Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The distinction between temporal order and duration processing, and implications for schizophrenia

Abstract

The term ‘timing’ is interchangeably used to convey processing of the order or the duration of events. Yet, whereas temporal order processing means judging when one event happens relative to another (first or second), duration estimation means measuring how long the event lasts. In this Review, we show that the functional distinction between these two temporal features is reflected in their discrete neural substrates. Temporal order processing preferentially engages the left inferior parietal cortex, whereas duration estimation recruits the supplementary motor area, basal ganglia and cerebellum. The functional distinction between temporal order processing and duration estimation also enables better characterization of temporal perturbations present in clinical disorders. For instance, individuals with schizophrenia have trouble individuating and ordering consecutive events in time and show atypical responses to stimuli that do not appear when expected. Therefore, individuals with schizophrenia might have a fundamental impairment in processing when a stimulus occurs relative to another event, rather than in estimating how long it lasts. These neural and clinical dissociations demonstrate that the phenomenological sensation of a unitary and cohesive flow of time (‘time’s arrow’) can be separated into two distinct, though intertwined, components.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Order and duration are orthogonal temporal features.
Fig. 2: Experimental paradigms for measuring simultaneity or temporal order.
Fig. 3: Left hemispheric lateralization of temporal order processing and temporal prediction.
Fig. 4: Experimental paradigms for measuring duration estimation.
Fig. 5: Temporal processing is perturbed in individuals with schizophrenia.

Similar content being viewed by others

References

  1. Van Heuven, W. J. B., Mandera, P., Keuleers, E. & Brysbaert, M. Subtlex-UK: a new and improved word frequency database for British English. Q. J. Exp. Psychol. 67, 1176–1190 (2014).

    Article  Google Scholar 

  2. Winter, B., Marghetis, T. & Matlock, T. Of magnitudes and metaphors: explaining cognitive interactions between space, time, and number. Cortex 64, 209–224 (2015).

    Article  PubMed  Google Scholar 

  3. Boroditsky, L. Language and the construction of time through space. Trends Neurosci. 41, 651–653 (2018).

    Article  PubMed  Google Scholar 

  4. Fraisse, P. Perception and estimation of time. Annu. Rev. Psychol. 35, 1–36 (1984).

    Article  PubMed  Google Scholar 

  5. Block, R. A. (ed.) in Cognitive Models Of Psychological Time 1–36 (Erlbaum, 1990).

  6. Pöppel, E. A hierarchical model of temporal perception. Trends Cogn. Sci. 1, 56–61 (1997).

    Article  PubMed  Google Scholar 

  7. Teki, S. A citation-based analysis and review of significant papers on timing and time perception. Front. Neurosci. 10, 330 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wittmann, M. Time perception and temporal processing levels of the brain. Chronobiol. Int. 16, 17–32 (1999).

    Article  PubMed  Google Scholar 

  9. van Wassenhove, V. Minding time in an amodal representational space. Phil. Trans. R. Soc. B 364, 1815–1830 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Grondin, S. Timing and time perception: a review of recent behavioral and neuroscience findings and theoretical directions. Atten. Percept. Psychophys. 72, 561–582 (2010).

    Article  PubMed  Google Scholar 

  11. Coull, J. T. & Nobre, A. Dissociating explicit timing from temporal expectation with fMRI. Curr. Opin. Neurobiol. 18, 137–144 (2008).

    Article  PubMed  Google Scholar 

  12. Paton, J. J. & Buonomano, D. V. The neural basis of timing: distributed mechanisms for diverse functions. Neuron 98, 687–705 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Thönes, S. & Stocker, K. A standard conceptual framework for the study of subjective time. Conscious. Cogn. 71, 114–122 (2019).

    Article  PubMed  Google Scholar 

  14. Thoenes, S. & Oberfeld, D. Meta-analysis of time perception and temporal processing in schizophrenia: differential effects on precision and accuracy. Clin. Psychol. Rev. 54, 44–64 (2017).

    Article  PubMed  Google Scholar 

  15. Vatakis, A., Navarra, J., Soto-Faraco, S. & Spence, C. Audiovisual temporal adaptation of speech: temporal order versus simultaneity judgments. Exp. Brain Res. 185, 521–529 (2008).

    Article  PubMed  Google Scholar 

  16. Love, S. A., Petrini, K., Cheng, A. & Pollick, F. E. A psychophysical investigation of differences between synchrony and temporal order judgments. PLoS ONE 8, e54798 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  17. García-Pérez, M. A. & Alcalá-Quintana, R. Converging evidence that common timing processes underlie temporal-order and simultaneity judgments: a model-based analysis. Atten. Percept. Psychophys. 77, 1750–1766 (2015).

    Article  PubMed  Google Scholar 

  18. Binder, M. Neural correlates of audiovisual temporal processing — comparison of temporal order and simultaneity judgments. Neuroscience 300, 432–447 (2015).

    Article  PubMed  Google Scholar 

  19. Miyazaki, M. et al. Dissociating the neural correlates of tactile temporal order and simultaneity judgements. Sci. Rep. 6, 23323 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Recio, R. S., Cravo, A. M., de Camargo, R. Y. & van Wassenhove, V. Dissociating the sequential dependency of subjective temporal order from subjective simultaneity. PLoS ONE 14, e0223184 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Marshuetz, C. Order information in working memory: an integrative review of evidence from brain and behavior. Psychol. Bull. 131, 323–339 (2005).

    Article  PubMed  Google Scholar 

  22. Davachi, L. & DuBrow, S. How the hippocampus preserves order: the role of prediction and context. Trends Cogn. Sci. 19, 92–99 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kostaki, M. & Vatakis, A. Tin Timing And Time Perception: Procedures, Measures And Application (eds Vatakis, A., Balci, F., Di Luca, M. & Correa, A.) 233–262 (Brill, 2018).

  24. Machulla, T. K., Di Luca, M. & Ernst, M. O. The consistency of crossmodal synchrony perception across the visual, auditory, and tactile senses. J. Exp. Psychol. Hum. Percept. Perform. 42, 1026–1038 (2016).

    Article  PubMed  Google Scholar 

  25. van Wassenhove, V., Grant, K. W. & Poeppel, D. Temporal window of integration in auditory-visual speech perception. Neuropsychologia 45, 598–607 (2007).

    Article  PubMed  Google Scholar 

  26. Hirsh, I. J. & Sherrick, C. E. Jr. Perceived order in different sense modalities. J. Exp. Psychol. 62, 423–432 (1961).

    Article  PubMed  Google Scholar 

  27. Kanabus, M., Szelag, E., Rojek, E. & Pöppel, E. Temporal order judgement for auditory and visual stimuli. Acta Neurobiol. Exp. 62, 263–270 (2002).

    Google Scholar 

  28. Fink, M., Ulbrich, P., Churan, J. & Wittmann, M. Stimulus-dependent processing of temporal order. Behav. Process. 71, 344–352 (2006).

    Article  Google Scholar 

  29. Herzog, M. H., Kammer, T. & Scharnowski, F. Time slices: what is the duration of a percept? PLoS Biol. 14, e1002433 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Vatakis, A. & Spence, C. Audiovisual synchrony perception for music, speech, and object actions. Brain Res. 1111, 134–142 (2006).

    Article  PubMed  Google Scholar 

  31. Stevenson, R. A. & Wallace, M. T. Multisensory temporal integration: task and stimulus dependencies. Exp. Brain Res. 227, 249–261 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Spence, C. in Attention and Time (eds Nobre, A. C. & Coull, J. T.) 89–104 (Oxford Univ. Press, 2010).

  33. Neumann, O. Direct parameter specification and the concept of perception. Psychol. Res. 52, 207–215 (1990).

    Article  PubMed  Google Scholar 

  34. Lalanne, L., Van Assche, M., Wang, W. & Giersch, A. Looking forward: an impaired ability in patients with schizophrenia? Neuropsychologia 50, 2736–2744 (2012).

    Article  PubMed  Google Scholar 

  35. Lalanne, L., van Assche, M. & Giersch, A. When predictive mechanisms go wrong: disordered visual synchrony thresholds in schizophrenia. Schizophr. Bull. 38, 506–513 (2012).

    Article  PubMed  Google Scholar 

  36. Grabot, L. & van Wassenhove, V. Time order as psychological bias. Psychol. Sci. 28, 670–678 (2017).

    Article  PubMed  Google Scholar 

  37. Paraskevoudi, N. & Vatakis, A. in The Illusions of Time (eds Arstila, V., Bardon, A., Power, S. E. & Vatakis, A.) 225–257 (Palgrave Macmillan, 2019).

  38. VanRullen, R. Perceptual cycles. Trends Cogn. Sci. 20, 723–735 (2016).

    Article  PubMed  Google Scholar 

  39. Grabot, L., Kösem, A., Azizi, L. & van Wassenhove, V. Prestimulus alpha oscillations and the temporal sequencing of audiovisual events. J. Cogn. Neurosci. 29, 1566–1582 (2017).

    Article  PubMed  Google Scholar 

  40. Cecere, R., Rees, G. & Romei, V. Individual differences in alpha frequency drive crossmodal illusory perception. Curr. Biol. 25, 231–235 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Samaha, J. & Postle, B. R. The speed of alpha-band oscillations predicts the temporal resolution of visual perception. Curr. Biol. 25, 2985–2990 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wutz, A., Melcher, D. & Samaha, J. Frequency modulation of neural oscillations according to visual task demands. Proc. Natl Acad. Sci. USA 115, 1346–1351 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Fiebelkorn, I. C., Saalmann, Y. B. & Kastner, S. Rhythmic sampling within and between objects despite sustained attention at a cued location. Curr. Biol. 23, 2553–2558 (2013).

    Article  PubMed  Google Scholar 

  44. Helfrich, R. F. et al. Neural mechanisms of sustained attention are rhythmic. Neuron 99, 854–865.e5 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Davis, B., Christie, J. & Rorden, C. Temporal order judgments activate temporal parietal junction. J. Neurosci. 29, 3182–3188 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Love, S. A., Petrini, K., Pernet, C. R., Latinus, M. & Pollick, F. E. Overlapping but divergent neural correlates underpinning audiovisual synchrony and temporal order judgments. Front. Hum. Neurosci. 12, 274 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Moser, D., Baker, J. M., Sanchez, C. E., Rorden, C. & Fridriksson, J. Temporal order processing of syllables in the left parietal lobe. J. Neurosci. 29, 12568–12573 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Efron, R. The effect of handedness on the perception of simultaneity and temporal order. Brain 86, 261–284 (1963).

    Article  Google Scholar 

  49. Swisher, L. & Hirsh, I. J. Brain damage and the ordering of two temporally successive stimuli. Neuropsychologia 10, 137–152 (1972).

    Article  PubMed  Google Scholar 

  50. von Steinbüchel, N., Wittmann, M., Strasburger, H. & Szelag, E. Auditory temporal-order judgement is impaired in patients with cortical lesions in posterior regions of the left hemisphere. Neurosci. Lett. 264, 168–171 (1999).

    Article  Google Scholar 

  51. Wencil, E. B., Radoeva, P. & Chatterjee, A. Size isn’t all that matters: noticing differences in size and temporal order. Front. Hum. Neurosci. 4, 171 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wittmann, M., Burtscher, A., Fries, W. & von Steinbüchel, N. Effects of brain-lesion size and location on temporal-order judgment. Neuroreport 15, 2401–2405 (2004).

    Article  PubMed  Google Scholar 

  53. Adhikari, B. M., Goshorn, E. S., Lamichhane, B. & Dhamala, M. Temporal-order judgment of audiovisual events involves network activity between parietal and prefrontal cortices. Brain Connect. 3, 536–545 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Takahashi, T., Kansaku, K., Wada, M., Shibuya, S. & Kitazawa, S. Neural correlates of tactile temporal-order judgment in humans: an fMRI study. Cereb. Cortex 23, 1952–1964 (2013).

    Article  PubMed  Google Scholar 

  55. Otsuru, N. et al. 10Hz transcranial alternating current stimulation over posterior parietal cortex facilitates tactile temporal order judgment. Behav. Brain Res. 368, 111899 (2019).

    Article  PubMed  Google Scholar 

  56. Battelli, L., Pascual-Leone, A. & Cavanagh, P. The ‘when’ pathway of the right parietal lobe. Trends Cogn. Sci. 11, 204–210 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Woo, S. H., Kim, K. H. & Lee, K. M. The role of the right posterior parietal cortex in temporal order judgment. Brain Cogn. 69, 337–343 (2009).

    Article  PubMed  Google Scholar 

  58. Tyler, S. C., Contò, F. & Battelli, L. Rapid improvement on a temporal attention task within a single session of high-frequency transcranial random noise stimulation. J. Cogn. Neurosci. 30, 656–666 (2018).

    Article  PubMed  Google Scholar 

  59. Rorden, C., Mattingley, J. B., Karnath, H. O. & Driver, J. Visual extinction and prior entry: impaired perception of temporal order with intact motion perception after unilateral parietal damage. Neuropsychologia 35, 421–433 (1997).

    Article  PubMed  Google Scholar 

  60. Robertson, I. H., Mattingley, J. B., Rorden, C. & Driver, J. Phasic alerting of neglect patients overcomes their spatial deficit in visual awareness. Nature 395, 169–172 (1998).

    Article  PubMed  Google Scholar 

  61. Baylis, G. C., Simon, S. L., Baylis, L. L. & Rorden, C. Visual extinction with double simultaneous stimulation: what is simultaneous? Neuropsychologia 40, 1027–1034 (2002).

    Article  PubMed  Google Scholar 

  62. Agosta, S. et al. The pivotal role of the right parietal lobe in temporal attention. J. Cogn. Neurosci. 29, 805–815 (2017).

    Article  PubMed  Google Scholar 

  63. Roberts, K. L., Lau, J. K., Chechlacz, M. & Humphreys, G. W. Spatial and temporal attention deficits following brain injury: a neuroanatomical decomposition of the temporal order judgement task. Cogn. Neuropsychol. 29, 300–324 (2012).

    Article  PubMed  Google Scholar 

  64. Mesulam, M. M. Spatial attention and neglect: parietal, frontal and cingulate contributions to the mental representation and attentional targeting of salient extrapersonal events. Phil. Trans. R. Soc. Lond. B 354, 1325–1346 (1999).

    Article  Google Scholar 

  65. Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215 (2002).

    Article  PubMed  Google Scholar 

  66. Jaskowski, P. in Subjective Time: The Philosophy, Psychology and Neuroscience of Temporality (eds. Arstila, V. & Lloyd, D.) 379–407 (MIT Press, 2015).

  67. Coull, J. T. & Nobre, A. C. Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. J. Neurosci. 18, 7426–7435 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Wiener, M., Turkeltaub, P. E. & Coslett, H. B. Implicit timing activates the left inferior parietal cortex. Neuropsychologia 48, 3967–3971 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Nobre, A. C. & van Ede, F. Anticipated moments: temporal structure in attention. Nat. Rev. Neurosci. 19, 34–48 (2018).

    Article  PubMed  Google Scholar 

  70. Assmus, A. et al. Left inferior parietal cortex integrates time and space during collision judgments. Neuroimage 20, S82–S88 (2003).

    Article  PubMed  Google Scholar 

  71. Field, D. T. & Wann, J. P. Perceiving time to collision activates the sensorimotor cortex. Curr. Biol. 15, 453–458 (2005).

    Article  PubMed  Google Scholar 

  72. Coull, J. T., Vidal, F., Goulon, C., Nazarian, B. & Craig, C. Using time-to-contact information to assess potential collision modulates both visual and temporal prediction networks. Front. Hum. Neurosci. 2, 10 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Bolger, D., Coull, J. T. & Schön, D. Metrical rhythm implicitly orients attention in time as indexed by improved target detection and left inferior parietal activation. J. Cogn. Neurosci. 26, 593–605 (2014).

    Article  PubMed  Google Scholar 

  74. Morillon, B. & Baillet, S. Motor origin of temporal predictions in auditory attention. Proc. Natl Acad. Sci. USA 114, E8913–E8921 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Orpella, J. et al. Integrating when and what information in the left parietal lobe allows language rule generalization. PLoS Biol. 18, e3000895 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Cotti, J., Rohenkohl, G., Stokes, M., Nobre, A. C. & Coull, J. T. Functionally dissociating temporal and motor components of response preparation in left intraparietal sulcus. Neuroimage 54, 1221–1230 (2011).

    Article  PubMed  Google Scholar 

  77. Albouy, P., Benjamin, L., Morillon, B. & Zatorre, R. J. Distinct sensitivity to spectrotemporal modulation supports brain asymmetry for speech and melody. Science 367, 1043–1047 (2020).

    Article  PubMed  Google Scholar 

  78. Floegel, M., Fuchs, S. & Kell, C. A. Differential contributions of the two cerebral hemispheres to temporal and spectral speech feedback control. Nat. Commun. 11, 2839 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Droit-Volet, S., Trahanias, P. & Maniadakis, M. Passage of time judgments in everyday life are not related to duration judgments except for long durations of several minutes. Acta Psychol. 173, 116–121 (2017).

    Article  Google Scholar 

  80. Droit-Volet, S. & Wearden, J. Passage of time judgments are not duration judgments: evidence from a study using experience sampling methodology. Front. Psychol. 7, 176 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Piras, F. & Coull, J. T. Implicit, predictive timing draws upon the same scalar representation of time as explicit timing. PLoS ONE 6, e18203 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Droit-Volet, S. & Coull, J. T. Distinct developmental trajectories for explicit and implicit timing. J. Exp. Child Psychol. 150, 141–154 (2016).

    Article  PubMed  Google Scholar 

  83. Ivry, R. B. & Hazeltine, R. E. Perception and production of temporal intervals across a range of durations: evidence for a common timing mechanism. J. Exp. Psychol. Hum. Percept. Perform. 21, 3–18 (1995).

    Article  PubMed  Google Scholar 

  84. Merchant, H., Zarco, W. & Prado, L. Do we have a common mechanism for measuring time in the hundreds of millisecond range? Evidence from multiple-interval timing tasks. J. Neurophysiol. 99, 939–949 (2008).

    Article  PubMed  Google Scholar 

  85. Buonomano, D. V., Bramen, J. & Khodadadifar, M. Influence of the interstimulus interval on temporal processing and learning: testing the state-dependent network model. Phil. Trans. R. Soc. B 364, 1865–1873 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Spencer, R. M., Karmarkar, U. & Ivry, R. B. Evaluating dedicated and intrinsic models of temporal encoding by varying context. Phil. Trans. R. Soc. B 364, 1853–1863 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Rammsayer, T. H., Borter, N. & Troche, S. J. Visual-auditory differences in duration discrimination of intervals in the subsecond and second range. Front. Psychol. 6, 1626 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Rammsayer, T. & Pichelmann, S. Visual-auditory differences in duration discrimination depend on modality-specific, sensory-automatic temporal processing: converging evidence for the validity of the sensory-automatic timing hypothesis. Q. J. Exp. Psychol. 71, 2364–2377 (2018).

    Article  Google Scholar 

  89. Michon, J. A. in Time, Mind, and Behavior (eds Michon, J. A. & Jackson, J. L.) 20–54 (Springer, 1985).

  90. Broadway, J. M. & Engle, R. W. Individual differences in working memory capacity and temporal discrimination. PLoS ONE 6, e25422 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Ogden, R. S., Samuels, M., Simmons, F., Wearden, J. & Montgomery, C. The differential recruitment of short-term memory and executive functions during time, number, and length perception: an individual differences approach. Q. J. Exp. Psychol. 71, 657–669 (2018).

    Google Scholar 

  92. Droit-Volet, S. Development of time. Curr. Opin. Behav. Sci. 8, 102–109 (2016).

    Article  Google Scholar 

  93. Droit-Volet, S., Wearden, J. H. & Zélanti, P. S. Cognitive abilities required in time judgment depending on the temporal tasks used: a comparison of children and adults. Q. J. Exp. Psychol. 68, 2216–2242 (2015).

    Article  Google Scholar 

  94. Matthews, W. J. & Meck, W. H. Temporal cognition: connecting subjective time to perception, attention, and memory. Psychol. Bull. 142, 865–907 (2016).

    Article  PubMed  Google Scholar 

  95. Macar, F., Grondin, S. & Casini, L. Controlled attention sharing influences time estimation. Mem. Cogn. 22, 673–686 (1994).

    Article  Google Scholar 

  96. Xuan, B., Zhang, D., He, S. & Chen, X. Larger stimuli are judged to last longer. J. Vis. 7, 1–5 (2007).

    Article  PubMed  Google Scholar 

  97. Brown, S. W. Time, change, and motion: the effects of stimulus movement on temporal perception. Percept. Psychophys. 57, 105–116 (1995).

    Article  PubMed  Google Scholar 

  98. Tse, P. U., Intriligator, J., Rivest, J. & Cavanagh, P. Attention and the subjective expansion of time. Percept. Psychophys. 66, 1171–1189 (2004).

    Article  PubMed  Google Scholar 

  99. Matthews, W. J., Stewart, N. & Wearden, J. H. Stimulus intensity and the perception of duration. J. Exp. Psychol. Hum. Percept. Perform. 37, 303–313 (2011).

    Article  PubMed  Google Scholar 

  100. Droit-Volet, S. & Meck, W. H. How emotions colour our perception of time. Trends Cogn. Sci. 11, 504–513 (2007).

    Article  PubMed  Google Scholar 

  101. Jazayeri, M. & Shadlen, M. N. Temporal context calibrates interval timing. Nat. Neurosci. 13, 1020–1026 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Rhodes, D. On the distinction between perceived duration and event timing: towards a unified model of time perception. Timing Time Percept. 6, 90–123 (2018).

    Article  Google Scholar 

  103. Ivry, R. B. & Keele, S. W. Timing functions of the cerebellum. J. Cogn. Neurosci. 1, 136–152 (1989).

    Article  PubMed  Google Scholar 

  104. Bareš, M. et al. Consensus paper: decoding the contributions of the cerebellum as a time machine. From neurons to clinical applications. Cerebellum 18, 266–286 (2019).

    Article  PubMed  Google Scholar 

  105. Breska, A. & Ivry, R. B. Double dissociation of single-interval and rhythmic temporal prediction in cerebellar degeneration and Parkinson’s disease. Proc. Natl Acad. Sci. USA 115, 12283–12288 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Jones, C. R. & Jahanshahi, M. Contributions of the basal ganglia to temporal processing: evidence from Parkinson’s disease. Timing Time Percept. 2, 87–127 (2014).

    Article  Google Scholar 

  107. Gouvêa, T. S. et al. Striatal dynamics explain duration judgments. eLife 4, e11386 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Gu, B. M., Kukreja, K. & Meck, W. H. Oscillation patterns of local field potentials in the dorsal striatum and sensorimotor cortex during the encoding, maintenance, and decision stages for the ordinal comparison of sub- and supra-second signal durations. Neurobiol. Learn. Mem. 153, 79–91 (2018).

    Article  PubMed  Google Scholar 

  109. Casini, L. & Ivry, R. B. Effects of divided attention on temporal processing in patients with lesions of the cerebellum or frontal lobe. Neuropsychology 13, 10–21 (1999).

    Article  PubMed  Google Scholar 

  110. Mangels, J. A., Ivry, R. B. & Shimizu, N. Dissociable contributions of the prefrontal and neocerebellar cortex to time perception. Brain Res. Cogn. Brain Res. 7, 15–39 (1998).

    Article  PubMed  Google Scholar 

  111. Coull, J. T., Charras, P., Donadieu, M., Droit-Volet, S. & Vidal, F. SMA selectively codes the active accumulation of temporal, not spatial, magnitude. J. Cogn. Neurosci. 27, 2281–2298 (2015).

    Article  PubMed  Google Scholar 

  112. Schwartze, M., Rothermich, K. & Kotz, S. A. Functional dissociation of pre-SMA and SMA-proper in temporal processing. Neuroimage 60, 290–298 (2012).

    Article  PubMed  Google Scholar 

  113. Nani, A. et al. The neural correlates of time: a meta-analysis of neuroimaging studies. J. Cogn. Neurosci. 31, 1796–1826 (2019).

    Article  PubMed  Google Scholar 

  114. Tipples, J., Brattan, V. & Johnston, P. Neural bases for individual differences in the subjective experience of short durations (less than 2 seconds). PLoS ONE 8, e54669 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Mita, A., Mushiake, H., Shima, K., Matsuzaka, Y. & Tanji, J. Interval time coding by neurons in the presupplementary and supplementary motor areas. Nat. Neurosci. 12, 502–507 (2009).

    Article  PubMed  Google Scholar 

  116. Merchant, H., Zarco, W., Pérez, O., Prado, L. & Bartolo, R. Measuring time with different neural chronometers during a synchronization-continuation task. Proc. Natl Acad. Sci. USA 108, 19784–19789 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Crowe, D. A., Zarco, W., Bartolo, R. & Merchant, H. Dynamic representation of the temporal and sequential structure of rhythmic movements in the primate medial premotor cortex. J. Neurosci. 34, 11972–11983 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Henry, M. J., Herrmann, B. & Obleser, J. Selective attention to temporal features on nested time scales. Cereb. Cortex 25, 450–459 (2015).

    Article  PubMed  Google Scholar 

  119. Mento, G., Tarantino, V., Sarlo, M. & Bisiacchi, P. S. Automatic temporal expectancy: a high-density event-related potential study. PLoS ONE 8, e62896 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Coull, J. T., Vidal, F., Nazarian, B. & Macar, F. Functional anatomy of the attentional modulation of time estimation. Science 303, 1506–1508 (2004).

    Article  PubMed  Google Scholar 

  121. Merchant, H., Pérez, O., Zarco, W. & Gámez, J. Interval tuning in the primate medial premotor cortex as a general timing mechanism. J. Neurosci. 33, 9082–9096 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Mendoza, G., Méndez, J. C., Pérez, O., Prado, L. & Merchant, H. Neural basis for categorical boundaries in the primate pre-SMA during relative categorization of time intervals. Nat. Commun. 9, 1098 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Protopapa, F. et al. Chronotopic maps in human supplementary motor area. PLoS Biol. 17, e3000026 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Hayashi, M. J. et al. Time adaptation shows duration selectivity in the human parietal cortex. PLoS Biol. 13, e1002262 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Hayashi, M. J. & Ivry, R. B. Duration selectivity in right parietal cortex reflects the subjective experience of time. J. Neurosci. 40, 7749–7758 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Harvey, B. M., Dumoulin, S. O., Fracasso, A. & Paul, J. M. A network of topographic maps in human association cortex hierarchically transforms visual timing-selective responses. Curr. Biol. 30, 1424–1434.e6 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Bueti, D. Time processing: multiple topographic representations of time across human cortex. Curr. Biol. 30, R356–R358 (2020).

    Article  PubMed  Google Scholar 

  128. Kononowicz, T. W. & van Rijn, H. Decoupling interval timing and climbing neural activity: a dissociation between CNV and N1P2 amplitudes. J. Neurosci. 34, 2931–2939 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Coull, J. T. & Droit-Volet, S. Explicit understanding of duration develops implicitly through action. Trends Cogn. Sci. 22, 923–937 (2018).

    Article  PubMed  Google Scholar 

  130. Coull, J. T., Hwang, H. J., Leyton, M. & Dagher, A. Dopamine precursor depletion impairs timing in healthy volunteers by attenuating activity in putamen and supplementary motor area. J. Neurosci. 32, 16704–16715 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Maricq, A. V. & Church, R. M. The differential effects of haloperidol and methamphetamine on time estimation in the rat. Psychopharmacology 79, 10–15 (1983).

    Article  PubMed  Google Scholar 

  132. Meck, W. H. Neuropharmacology of timing and time perception. Brain Res. Cogn. Brain Res. 3, 227–242 (1996).

    Article  PubMed  Google Scholar 

  133. Soares, S., Atallah, B. V. & Paton, J. J. Midbrain dopamine neurons control judgment of time. Science 354, 1273–1277 (2016).

    Article  PubMed  Google Scholar 

  134. Rammsayer, T. H. Are there dissociable roles of the mesostriatal and mesolimbocortical dopamine systems on temporal information processing in humans? Neuropsychobiology 35, 36–45 (1997).

    Article  PubMed  Google Scholar 

  135. Rammsayer, T. H. Neuropharmacological evidence for different timing mechanisms in humans. Q. J. Exp. Psychol. B 52, 273–286 (1999).

    PubMed  Google Scholar 

  136. Rakitin, B. C., Scarmeas, N., Li, T., Malapani, C. & Stern, Y. Single-dose levodopa administration and aging independently disrupt time production. J. Cogn. Neurosci. 18, 376–387 (2006).

    Article  PubMed  Google Scholar 

  137. Lake, J. I. & Meck, W. H. Differential effects of amphetamine and haloperidol on temporal reproduction: dopaminergic regulation of attention and clock speed. Neuropsychologia 51, 284–292 (2013).

    Article  PubMed  Google Scholar 

  138. Coull, J. T., Hwang, H. J., Leyton, M. & Dagher, A. Dopaminergic modulation of motor timing in healthy volunteers differs as a function of baseline DA precursor availability. Timing Time Percept. 1, 77–98 (2013).

    Article  Google Scholar 

  139. Tomassini, A., Ruge, D., Galea, J. M., Penny, W. & Bestmann, S. The role of dopamine in temporal uncertainty. J. Cogn. Neurosci. 28, 96–110 (2016).

    Article  PubMed  Google Scholar 

  140. Alexander, G. E., DeLong, M. R. & Strick, P. L. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 9, 357–381 (1986).

    Article  PubMed  Google Scholar 

  141. Rammsayer, T. H. Effects of pharmacologically induced dopamine-receptor stimulation on human temporal information processing. Neuroquantology 7, 103–113 (2009).

    Article  Google Scholar 

  142. White, T. P. et al. Eluding the illusion? Schizophrenia, dopamine and the McGurk effect. Front. Hum. Neurosci. 8, 565 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Chassignolle, M. et al. Dopamine precursor depletion in healthy volunteers impairs processing of duration but not temporal order. J. Cogn. Neurosci. 33, 946–963 (2021).

    Article  PubMed  Google Scholar 

  144. Cools, R., Froböse, M., Aarts, E. & Hofmans, L. Dopamine and the motivation of cognitive control. Handb. Clin. Neurol. 163, 123–143 (2019).

    Article  PubMed  Google Scholar 

  145. Allman, M. J. & Meck, W. H. Pathophysiological distortions in time perception and timed performance. Brain 135, 656–677 (2012).

    Article  PubMed  Google Scholar 

  146. Blom, J. D., Nanuashvili, N. & Waters, F. Time distortions: a systematic review of cases characteristic of Alice in Wonderland syndrome. Front. Psychiat. 12, 668633 (2021).

    Article  Google Scholar 

  147. Farmer, M. E. & Klein, R. M. The evidence for a temporal processing deficit linked to dyslexia: a review. Psychon. Bull. Rev. 2, 460–493 (1995).

    Article  PubMed  Google Scholar 

  148. Foss-Feig, J. H. et al. An extended multisensory temporal binding window in autism spectrum disorders. Exp. Brain Res. 203, 381–389 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Stevenson, R. A. et al. Multisensory temporal integration in autism spectrum disorders. J. Neurosci. 34, 691–697 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Wallace, M. T. & Stevenson, R. A. The construct of the multisensory temporal binding window and its dysregulation in developmental disabilities. Neuropsychologia 64, 105–123 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Meilleur, A., Foster, N., Coll, S. M., Brambati, S. M. & Hyde, K. L. Unisensory and multisensory temporal processing in autism and dyslexia: a systematic review and meta-analysis. Neurosci. Biobehav. Rev. 116, 44–63 (2020).

    Article  PubMed  Google Scholar 

  152. Laasonen, M., Service, E. & Virsu, V. Temporal order and processing acuity of visual, auditory, and tactile perception in developmentally dyslexic young adults. Cogn. Affect. Behav. Neurosci. 1, 394–410 (2001).

    Article  PubMed  Google Scholar 

  153. Kwakye, L. D., Foss-Feig, J. H., Cascio, C. J., Stone, W. L. & Wallace, M. T. Altered auditory and multisensory temporal processing in autism spectrum disorders. Front. Integr. Neurosci. 4, 129 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Noreika, V., Falter, C. M. & Rubia, K. Timing deficits in attention-deficit/hyperactivity disorder (ADHD): evidence from neurocognitive and neuroimaging studies. Neuropsychologia 51, 235–266 (2013).

    Article  PubMed  Google Scholar 

  155. American Psychiatric Association. DSM-5: Diagnostic and Statistical Manual of Mental Disorders 5th edn (APA, 2013).

  156. McCutcheon, R. A., Reis Marques, T. & Howes, O. D. Schizophrenia — an overview. JAMA Psychiat. 77, 201–210 (2020).

    Article  Google Scholar 

  157. Fuchs, T. & Van Duppen, Z. Time and events: on the phenomenology of temporal experience in schizophrenia. Psychopathology 50, 68–74 (2017).

    Article  PubMed  Google Scholar 

  158. Minkowski, E. Le Temps Vécu: Etudes Phénoménologiques et Psychopathologiques (Presses Universitaires de France, 1933).

  159. Stanghellini, G. et al. Psychopathology of lived time: abnormal time experience in persons with schizophrenia. Schizophren. Bull. 42, 45–55 (2016).

    Google Scholar 

  160. Zhou, H. Y. et al. Multisensory temporal binding window in autism spectrum disorders and schizophrenia spectrum disorders: a systematic review and meta-analysis. Neurosci. Biobehav. Rev. 86, 66–76 (2018).

    Article  PubMed  Google Scholar 

  161. Giersch, A. et al. Extended visual simultaneity thresholds in patients with schizophrenia. Schizophr. Bull. 35, 816–825 (2009).

    Article  PubMed  Google Scholar 

  162. Schmidt, H., McFarland, J., Ahmed, M., McDonald, C. & Elliott, M. A. Low-level temporal coding impairments in psychosis: preliminary findings and recommendations for further studies. J. Abnorm. Psychol. 120, 476–482 (2011).

    Article  PubMed  Google Scholar 

  163. Foucher, J. R., Lacambre, M., Pham, B. T., Giersch, A. & Elliott, M. A. Low time resolution in schizophrenia: lengthened windows of simultaneity for visual, auditory and bimodal stimuli. Schizophr. Res. 97, 118–127 (2007).

    Article  PubMed  Google Scholar 

  164. Di Cosmo, G. et al. Body-environment integration: temporal processing of tactile and auditory inputs along the schizophrenia continuum. J. Psychiat. Res. 134, 208–214 (2021).

    Article  PubMed  Google Scholar 

  165. Stevenson, R. A. et al. The associations between multisensory temporal processing and symptoms of schizophrenia. Schizophr. Res. 179, 97–103 (2017).

    Article  PubMed  Google Scholar 

  166. Noel, J. P., Stevenson, R. A. & Wallace, M. T. Atypical audiovisual temporal function in autism and schizophrenia: similar phenotype, different cause. Eur. J. Neurosci. 47, 1230–1241 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Voss, M. et al. Altered awareness of action in schizophrenia: a specific deficit in predicting action consequences. Brain 133, 3104–3112 (2010).

    Article  PubMed  Google Scholar 

  168. Capa, R. L., Duval, C. Z., Blaison, D. & Giersch, A. Patients with schizophrenia selectively impaired in temporal order judgments. Schizophr. Res. 156, 51–55 (2014).

    Article  PubMed  Google Scholar 

  169. de Boer-Schellekens, L., Stekelenburg, J. J., Maes, J. P., Van Gool, A. R. & Vroomen, J. Sound improves diminished visual temporal sensitivity in schizophrenia. Acta Psychol. 147, 136–142 (2014).

    Article  Google Scholar 

  170. Su, L. et al. Temporal perception deficits in schizophrenia: integration is the problem, not deployment of attentions. Sci. Rep. 5, 9745 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Del Cul, A., Dehaene, S. & Leboyer, M. Preserved subliminal processing and impaired conscious access in schizophrenia. Arch. Gen. Psychiat. 63, 1313–1323 (2006).

    PubMed  Google Scholar 

  172. Berkovitch, L., Dehaene, S. & Gaillard, R. Disruption of conscious access in schizophrenia. Trends Cogn. Sci. 21, 878–892 (2017).

    Article  PubMed  Google Scholar 

  173. Giersch, A. et al. Disruption of information processing in schizophrenia: the time perspective. Schizophr. Res. Cogn. 2, 78–83 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Giersch, A. in The Illusions of Time (eds Arstila, V., Bardon, A., Power, S. & Vatakis, A.) 205–223 (Palgrave Macmillan, 2019).

  175. Marques-Carneiro, J. E., Krieg, J., Duval, C. Z., Schwitzer, T. & Giersch, A. Paradoxical sensitivity to sub-threshold asynchronies in schizophrenia: a behavioural and EEG approach. Schizophren. Bull. Open 2, sgab011 (2021).

  176. Foerster, F. R. et al. Volatility of subliminal haptic feedback alters the feeling of control in schizophrenia. J. Abnorm. Psychol. 130, 775–784 (2021).

    Article  PubMed  Google Scholar 

  177. Freedman, B. J. The subjective experience of perceptual and cognitive disturbances in schizophrenia: a review of autobiographical accounts. Arch. Gen. Psychiat. 30, 333–340 (1974).

    Article  PubMed  Google Scholar 

  178. Ciullo, V., Spalletta, G., Caltagirone, C., Jorge, R. E. & Piras, F. Explicit time deficit in schizophrenia: systematic review and meta-analysis indicate it is primary and not domain specific. Schizophren. Bull. 42, 505–518 (2016).

    Article  Google Scholar 

  179. Peterburs, J., Nitsch, A. M., Miltner, W. H. & Straube, T. Impaired representation of time in schizophrenia is linked to positive symptoms and cognitive demand. PLoS ONE 8, e67615 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Davalos, D. B., Kisley, M. A. & Freedman, R. Behavioral and electrophysiological indices of temporal processing dysfunction in schizophrenia. J. Neuropsychiat. Clin. Neurosci. 17, 517–525 (2005).

    Article  Google Scholar 

  181. Davalos, D. B., Rojas, D. C. & Tregellas, J. R. Temporal processing in schizophrenia: effects of task-difficulty on behavioral discrimination and neuronal responses. Schizophren. Res. 127, 123–130 (2011).

    Article  Google Scholar 

  182. Elvevåg, B. et al. Duration judgements in patients with schizophrenia. Psychol. Med. 33, 1249–1261 (2003).

    Article  PubMed  Google Scholar 

  183. Carroll, C. A., O’Donnell, B. F., Shekhar, A. & Hetrick, W. P. Timing dysfunctions in schizophrenia as measured by a repetitive finger tapping task. Brain Cogn. 71, 345–353 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Lee, K. H. et al. Time perception and its neuropsychological correlates in patients with schizophrenia and in healthy volunteers. Psychiat. Res. 166, 174–183 (2009).

    Article  Google Scholar 

  185. Roy, M., Grondin, S. & Roy, M. A. Time perception disorders are related to working memory impairment in schizophrenia. Psychiat. Res. 200, 159–166 (2012).

    Article  Google Scholar 

  186. de Montalembert, M., Coulon, N., Cohen, D., Bonnot, O. & Tordjman, S. Time perception of simultaneous and sequential events in early-onset schizophrenia. Neurocase 22, 392–399 (2016).

    Article  PubMed  Google Scholar 

  187. Ciullo, V. et al. Predictive timing disturbance is a precise marker of schizophrenia. Schizophren. Res. Cogn. 12, 42–49 (2018).

    Article  Google Scholar 

  188. Michie, P. T. et al. Duration and frequency mismatch negativity in schizophrenia. Clin. Neurophysiol. 111, 1054–1065 (2000).

    Article  PubMed  Google Scholar 

  189. Umbricht, D. & Krljes, S. Mismatch negativity in schizophrenia: a meta-analysis. Schizophren. Res. 76, 1–23 (2005).

    Article  Google Scholar 

  190. Erickson, M. A., Ruffle, A. & Gold, J. M. A meta-analysis of mismatch negativity in schizophrenia: from clinical risk to disease specificity and progression. Biol. Psychiat. 79, 980–987 (2016).

    Article  PubMed  Google Scholar 

  191. Suga, M., Nishimura, Y., Kawakubo, Y., Yumoto, M. & Kasai, K. Magnetoencephalographic recording of auditory mismatch negativity in response to duration and frequency deviants in a single session in patients with schizophrenia. Psychiat. Clin. Neurosci. 70, 295–302 (2016).

    Article  Google Scholar 

  192. Näätänen, R. et al. The mismatch negativity (MMN) — a unique window to disturbed central auditory processing in ageing and different clinical conditions. Clin. Neurophysiol. 123, 424–458 (2012).

    Article  PubMed  Google Scholar 

  193. Lieder, F., Stephan, K. E., Daunizeau, J., Garrido, M. I. & Friston, K. J. A neurocomputational model of the mismatch negativity. PLoS Comput. Biol. 9, e1003288 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Wacongne, C. A predictive coding account of MMN reduction in schizophrenia. Biol. Psychol. 116, 68–74 (2016).

    Article  PubMed  Google Scholar 

  195. Adams, R. A., Stephan, K. E., Brown, H. R., Frith, C. D. & Friston, K. J. The computational anatomy of psychosis. Front. Psychiat. 4, 47 (2013).

    Article  Google Scholar 

  196. Friston, K. J. The free energy principle: a unified brain theory? Nat. Rev. Neurosci. 11, 127–138 (2010).

    Article  PubMed  Google Scholar 

  197. Notredame, C. E., Pins, D., Deneve, S. & Jardri, R. What visual illusions teach us about schizophrenia. Front. Integr. Neurosci. 8, 63 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Sterzer, P. et al. The predictive coding account of psychosis. Biol. Psychiat. 84, 634–643 (2018).

    Article  PubMed  Google Scholar 

  199. Martin, B. et al. Fragile temporal prediction in patients with schizophrenia is related to minimal self disorders. Sci. Rep. 7, 8278 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Delevoye-Turrell, Y., Wilquin, H. & Giersch, A. A ticking clock for the production of sequential actions: where does the problem lie in schizophrenia? Schizophren. Res. 135, 51–54 (2012).

    Article  Google Scholar 

  201. Wilquin, H., Delevoye-Turrell, Y., Dione, M. & Giersch, A. Motor synchronization in patients with schizophrenia: preserved time representation with abnormalities in predictive timing. Front. Hum. Neurosci. 12, 193 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Horacek, M., Kärgel, C., Scherbaum, N. & Müller, B. W. The effect of deviance predictability on mismatch negativity in schizophrenia patients. Neurosci. Lett. 617, 76–81 (2016).

    Article  PubMed  Google Scholar 

  203. Hay, R. A. et al. Equivalent mismatch negativity deficits across deviant types in early illness schizophrenia-spectrum patients. Biol. Psychol. 105, 130–137 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Beck, K. et al. Association of ketamine with psychiatric symptoms and implications for its therapeutic use and for understanding schizophrenia: a systematic review and meta-analysis. JAMA Netw. Open 3, e204693 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Vinogradov, S. Has the time come for cognitive remediation in schizophrenia…again? Am. J. Psychiatry 176, 262–264 (2019).

    Article  PubMed  Google Scholar 

  206. Parker, K. et al. Delta-frequency stimulation of cerebellar projections can compensate for schizophrenia-related medial frontal dysfunction. Mol. Psychiat. 22, 647–655 (2017).

    Article  Google Scholar 

  207. Stocco, A. Coordinate-based meta-analysis of fMRI studies with R. R J. 6, 5–15 (2014).

    Article  Google Scholar 

  208. Poncelet, P. E. & Giersch, A. Tracking visual events in time in the absence of time perception: implicit processing at the ms level. PLoS ONE 10, e0127106 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Chassignolle, M., Giersch, A. & Coull, J. T. Evidence for visual temporal order processing below the threshold for conscious perception. Cognition 207, 104528 (2021).

    Article  PubMed  Google Scholar 

  210. Long, J. M. & Kesner, R. P. Phencyclidine impairs temporal order memory for spatial locations in rats. Pharmacol. Biochem. Behav. 52, 645–648 (1995).

    Article  PubMed  Google Scholar 

  211. Marquis, J. P., Goulet, S. & Doré, F. Y. Schizophrenia-like syndrome inducing agent phencyclidine failed to impair memory for temporal order in rats. Neurobiol. Learn. Mem. 80, 158–167 (2003).

    Article  PubMed  Google Scholar 

  212. Lins, B. R., Ballendine, S. A. & Howland, J. G. Altered object exploration but not temporal order memory retrieval in an object recognition test following treatment of rats with the group II metabotropic glutamate receptor agonist LY379268. Neurosci. Lett. 560, 41–45 (2014).

    Article  PubMed  Google Scholar 

  213. Coull, J. T. et al. Ketamine perturbs perception of the flow of time in healthy volunteers. Psychopharmacology 218, 543–556 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Rosburg, T. & Kreitschmann-Andermahr, I. The effects of ketamine on the mismatch negativity (MMN) in humans — a meta-analysis. Clin. Neurophysiol. 127, 1387–1394 (2016).

    Article  PubMed  Google Scholar 

  215. Harms, L., Parras, G. G., Michie, P. T. & Malmierca, M. S. The role of glutamate neurotransmission in mismatch negativity (MMN), a measure of auditory synaptic plasticity and change-detection. Neuroscience 456, 106–113 (2021).

    Article  PubMed  Google Scholar 

  216. Greenwood, L. M. et al. The effects of glycine on auditory mismatch negativity in schizophrenia. Schizophren. Res. 191, 61–69 (2018).

    Article  Google Scholar 

  217. Lavoie, S. et al. Glutathione precursor, N-acetyl-cysteine, improves mismatch negativity in schizophrenia patients. Neuropsychopharmacology 33, 2187–2199 (2008).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are co-funded by the Agence Nationale de la Recherche grant ANR-16-CE37-0004-02. They are grateful to M. Chassignolle for help preparing the images in Fig. 3.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Jennifer T. Coull.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Psychology thanks Deana Davalos, Masamichi Hayashi and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coull, J.T., Giersch, A. The distinction between temporal order and duration processing, and implications for schizophrenia. Nat Rev Psychol 1, 257–271 (2022). https://doi.org/10.1038/s44159-022-00038-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44159-022-00038-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing