146–1158 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Middlebrooks, J. C. & Waters, M. F. Spatial mechanisms for segregation of competing sounds, and a breakdown in spatial hearing. Front. Neurosci. 14, 571095 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Reed, D. K., Chait, M., Tóth, B., Winkler, I. & Shinn-Cunningham, B. Spatial cues can support auditory figure–ground segregation. J. Acoust. Soc. Am. 147, 3814–3818 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kitterick, P. T., Bailey, P. J. & Summerfield, A. Q. Benefits of knowing who, where, and when in multi-talker listening. J. Acoust. Soc. Am. 127, 2498–2508 (2010).

    Article  PubMed  Google Scholar 

  27. Kreitewolf, J., Mathias, S. R., Trapeau, R., Obleser, J. & Schönwiesner, M. Perceptual grouping in the cocktail party: contributions of voice-feature continuity. J. Acoust. Soc. Am. 144, 2178–2188 (2018).

    Article  PubMed  Google Scholar 

  28. Yeark, M., Paton, B. & Todd, J. The impact of spatial variance on precision estimates in an auditory oddball paradigm. Cortex 165, 1–13 (2023).

    Article  PubMed  Google Scholar 

  29. Tosi, P., Sbarra, P. & Rubeis, V. Earthquake sound perception. Geophys. Res. Lett. 39, 24301 (2012).

    Article  Google Scholar 

  30. Arnal, L. H., Poeppel, D. & Giraud, A.-L. in Handbook of Clinical Neurology 3rd Series (eds Celesia, G. G. & Hickok, G.) vol. 129, 85–98 (Elsevier, 2015).

  31. Booras, A., Stevenson, T., McCormack, C. N., Rhoads, M. E. & Hanks, T. D. Change point detection with multiple alternatives reveals parallel evaluation of the same stream of evidence along distinct timescales. Sci. Rep. 11, 13098 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rimmele, J. M., Morillon, B., Poeppel, D. & Arnal, L. H. Proactive sensing of periodic and aperiodic auditory patterns. Trends Cogn. Sci. 22, 870–882 (2018).

    Article  PubMed  Google Scholar 

  33. van Noorden, L. P. A. S. Temporal Coherence in the Perception of Tone Sequences (Institute for Perception Research, Technical Univ. Eindhoven, 1975).

  34. Jones, M. R. Time, our lost dimension: toward a new theory of perception, attention, and memory. Psychol. Rev. 83, 323–355 (1976).

    Article  PubMed  Google Scholar 

  35. Andreou, L.-V., Kashino, M. & Chait, M. The role of temporal regularity in auditory segregation. Hear. Res. 280, 228–235 (2011).

    Article  PubMed  Google Scholar 

  36. Bendixen, A., Denham, S. L. & Winkler, I. Feature predictability flexibly supports auditory stream segregation or integration. Acta Acust. U Acust 100, 888–899 (2014).

    Article  Google Scholar 

  37. Rajendran, V. G., Harper, N. S., Willmore, B. D., Hartmann, W. M. & Schnupp, J. W. H. Temporal predictability as a grouping cue in the perception of auditory streams. J. Acoust. Soc. Am. 134, 98–104 (2013).

    Article  Google Scholar 

  38. Woods, K. J. P. & McDermott, J. H. Schema learning for the cocktail party problem. Proc. Natl Acad. Sci. USA 115, 3313–3322 (2018).

    Article  Google Scholar 

  39. Näätänen, R. & Picton, T. The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology 24, 375–425 (1987).

    Article  PubMed  Google Scholar 

  40. Bläsing, B., Tenenbaum, G. & Schack, T. The cognitive structure of movements in classical dance. Psychol. Sport. Exerc. 10, 350–360 (2009).

    Article  Google Scholar 

  41. Zacks, J. M., Tversky, B. & Iyer, G. Perceiving, remembering, and communicating structure in events. J. Exp. Psychol. Gen. 130, 29–58 (2001).

    Article  PubMed  Google Scholar 

  42. Newtson, D. Attribution and the unit of perception of ongoing behavior. J. Pers. Soc. Psychol. 28, 28–38 (1973).

    Article  Google Scholar 

  43. Swallow, K. M., Kemp, J. T. & Candan Simsek, A. The role of perspective in event segmentation. Cognition 177, 249–262 (2018).

    Article  PubMed  Google Scholar 

  44. Huff, M., Meitz, T. G. K. & Papenmeier, F. Changes in situation models modulate processes of event perception in audiovisual narratives. J. Exp. Psychol. Learn. Mem. Cogn. 40, 1377–1388 (2014).

    Article  PubMed  Google Scholar 

  45. Kubovy, M. & Valkenburg, D. Auditory and visual objects. Cognition 80, 97–126 (2001).

    Article  PubMed  Google Scholar 

  46. Shamma, S. A., Elhilali, M. & Micheyl, C. Temporal coherence and attention in auditory scene analysis. Trends Neurosci. 34, 114–123 (2011).

    Article  PubMed  Google Scholar 

  47. Raccah, O., Doelling, K. B., Davachi, L. & Poeppel, D. Acoustic features drive event segmentation in speech. J. Exp. Psychol. Learn. Mem. Cogn. 49, 1494–1504 (2023).

    Article  PubMed  Google Scholar 

  48. Newtson, D., Engquist, G. A. & Bois, J. The objective basis of behavior units. J. Pers. Soc. Psychol. 35, 847–862 (1977).

    Article  Google Scholar 

  49. Zacks, J. M. Using movement and intentions to understand simple events. Cogn. Sci. 28, 979–1008 (2004).

    Article  Google Scholar 

  50. Poeppel, D. & Assaneo, M. F. Speech rhythms and their neural foundations. Nat. Rev. Neurosci. 21, 322–334 (2020).

    Article  PubMed  Google Scholar 

  51. Rimmele, J. M., Sussman, E. & Poeppel, D. The role of temporal structure in the investigation of sensory memory, auditory scene analysis, and speech perception: a healthy-aging perspective. Int. J. Psychophysiol. 95, 175–183 (2015).

    Article  PubMed  Google Scholar 

  52. Kurby, C. A. & Zacks, J. M. Segmentation in the perception and memory of events. Trends Cogn. Sci. 12, 72–79 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Berto, M., Ricciardi, E., Pietrini, P., Weisz, N. & Bottari, D. Distinguishing fine structure and summary representation of sound textures from neural activity. eNeuro 10, 2023 (2023).

    Article  Google Scholar 

  54. Jeunehomme, O. & D’Argembeau, A. Event segmentation and the temporal compression of experience in episodic memory. Psychol. Res. 84, 481–490 (2020).

    Article  PubMed  Google Scholar 

  55. Sun, Y. & Poeppel, D. Syllables and their beginnings have a special role in the mental lexicon. Proc. Natl Acad. Sci. USA 120, 2215710120 (2023).

    Article  Google Scholar 

  56. Weise, A., Grimm, S., Müller, D. & Schröger, E. A temporal constraint for automatic deviance detection and object formation: a mismatch negativity study. Brain Res. 1331, 88–95 (2010).

    Article  PubMed  Google Scholar 

  57. Weise, A., Grimm, S., Rimmele, J. M. & Schröger, E. Auditory representations for long lasting sounds: insights from event-related brain potentials and neural oscillations. Brain Lang. 237, 105221 (2023).

    Article  PubMed  Google Scholar 

  58. Neuhoff, J. G. Perceptual bias for rising tones. Nature 395, 123–124 (1998).

    Article  PubMed  Google Scholar 

  59. Ignatiadis, K., Baier, D., Tóth, B. & Baumgartner, R. Neural mechanisms underlying the auditory looming bias. Audit. Percept. Cogn. 4, 60–73 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lee, S., Potamianos, A. & Narayanan, S. Acoustics of children’s speech: developmental changes of temporal and spectral parameters. J. Acoust. Soc. Am. 105, 1455–1468 (1999).

    Article  PubMed  Google Scholar 

  61. Barthel, H. & Quené, H. in Proc. 18th Int. Congress of Phonetic Sciences (eds Wolters, M. et al.) https://www.internationalphoneticassociation.org/icphs-proceedings/ICPhS2015/Papers/ICPHS0337.pdf (Univ. of Glasgow, 2015).

  62. Brefczynski-Lewis, J. A. & Lewis, J. W. Auditory object perception: a neurobiological model and prospective review. Neuropsychologia 105, 223–242 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Andics, A., Gacsi, M., Farago, T., Kis, A. & Miklosi, A. Voice-sensitive regions in the dog and human brain are revealed by comparative fMRI. Curr. Biol. 24, 574–578 (2014).

    Article  PubMed  Google Scholar 

  64. Engel, L. R., Frum, C., Puce, A., Walker, N. A. & Lewis, J. W. Different categories of living and non-living sound-sources activate distinct cortical networks. NeuroImage 47, 1778–1791 (2009).

    Article  PubMed  Google Scholar 

  65. Lewis, J. W., Talkington, W. J., Puce, A., Engel, L. R. & Frum, C. Cortical networks representing object categories and high-level attributes of familiar real-world action sounds. J. Cogn. Neurosci. 23, 2079–2101 (2011).

    Article  PubMed  Google Scholar 

  66. Lewis, J. W., Talkington, W. J., Tallaksen, K. C. & Frum, C. A. Auditory object salience: human cortical processing of non-biological action sounds and their acoustic signal attributes. Front. Syst. Neurosci. 6, 27 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Webster, P. J. et al. Divergent human cortical regions for processing distinct acoustic-semantic categories of natural sounds: animal action sounds vs. vocalizations. Front. Neurosci. 10, 579 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ogg, M., Moraczewski, D., Kuchinsky, S. E. & Slevc, L. R. Separable neural representations of sound sources: speaker identity and musical timbre. NeuroImage 191, 116–126 (2019).

    Article  PubMed  Google Scholar 

  69. Webb, A. R., Heller, H. T., Benson, C. B. & Lahav, A. Mother’s voice and heartbeat sounds elicit auditory plasticity in the human brain before full gestation. Proc. Natl Acad. Sci. USA 112, 3152–3157 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Ogg, M. & Slevc, L. R. Acoustic correlates of auditory object and event perception: speakers, musical timbres, and environmental sounds. Front. Psychol. 10, 1594 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Schellenberg, E. G. & Habashi, P. Remembering the melody and timbre, forgetting the key and tempo. Mem. Cognit. 43, 1021–1031 (2015).

    Article  PubMed  Google Scholar 

  72. Lemaitre, G., Grimault, N. & Suied, C. in Computational Analysis of Sound Scenes and Events (eds Virtanen, T., Plumbley, M. D. & Ellis, D.) 41–67 (Springer, 2018).

  73. Campeanu, S., Craik, F. I. M. & Alain, C. Speaker’s voice as a memory cue. Int. J. Psychophysiol. 95, 167–174 (2015).

    Article  PubMed  Google Scholar 

  74. Mathias, S. R. & Kriegstein, K. How do we recognise who is speaking. Front. Biosci. Sch. Ed. 6, 92–109 (2014).

    Article  Google Scholar 

  75. Tuninetti, A., Chládková, K., Peter, V., Schiller, N. O. & Escudero, P. When speaker identity is unavoidable: neural processing of speaker identity cues in natural speech. Brain Lang. 174, 42–49 (2017).

    Article  PubMed  Google Scholar 

  76. Best, V., Ozmeral, E. J., Kopčo, N. & Shinn-Cunningham, B. G. Object continuity enhances selective auditory attention. Proc. Natl Acad. Sci. USA 105, 13174–13178 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Fischer, M., Soden, K., Thoret, E., Montrey, M. & McAdams, S. Instrument timbre enhances perceptual segregation in orchestral music. Music. Percept. 38, 473–498 (2021).

    Article  Google Scholar 

  78. Wei, Y., Gan, L. & Huang, X. A review of research on the neurocognition for timbre perception. Front. Psychol. 13, 869475 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Caclin, A., McAdams, S., Smith, B. K. & Winsberg, S. Acoustic correlates of timbre space dimensions: a confirmatory study using synthetic tones. J. Acoust. Soc. Am. 118, 471–482 (2005).

    Article  PubMed  Google Scholar 

  80. Misdariis, N. et al. Environmental sound perception: metadescription and modeling based on independent primary studies. EURASIP J. Audio Speech Music. Process. 2010, 362013 (2010).

    Article  Google Scholar 

  81. Ciocca, V. The auditory organization of complex sounds. Front. Biosci. 13, 148–169 (2008).

    Article  PubMed  Google Scholar 

  82. Bigand, E. & Pineau, M. Global context effects on musical expectancy. Percept. Psychophys. 59, 1098–1107 (1997).

    Article  PubMed  Google Scholar 

  83. Micheyl, C. & Oxenham, A. J. Pitch, harmonicity and concurrent sound segregation: psychoacoustical and neurophysiological findings. Hear. Res. 266, 36–51 (2010).

    Article  PubMed  Google Scholar 

  84. Moore, B. C. J., Glasberg, B. R. & Peters, R. W. Thresholds for hearing mistuned partials as separate tones in harmonic complexes. J. Acoust. Soc. Am. 80, 479–483 (1986).

    Article  PubMed  Google Scholar 

  85. Koulaguina, E. et al. The perception of concurrent sound objects through the use of harmonic enhancement: a study of auditory attention. Atten. Percept. Psychophys. 77, 922–929 (2015).

    Article  PubMed  Google Scholar 

  86. Alain, C., Arnott, S. R. & Picton, T. W. Bottom-up and top-down influences on auditory scene analysis: evidence from event-related brain potentials. J. Exp. Psychol. Hum. Percept. Perform. 27, 1072–1089 (2001).

    Article  PubMed  Google Scholar 

  87. Tóth, B. et al. EEG signatures accompanying auditory figure–ground segregation. Neuroimage 141, 108–119 (2016).

    Article  PubMed  Google Scholar 

  88. Bendixen, A. et al. Newborn infants detect cues of concurrent sound segregation. Dev. Neurosci. 37, 172–181 (2015).

    Article  PubMed  Google Scholar 

  89. Virtala, P., Huotilainen, M., Partanen, E., Fellman, V. & Tervaniemi, M. Newborn infants’ auditory system is sensitive to western music chord categories. Front. Psychol. 4, 492 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Fishman, Y. I. et al. Consonance and dissonance of musical chords: neural correlates in auditory cortex of monkeys and humans. J. Neurophysiol. 86, 2761–2788 (2001).

    Article  PubMed  Google Scholar 

  91. Fishman, Y. I. & Steinschneider, M. Neural correlates of auditory scene analysis based on inharmonicity in monkey primary auditory cortex. J. Neurosci. 30, 12480–12494 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Młynarski, W. & McDermott, J. H. Ecological origins of perceptual grouping principles in the auditory system. Proc. Natl Acad. Sci. USA 116, 25355–25364 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Strori, D., Zaar, J., Cooke, M. & Mattys, S. L. Sound specificity effects in spoken word recognition: the effect of integrality between words and sounds. Atten. Percept. Psychophys. 80, 222–241 (2018).

    Article  PubMed  Google Scholar 

  94. Teki, S., Chait, M., Kumar, S., Kriegstein, K. & Griffiths, T. D. Brain bases for auditory stimulus-driven figure–ground segregation. J. Neurosci. 31, 164–171 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Schneider, F. et al. Neuronal figure–ground responses in primate primary auditory cortex. Cell Rep. 35, 109242 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Rezaeizadeh, M. & Shamma, S. Binding the acoustic features of an auditory source through temporal coherence. Cereb. Cortex Commun. 2, 060 (2021).

    Google Scholar 

  97. O’Sullivan, J. A., Shamma, S. A. & Lalor, E. C. Evidence for neural computations of temporal coherence in an auditory scene and their enhancement during active listening. J. Neurosci. 35, 7256–7263 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Teki, S. et al. Neural correlates of auditory figure–ground segregation based on temporal coherence. Cereb. Cortex 26, 3669–3680 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Aller, M. & Noppeney, U. To integrate or not to integrate: temporal dynamics of hierarchical Bayesian causal inference. PLoS Biol. 17, 3000210 (2019).

    Article  Google Scholar 

  100. Sawai, K. I., Sato, Y. & Aihara, K. Auditory time-interval perception as causal inference on sound sources. Front. Psychol. 3, 524 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Schwartz, J.-L., Grimault, N., Hupé, J.-M., Moore, B. C. J. & Pressnitzer, D. Multistability in perception: binding sensory modalities, an overview. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 896–905 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Rankin, J., Osborn Popp, P. J. & Rinzel, J. Stimulus pauses and perturbations differentially delay or promote the segregation of auditory objects: psychoacoustics and modeling. Front. Neurosci. 11, 198 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Schröger, E., Roeber, U. & Coy, N. Markov chains as a proxy for the predictive memory representations underlying mismatch negativity (MMN). Front. Hum. Neurosci. 17, 1249413 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Goncalves, N. R. & Welchman, A. E. “What not” detectors help the brain see in depth. Curr. Biol. 27, 1403–1412 8 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Rideaux, R. & Welchman, A. E. Proscription supports robust perceptual integration by suppression in human visual cortex. Nat. Commun. 9, 1502 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  106. de Boer, E. in Auditory System Vol. 3 (eds Keidel, W. D. & Neff, W. D.) 479–583 (Springer, 1976).

  107. Miller, G. A. & Licklider, J. C. R. The intelligibility of interrupted speech. J. Acoust. Soc. Am. 22, 167–173 (1950).

    Article  Google Scholar 

  108. Warren, R. M. Perceptual restoration of missing speech sounds. Science 167, 392–393 (1970).

    Article  PubMed  Google Scholar 

  109. Warren, R. M. & Warren, R. P. Auditory illusions and confusions. Sci. Am. 223, 30–37 (1970).

    Article  PubMed  Google Scholar 

  110. Riecke, L., Micheyl, C. & Oxenham, A. J. Global not local masker features govern the auditory continuity illusion. J. Neurosci. 32, 4660–4664 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Bidelman, G. M. & Patro, C. Auditory perceptual restoration and illusory continuity correlates in the human brainstem. Brain Res. 1646, 84–90 (2016).

    Article  PubMed  Google Scholar 

  112. Brodbeck, C., Jiao, A., Hong, L. E. & Simon, J. Z. Neural speech restoration at the cocktail party: auditory cortex recovers masked speech of both attended and ignored speakers. PLoS Biol. 18, 3000883 (2020).

    Article  Google Scholar 

  113. Petkov, C. I., O’Connor, K. N. & Sutter, M. L. Illusory sound perception in macaque monkeys. J. Neurosci. 23, 9155–9161 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Tomlinson, R. W. W. & Schwarz, D. W. F. Perception of the missing fundamental in nonhuman primates. J. Acoust. Soc. Am. 84, 560–565 (1988).

    Article  PubMed  Google Scholar 

  115. Sollini, J., Poole, K. C., Blauth-Muszkowski, D. & Bizley, J. K. The role of temporal coherence and temporal predictability in the build-up of auditory grouping. Sci. Rep. 12, 14493 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Barascud, N., Pearce, M. T., Griffiths, T. D., Friston, K. J. & Chait, M. Brain responses in humans reveal ideal observer-like sensitivity to complex acoustic patterns. Proc. Natl Acad. Sci. USA 113, 616–625 (2016).

    Article  Google Scholar 

  117. Ringer, H., Schröger, E. & Grimm, S. Neural signatures of automatic repetition detection in temporally regular and jittered acoustic sequences. PLoS ONE 18, 0284836 (2023).

    Article  Google Scholar 

  118. Coffman, B. A., Haigh, S. M., Murphy, T. K. & Salisbury, D. F. Event-related potentials demonstrate deficits in acoustic segmentation in schizophrenia. Schizophr. Res. 173, 109–115 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Coffman, B. A., Haigh, S. M., Murphy, T. K., Leiter-Mcbeth, J. & Salisbury, D. F. Reduced auditory segmentation potentials in first-episode schizophrenia. Schizophr. Res. 195, 421–427 (2018).

    Article  PubMed  Google Scholar 

  120. Hemeren, P. E. & Thill, S. Deriving motor primitives through action segmentation. Front. Psychol. 1, 243 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Kushnerenko, E. V., Bergh, B. R. H. & Winkler, I. Separating acoustic deviance from novelty during the first year of life: a review of event-related potential evidence. Front. Psychol. 4, 595 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Háden, G. P., Németh, R., Török, M. & Winkler, I. Predictive processing of pitch trends in newborn infants. Brain Res. 1626, 14–20 (2015).

    Article  PubMed  Google Scholar 

  123. Chait, M. How the brain discovers structure in sound sequences. Acoust. Sci. Technol. 41, 48–53 (2020).

    Article  Google Scholar 

  124. Kaernbach, C. The memory of noise. Exp. Psychol. 51, 240–248 (2004).

    Article  PubMed  Google Scholar 

  125. Ringer, H., Schröger, E. & Grimm, S. Within- and between-subject consistency of perceptual segmentation in periodic noise: a combined behavioral tapping and EEG study. Psychophysiology 60, 14174 (2023).

    Article  Google Scholar 

  126. Kang, H., Agus, T. R. & Pressnitzer, D. Auditory memory for random time patterns. J. Acoust. Soc. Am. 142, 2219–2232 (2017).

    Article  PubMed  Google Scholar 

  127. Bader, M., Schröger, E. & Grimm, S. Auditory pattern representations under conditions of uncertainty — an ERP study. Front. Hum. Neurosci. 15, 682820 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Bendixen, A., Roeber, U. & Schröger, E. Regularity extraction and application in dynamic auditory stimulus sequences. J. Cogn. Neurosci. 19, 1664–1677 (2007).

    Article  PubMed  Google Scholar 

  129. Cowan, N., Winkler, I., Teder, W. & Näätänen, R. Memory prerequisites of mismatch negativity in the auditory event-related potential (ERP). J. Exp. Psychol. Learn. Mem. Cogn. 19, 909–921 (1993).

    Article  PubMed  Google Scholar 

  130. Bianco, R. et al. Long-term implicit memory for sequential auditory patterns in humans. eLife 9, e56073 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Ringer, H., Schröger, E. & Grimm, S. Perceptual learning of random acoustic patterns: impact of temporal regularity and attention. Eur. J. Neurosci. 1, 24 (2023).

    Google Scholar 

  132. Terry, J., Stevens, C. J., Weidemann, G. & Tillmann, B. Implicit learning of between-group intervals in auditory temporal structures. Atten. Percept. Psychophys. 78, 1728–1743 (2016).

    Article  PubMed  Google Scholar 

  133. Sussman, E. S. A new view on the MMN and attention debate — the role of context in processing auditory events. J. Psychophysiol. 21, 164–175 (2007).

    Article  Google Scholar 

  134. Bendixen, A., SanMiguel, I. & Schröger, E. Early electrophysiological indicators for predictive processing in audition: a review. Int. J. Psychophysiol. 83, 120–131 (2012).

    Article  PubMed  Google Scholar 

  135. Fitzgerald, K. & Todd, J. Making sense of mismatch negativity. Front. Psychiatry 11, 468 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Winkler, I. & Czigler, I. Evidence from auditory and visual event-related potential (ERP) studies of deviance detection (MMN and vMMN) linking predictive coding theories and perceptual object representations. Int. J. Psychophysiol. 83, 132–143 (2012).

    Article  PubMed  Google Scholar 

  137. Paavilainen, P., Kaukinen, C., Koskinen, O., Kylmälä, J. & Rehn, L. Mismatch negativity (MMN) elicited by abstract regularity violations in two concurrent auditory streams. Heliyon 4, 00608 (2018).

    Article  Google Scholar 

  138. Ritter, W., Sussman, E. & Molholm, S. Evidence that the mismatch negativity system works on the basis of objects. NeuroReport 11, 61–63 (2000).

    Article  PubMed  Google Scholar 

  139. Yabe, H. et al. Organizing sound sequences in the human brain: the interplay of auditory streaming and temporal integration. Brain Res. 897, 222–227 (2001).

    Article  PubMed  Google Scholar 

  140. Tiitinen, H., May, P., Reinikainen, K. & Näätänen, R. Attentive novelty detection in humans is governed by pre-attentive sensory memory. Nature 372, 90–92 (1994).

    Article  PubMed  Google Scholar 

  141. Winkler, I. et al. The effect of small variation of the frequent auditory stimulus on the event-related brain potential to the infrequent stimulus. Psychophysiology 27, 228–235 (1990).

    Article  PubMed  Google Scholar 

  142. Sussman, E., Ritter, W. & Vaughan, H. G. Jr Predictability of stimulus deviance and the mismatch negativity. NeuroReport 9, 4167–4170 (1998).

    Article  PubMed  Google Scholar 

  143. Sussman, E. & Gumenyuk, V. Organization of sequential sounds in auditory memory. NeuroReport 16, 1519–1523 (2005).

    Article  PubMed  Google Scholar 

  144. Sussman, E., Winkler, I., Huotilainen, M., Ritter, W. & Näätänen, R. Top-down effects can modify the initially stimulus-driven auditory organization. Brain Res. Cogn. Brain Res. 13, 393–405 (2002).

    Article  PubMed  Google Scholar 

  145. Stefanics, G. et al. Auditory temporal grouping in newborn infants. Psychophysiology 44, 697–702 (2007).

    Article  PubMed  Google Scholar 

  146. van Zuijen, T. L., Sussman, E., Winkler, I., Näätänen, R. & Tervaniemi, M. Auditory organization of sound sequences by a temporal or numerical regularity — a mismatch negativity study comparing musicians and non-musicians. Cogn. Brain Res. 23, 270–276 (2005).

    Article  Google Scholar 

  147. Tervaniemi, M., Huotilainen, M. & Brattico, E. Melodic multi-feature paradigm reveals auditory profiles in music-sound encoding. Front. Hum. Neurosci. 8, 496 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Denham, S. L. et al. in Physiology, Psychoacoustics and Cognition in Normal and Impaired Hearing (eds. van Dijk, P. et al.) 409–417 (Springer, 2016).

  149. Breska, A. & Deouell, L. Y. Neural mechanisms of rhythm-based temporal prediction: delta phase-locking reflects temporal predictability but not rhythmic entrainment. PLOS Biol. 15, 2001665 (2017).

    Article  Google Scholar 

  150. Morillon, B., Schroeder, C. E., Wyart, V. & Arnal, L. H. Temporal prediction in lieu of periodic stimulation. J. Neurosci. 36, 2342–2347 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Haegens, S. & Zion Golumbic, E. Rhythmic facilitation of sensory processing: a critical review. Neurosci. Biobehav. Rev. 86, 150–165 (2018).

    Article  PubMed  Google Scholar 

  152. Cohn, N., Paczynski, M. & Kutas, M. Not so secret agents: event-related potentials to semantic roles in visual event comprehension. Brain Cogn. 119, 1–9 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Hafri, A., Papafragou, A. & Trueswell, J. C. Getting the gist of events: recognition of two-participant actions from brief displays. J. Exp. Psychol. Gen. 142, 880–905 (2013).

    Article  PubMed  Google Scholar 

  154. Bertelson, P. & Radeau, M. Cross-modal bias and perceptual fusion with auditory–visual spatial discordance. Percept. Psychophys. 29, 578–584 (1981).

    Article  PubMed  Google Scholar 

  155. Choe, C. S., Welch, R. B., Gilford, R. M. & Juola, J. F. The “ventriloquist effect”: visual dominance or response bias? Percept. Psychophys. 18, 55–60 (1975).

    Article  Google Scholar 

  156. Bruns, P. The ventriloquist illusion as a tool to study multisensory processing: an update. Front. Integr. Neurosci. 13, 51 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Wang, X. & Xu, L. Speech perception in noise: masking and unmasking. J. Otol. 16, 109–119 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Greenlaw, K. M., Puschmann, S. & Coffey, E. B. J. Decoding of envelope vs. fundamental frequency during complex auditory stream segregation. Neurobiol. Lang. 1, 268–287 (2020).

    Article  Google Scholar 

  159. Holmes, E., Parr, T., Griffiths, T. D. & Friston, K. J. Active inference, selective attention, and the cocktail party problem. Neurosci. Biobehav. Rev. 131, 1288–1304 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Puvvada, K. C. & Simon, J. Z. Cortical representations of speech in a multitalker auditory scene. J. Neurosci. 37, 9189–9196 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Thomassen, S. & Bendixen, A. in Proc. 23rd Int. Congress on Acoustics (eds Ochmann, M., Vorländer, M. & Fels, J.) 5685–5691 (Deutsche Gesellschaft für Akustik, 2019).

  162. Zacks, J. M., Speer, N. K., Swallow, K. M., Braver, T. S. & Reynolds, J. R. Event perception: a mind–brain perspective. Psychol. Bull. 133, 273–293 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Tauzin, T. Simple visual cues of event boundaries. Acta Psychol. 158, 8–18 (2015).

    Article  Google Scholar 

  164. Aman, L., Picken, S., Andreou, L.-V. & Chait, M. Sensitivity to temporal structure facilitates perceptual analysis of complex auditory scenes. Hear. Res. 400, 108111 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Cervantes Constantino, F., Pinggera, L., Paranamana, S., Kashino, M. & Chait, M. Detection of appearing and disappearing objects in complex acoustic scenes. PLoS ONE 7, 46167 (2012).

    Article  Google Scholar 

  166. Sohoglu, E. & Chait, M. Detecting and representing predictable structure during auditory scene analysis. eLife 5, e19113 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Siedenburg, K. & Müllensiefen, D. in Timbre: Acoustics, Perception, and Cognition (eds Siedenburg, K., Saitis, C., McAdams, S., Popper, A. & Fay, R.) 87–118 (Springer Cham, 2019).

  168. Eisenberg, M. L., Zacks, J. M. & Flores, S. Dynamic prediction during perception of everyday events. Cogn. Res. Princ. Implic. 3, 53 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Monroy, C. D., Gerson, S. A. & Hunnius, S. Translating visual information into action predictions: statistical learning in action and nonaction contexts. Mem. Cognit. 46, 600–613 (2018).

    Article  PubMed  Google Scholar 

  170. Winkler, I. & Schröger, E. Auditory perceptual objects as generative models: setting the stage for communication by sound. Brain Lang. 148, 1–22 (2015).

    Article  PubMed  Google Scholar 

  171. Coy, N., Bendixen, A., Grimm, S., Roeber, U. & Schröger, E. Deviants violating higher-order auditory regularities can become predictive and facilitate behaviour. Atten. Percept. Psychophys. 85, 2731–2750 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Herman, D. et al. Mismatch negativity as a marker of auditory pattern separation. Cereb. Cortex 33, 10181–10193 (2023).

    Article  PubMed  Google Scholar 

  173. Winkler, I., Zuijen, T. L., Sussman, E., Horváth, J. & Näätänen, R. Object representation in the human auditory system. Eur. J. Neurosci. 24, 625–634 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Bizley, J. K., Maddox, R. K. & Lee, A. K. C. Defining auditory–visual objects: behavioral tests and physiological mechanisms. Trends Neurosci. 39, 74–85 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Colonius, H. & Diederich, A. Formal models and quantitative measures of multisensory integration: a selective overview. Eur. J. Neurosci. 51, 1161–1178 (2020).

    Article  PubMed  Google Scholar 

  176. Cornelio, P., Velasco, C. & Obrist, M. Multisensory integration as per technological advances: a review. Front. Neurosci. 15, 652611 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Rohe, T. & Noppeney, U. Cortical hierarchies perform Bayesian causal inference in multisensory perception. PLoS Biol. 13, 1002073 (2015).

    Article  Google Scholar 

  178. Spence, C. & Di Stefano, N. Sensory translation between audition and vision. Psychon. Bull. Rev. https://doi.org/10.3758/s13423-023-02343-w (2023).

  179. Turner, B. M., Gao, J., Koenig, S., Palfy, D. & McClelland, J. L. The dynamics of multimodal integration: the averaging diffusion model. Psychon. Bull. Rev. 24, 1819–1843 (2017).

    Article  PubMed  Google Scholar 

  180. Zmigrod, S. & Hommel, B. Feature integration across multimodal perception and action: a review. Multisens. Res. 26, 143–157 (2013).

    Article  PubMed  Google Scholar 

  181. Zhang, W.-H. et al. Complementary congruent and opposite neurons achieve concurrent multisensory integration and segregation. eLife 8, e43753 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Sommers, M. S., Tye-Murray, N. & Spehar, B. Auditory–visual speech perception and auditory–visual enhancement in normal-hearing younger and older adults. Ear Hear. 26, 263–275 (2005).

    Article  PubMed  Google Scholar 

  183. Lewkowicz, D. J., Schmuckler, M. & Agrawal, V. The multisensory cocktail party problem in adults: perceptual segregation of talking faces on the basis of audiovisual temporal synchrony. Cognition 214, 104743 (2021).

    Article  PubMed  Google Scholar 

  184. Fornaciai, M. & Luca, M. Causality shifts the perceived temporal order of audiovisual events. J. Exp. Psychol. Hum. Percept. Perform. 46, 890–900 (2020).

    Article  PubMed  Google Scholar 

  185. Chalas, N., Omigie, D., Poeppel, D. & Wassenhove, V. Hierarchically nested networks optimize the analysis of audiovisual speech. iScience 6, 106257 (2023).

    Article  Google Scholar 

  186. Mallick, D. B., Magnotti, J. F. & Beauchamp, M. S. Variability and stability in the McGurk effect: contributions of participants, stimuli, time, and response type. Psychon. Bull. Rev. 22, 1299–1307 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  187. McGurk, H. & MacDonald, J. Hearing lips and seeing voices. Nature 264, 746–748 (1976).

    Article  PubMed  Google Scholar 

  188. Spence, C. & Soto-Faraco, S. in Oxford Handbook of Auditory Science: Hearing, Oxford Library of Psychology (ed.Plack, C. J.) 271–296 (Oxford Academic, 2010).

  189. Stekelenburg, J. J. & Vroomen, J. Neural correlates of multisensory integration of ecologically valid audiovisual events. J. Cogn. Neurosci. 19, 1964–1973 (2007).

    Article  PubMed  Google Scholar 

  190. Czigler, I. & Kojouharova, P. Visual mismatch negativity: a mini-review of non-pathological studies with special populations and stimuli. Front. Hum. Neurosci. 15, 781234 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Grundei, M., Schröder, P., Gijsen, S. & Blankenburg, F. EEG mismatch responses in a multimodal roving stimulus paradigm provide evidence for probabilistic inference across audition, somatosensation, and vision. Hum. Brain Mapp. 44, 3644–3668 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Shen, G., Smyk, N. J., Meltzoff, A. N. & Marshall, P. J. Neuropsychology of human body parts: exploring categorical boundaries of tactile perception using somatosensory mismatch responses. J. Cogn. Neurosci. 30, 1858–1869 (2018).

    Article  PubMed  Google Scholar 

  193. Grundei, M., Schmidt, T. T. & Blankenburg, F. A multimodal cortical network of sensory expectation violation revealed by fMRI. Hum. Brain Mapp. 44, 5871–5891 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Snyder, J. S. & Elhilali, M. Recent advances in exploring the neural underpinnings of auditory scene perception. Ann. N. Y. Acad. Sci. 1396, 39–55 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Szabó, B. T., Denham, S. L. & Winkler, I. Computational models of auditory scene analysis: a review. Front. Neurosci. 10, 524 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Krishnan, L. E. M. & Shamma, S. Segregating complex sound sources through temporal coherence. PLoS Comput. Biol. 10, 1003985 (2014).

    Article  Google Scholar 

  197. Mill, R. W., Bőhm, T. M., Bendixen, A., Winkler, I. & Denham, S. L. Modelling the emergence and dynamics of perceptual organisation in auditory streaming. PLoS Comput. Biol. 9, 1002925 (2013).

    Article  Google Scholar 

  198. Altmann, G. T. M. (ed.) Cognitive Models of Speech Processing: Psycholinguistic and Computational Perspectives (MIT Press, 1995).

  199. Benetos, E., Dixon, S., Duan, Z. & Ewert, S. Automatic music transcription: an overview. IEEE Signal. Process. Mag. 36, 20–30 (2019).

    Article  Google Scholar 

  200. Koelsch, S. Toward a neural basis of music perception — a review and updated model. Front. Psychol. 2, 110 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Large, E. W. et al. Dynamic models for musical rhythm perception and coordination. Front. Comput. Neurosci. 17, 1151895 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Harrison, P. M. C., Bianco, R., Chait, M. & Pearce, M. T. PPM-Decay: a computational model of auditory prediction with memory decay. PLoS Comput. Biol. 16, 1008304 (2020).

    Article  Google Scholar 

  203. Winkler, I., Denham, S., Mill, R., Bőhm, T. M. & Bendixen, A. Multistability in auditory stream segregation: a predictive coding view. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 1001–1012 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Alain, C. et al. Neural ɑ oscillations index context-driven perception of ambiguous vowel sequences. iScience 26, 108457 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Kondo, H. M., Farkas, D., Denham, S. L., Asai, T. & Winkler, I. Auditory multistability and neurotransmitter concentrations in the human brain. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 20160110 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Caras, M. L. et al. Non-sensory influences on auditory learning and plasticity. J. Assoc. Res. Otolaryngol. 23, 151–166 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Reynolds, J. R., Zacks, J. M. & Braver, T. S. A computational model of event segmentation from perceptual prediction. Cogn. Sci. 31, 613–643 (2007).

    Article  PubMed  Google Scholar 

  208. Franklin, N. T., Norman, K. A., Ranganath, C., Zacks, J. M. & Gershman, S. J. Structured event memory: a neuro-symbolic model of event cognition. Psychol. Rev. 127, 327–361 (2020).

    Article  PubMed  Google Scholar 

  209. Cusimano, M., Hewitt, L. B. & McDermott, J. H. Bayesian auditory scene synthesis explains human perception of illusions and everyday sounds. Preprint at bioRxiv https://doi.org/10.1101/2023.04.27.538626 (2023).

  210. Bekinschtein, T. A. et al. Neural signature of the conscious processing of auditory regularities. Proc. Natl Acad. Sci. USA 106, 1672–1677 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Horváth, J., Czigler, I., Sussman, E. & Winkler, I. Simultaneously active pre-attentive representations of local and global rules for sound sequences. Cogn. Brain Res. 12, 131–144 (2001).

    Article  Google Scholar 

  212. Skerritt-Davis, B. & Elhilali, M. Neural encoding of auditory statistics. J. Neurosci. 41, 6726–6739 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Sussman, E., Ritter, W. & Vaughan, H. G. An investigation of the auditory streaming effect using event-related brain potentials. Psychophysiology 36, 22–34 (1999).

    Article  PubMed  Google Scholar 

  214. Aiken, S. J. & Picton, T. W. Human cortical responses to the speech envelope. Ear Hear. 29, 139–157 (2008).

    Article  PubMed  Google Scholar 

  215. Ding, N. & Simon, J. Z. Emergence of neural encoding of auditory objects while listening to competing speakers. Proc. Natl Acad. Sci. USA 109, 11854–11859 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Reetzke, R., Gnanateja, G. N. & Chandrasekaran, B. Neural tracking of the speech envelope is differentially modulated by attention and language experience. Brain Lang. 213, 104891 (2021).

    Article  PubMed  Google Scholar 

  217. Hommel, B. Theory of event coding (TEC) V2.0: representing and controlling perception and action. Atten. Percept. Psychophys. 81, 2139–2154 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Korka, B., Widmann, A., Waszak, F., Darriba, Á. & Schröger, E. The auditory brain in action: intention determines predictive processing in the auditory system — a review of current paradigms and findings. Psychon. Bull. Rev. 29, 321–342 (2022).

    Article  PubMed  Google Scholar 

  219. He, C. & Trainor, L. J. Finding the pitch of the missing fundamental in infants. J. Neurosci. 29, 7718–8822 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Luck, S. J. An Introduction to the Event-Related Potential Technique (MIT Press, 2014).

  221. Escera, C. Contributions of the subcortical auditory system to predictive coding and the neural encoding of speech. Curr. Opin. Behav. Sci. 54, 101324 (2023).

    Article  Google Scholar 

  222. Pantev, C., Hoke, M., Lütkenhöner, B. & Lehnertz, K. Tonotopic organization of the auditory cortex: pitch versus frequency representation. Science 246, 486–488 (1989).

    Article  PubMed  Google Scholar 

  223. Bendixen, A., Jones, S. J., Klump, G. & Winkler, I. Probability dependence and functional separation of the object-related and mismatch negativity event-related potential components. Neuroimage 50, 285–290 (2010).

    Article  PubMed  Google Scholar 

  224. Näätänen, R., Gaillard, A. W. K. & Mäntysalo, S. Early selective-attention effect on evoked potential reinterpreted. Acta Psychol. 42, 313–329 (1978).

    Article  Google Scholar 

  225. Winkler, I. Interpreting the mismatch negativity. J. Psychophysiol. 21, 147–163 (2007).

    Article  Google Scholar 

  226. Winkler, I., Teder-Sälejärvi, W. A., Horváth, J., Näätänen, R. & Sussman, E. Human auditory cortex tracks task-irrelevant sound sources. NeuroReport 14, 2053–2056 (2003).

    Article  PubMed  Google Scholar 

  227. Bendixen, A., Prinz, W. G., Horváth, J., Trujillo-Barreto, N. J. & Schröger, E. Rapid extraction of auditory feature contingencies. Neuroimage 41, 1111–1119 (2008).

    Article  PubMed  Google Scholar 

  228. Mittag, M., Takegata, R. & Winkler, I. Transitional probabilities are prioritized over stimulus/pattern probabilities in auditory deviance detection: memory basis for predictive sound processing. J. Neurosci. 36, 9572–9579 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Paavilainen, P., Arajärvi, P. & Takegata, R. Preattentive detection of nonsalient contingencies between auditory features. NeuroReport 18, 159–163 (2007).

    Article  PubMed  Google Scholar 

  230. Garrido, M. I., Kilner, J. M., Stephan, K. E. & Friston, K. J. The mismatch negativity: a review of underlying mechanisms. Clin. Neurophysiol. 120, 453–463 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Poublan-Couzardot, A. et al. Time-resolved dynamic computational modeling of human EEG recordings reveals gradients of generative mechanisms for the MMN response. PLoS Comput. Biol. 19, 1010557 (2023).

    Article  Google Scholar 

  232. Fink, L., Hörster, M., Poeppel, D., Wald-Fuhrmann, M. & Larrouy-Maestri, P. Features underlying speech versus music as categories of auditory experience. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/2635u (2023).

  233. Bigand, E. & Poulin-Charronnat, B. Are we “experienced listeners”? A review of the musical capacities that do not depend on formal musical training. Cognition 100, 100–130 (2006).

    Article  PubMed  Google Scholar 

  234. Ren, Y. & Brown, T. I. Beyond the ears: a review exploring the interconnected brain behind the hierarchical memory of music. Psychon. Bull. Rev. https://doi.org/10.3758/s13423-023-02376-1 (2023).

  235. Gervain, J., Cruz‐Pavía, I. & Gerken, L. Behavioral and imaging studies of infant artificial grammar learning. Top. Cogn. Sci. 12, 815–827 (2020).

    Article  PubMed  Google Scholar 

  236. Ragert, M., Fairhurst, M. T. & Keller, P. E. Segregation and integration of auditory streams when listening to multi-part music. PLoS ONE 9, 84085 (2014).

    Article  Google Scholar 

  237. Tóth, B. et al. The effects of speech processing units on auditory stream segregation and selective attention in a multi-talker (cocktail party) situation. Cortex 130, 387–400 (2020).

    Article  PubMed  Google Scholar 

  238. Di Liberto, G. M. et al. Cortical encoding of melodic expectations in human temporal cortex. eLife 9, e51784 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Gwilliams, L., King, J.-R., Marantz, A. & Poeppel, D. Neural dynamics of phoneme sequences reveal position-invariant code for content and order. Nat. Commun. 13, 6606 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Gwilliams, L., Marantz, A., Poeppel, D. & King, J.-R. Top-down information shapes lexical processing when listening to continuous speech. Lang. Cogn. Neurosci. https://doi.org/10.1080/23273798.2023.2171072 (2023).

  241. Koelsch, S., Schröger, E. & Tervaniemi, M. Superior pre-attentive auditory processing in musicians. NeuroReport 10, 1309–1313 (1999).

    Article  PubMed  Google Scholar 

  242. Micheyl, C., Delhommeau, K., Perrot, X. & Oxenham, A. J. Influence of musical and psychoacoustical training on pitch discrimination. Hear. Res. 219, 36–47 (2006).

    Article  PubMed  Google Scholar 

  243. Tervaniemi, M., Just, V., Koelsch, S., Widmann, A. & Schröger, E. Pitch discrimination accuracy in musicians vs nonmusicians: an event-related potential and behavioral study. Exp. Brain Res. 161, 1–10 (2004).

    Article  PubMed  Google Scholar 

  244. Chartrand, J.-P. & Belin, P. Superior voice timbre processing in musicians. Neurosci. Lett. 405, 164–167 (2006).

    Article  PubMed  Google Scholar 

  245. Chartrand, J.-P., Peretz, I. & Belin, P. Auditory recognition expertise and domain specificity. Brain Res. 1220, 191–198 (2008).

    Article  PubMed  Google Scholar 

  246. Münzer, S., Berti, S. & Pechmann, T. Encoding of timbre, speech and tones: musicians vs. non-musicians. Psychol. Beitr. 44, 187–202 (2002).

    Google Scholar 

  247. Jacobsen, T. et al. Pre-attentive auditory processing of lexicality. Brain Lang. 88, 54–67 (2004).

    Article  PubMed  Google Scholar 

  248. Winkler, I. et al. Brain responses reveal the learning of foreign language phonemes. Psychophysiology 36, 638–642 (1999).

    Article  PubMed  Google Scholar 

  249. Zaltz, Y., Globerson, E. & Amir, N. Auditory perceptual abilities are associated with specific auditory experience. Front. Psychol. 8, 2080 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  250. Bögels, S., Magyari, L. & Levinson, S. C. Neural signatures of response planning occur midway through an incoming question in conversation. Sci. Rep. 5, 12881 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Magyari, L., Bastiaansen, M. C. M., Ruiter, J. P. & Levinson, S. C. Early anticipation lies behind the speed of response in conversation. J. Cogn. Neurosci. 26, 2530–2539 (2014).

    Article  PubMed  Google Scholar 

  252. François, C. & Schön, D. Neural sensitivity to statistical regularities as a fundamental biological process that underlies auditory learning: the role of musical practice. Hear. Res. 308, 122–128 (2014).

    Article  PubMed  Google Scholar 

  253. Koelsch, S., Vuust, P. & Friston, K. Predictive processes and the peculiar case of music. Trends Cogn. Sci. 23, 63–77 (2019).

    Article  PubMed  Google Scholar 

  254. Jacobsen, T., Schröger, E., Winkler, I. & Horváth, J. Familiarity affects the processing of task-irrelevant ignored sounds. J. Cogn. Neurosci. 17, 1704–1713 (2005).

    Article  PubMed  Google Scholar 

  255. Belin, P., Zatorre, R. J. & Ahad, P. Human temporal-lobe response to vocal sounds. Cogn. Brain Res. 13, 17–26 (2002).

    Article  Google Scholar 

  256. Bermudez, P., Lerch, J. P., Evans, A. C. & Zatorre, R. J. Neuroanatomical correlates of musicianship as revealed by cortical thickness and voxel-based morphometry. Cereb. Cortex 19, 1583–1596 (2008).

    Article  PubMed  Google Scholar 

  257. Criscuolo, A., Pando-Naude, V., Bonetti, L., Vuust, P. & Brattico, E. An ALE meta-analytic review of musical expertise. Sci. Rep. 12, 11726 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  258. Pallesen, K. J. et al. Cognitive control in auditory working memory is enhanced in musicians. PLoS ONE 5, 11120 (2010).

    Article  Google Scholar 

  259. Strait, D. L. & Kraus, N. Biological impact of auditory expertise across the life span: musicians as a model of auditory learning. Hear. Res. 308, 109–121 (2014).

    Article  PubMed  Google Scholar 

  260. Pettijohn, K. A. & Radvansky, G. A. Narrative event boundaries, reading times, and expectation. Mem. Cognit. 44, 1064–1075 (2016).

    Article  PubMed  Google Scholar 

  261. Speer, N. K., Zacks, J. M. & Reynolds, J. R. Human brain activity time-locked to narrative event boundaries. Psychol. Sci. 18, 449–455 (2007).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank I. Czigler and M. Racsmány for discussing ideas that shaped the review and D. Salisbury and B. A. Coffman for personal communications of the illustrations in parts d,e and f of Box 1. The writing of this review was supported by the Hungarian National Research, Development and Innovation Office (grant K132642 to I.W.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to István Winkler.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Psychology thanks Robert Baumgartner, Sabine Grimm and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winkler, I., Denham, S.L. The role of auditory source and action representations in segmenting experience into events. Nat Rev Psychol 3, 223–241 (2024). https://doi.org/10.1038/s44159-024-00287-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44159-024-00287-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing