Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The sense of agency in perception, behaviour and human–machine interactions

Abstract

The sense of agency refers to the subjective feeling of controlling one’s own actions, and through them, external events. The sense of agency is a byproduct of human movements and also greatly shapes perception and behaviour. Furthermore, research on human–machine interaction has highlighted the importance of the sense of agency in joint control between humans and automated systems. In this Review, we first provide an overview of how the sense of agency influences human perception and how the perceptual effects of the sense of agency are used to measure this subjective feeling. Second, we review how the sense of agency modulates behaviour, including action selection, goal-directed actions, and social cognition. Third, we introduce theoretical and neural accounts of how the sense of agency arises. Finally, we explain how the sense of agency applies to human–machine interactions, an area that is rapidly developing and increasingly linked to daily life.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Measuring the intentional binding effect.
Fig. 2: Measuring sensory attenuation.
Fig. 3: Measuring the influence of control.
Fig. 4: The effect of sense of agency on action as an internal reward.
Fig. 5: Theories of the sense of agency.

Similar content being viewed by others

References

  1. Georgieff, N. & Jeannerod, M. Beyond consciousness of external reality: a “who” system for consciousness of action and self-consciousness. Conscious. Cogn. 7, 465–477 (1998).

    Article  PubMed  Google Scholar 

  2. Jeannerod, M. The 25th Bartlett Lecture. To act or not to act: perspectives on the representation of actions. Q. J. Exp. Psychol. A 52, https://doi.org/10.1080/713755803 (1999).

  3. Salomon, R., Lim, M., Kannape, O., Llobera, J. & Blanke, O. ‘Self pop-out’: agency enhances self-recognition in visual search. Exp. Brain Res. 228, 173–181 (2013).

    Article  PubMed  Google Scholar 

  4. Kumar, N., Manjaly, J. A. & Sunny, M. M. The relationship between action–effect monitoring and attention capture. J. Exp. Psychol. Gen. 144, 18–23 (2015).

    Article  PubMed  Google Scholar 

  5. Wen, W. & Haggard, P. Control changes the way we look at the world. J. Cogn. Neurosci. 30, 603–619 (2018).

    Article  PubMed  Google Scholar 

  6. Gozli, D. G., Aslam, H. & Pratt, J. Visuospatial cueing by self-caused features: orienting of attention and action–outcome associative learning. Psychon. Bull. Rev. 23, 459–467 (2016).

    Article  PubMed  Google Scholar 

  7. Blakemore, S.-J., Wolpert, D. M. & Frith, C. D. Central cancellation of self-produced tickle sensation. Nat. Neurosci. 1, 635–640 (1998).

    Article  PubMed  Google Scholar 

  8. Rovee, C. K. & Rovee, D. T. Conjugate reinforcement of infant exploratory behavior. J. Exp. Child. Psychol. 8, 33–39 (1969).

    Article  PubMed  Google Scholar 

  9. Rochat, P. Self-perception and action in infancy. Exp. Brain Res. 123, 102–109 (1998).

    Article  PubMed  Google Scholar 

  10. Siqueland, E. R. & DeLucia, C. A. Visual reinforcement of nonnutritive sucking in human infants. Science 165, 1144–1146 (1969).

    Article  PubMed  Google Scholar 

  11. Rochat, P. & Striano, T. Perceived self in infancy. Infant. Behav. Dev. 23, 513–530 (2000).

    Article  Google Scholar 

  12. Cioffi, M. C., Cocchini, G., Banissy, M. J. & Moore, J. W. Ageing and agency: age-related changes in susceptibility to illusory experiences of control. R. Soc. Open. Sci. 4, 0–8 (2017).

    Article  Google Scholar 

  13. Metcalfe, J., Eich, T. S. & Castel, A. D. Metacognition of agency across the lifespan. Cognition 116, 267–282 (2010).

    Article  PubMed  Google Scholar 

  14. Nobusako, S. et al. The time window for sense of agency in school-age children is different from that in young adults. Cogn. Dev. 54, 100891 (2020).

    Article  Google Scholar 

  15. Parnas, J. & Handest, P. Phenomenology of anomalous self-experience in early schizophrenia. Compr. Psychiat. 44, 121–134 (2003).

    Article  PubMed  Google Scholar 

  16. Sass, L. A. & Parnas, J. Schizophrenia, consciousness, and the self. Schizophr. Bull. 29, 427–444 (2003).

    Article  PubMed  Google Scholar 

  17. Nelson, B., Yung, A. R., Bechdolf, A. & McGorry, P. D. The phenomenological critique and self-disturbance: implications for ultra-high risk (‘prodrome’) research. Schizophr. Bull. 34, 381–392 (2008).

    Article  PubMed  Google Scholar 

  18. Schultze-Lutter, F. Subjective symptoms of schizophrenia in research and the clinic: the basic symptom concept. Schizophr. Bull. 35, 5–8 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sterzer, P., Voss, M., Schlagenhauf, F. & Heinz, A. Decision-making in schizophrenia: a predictive-coding perspective. Neuroimage 190, 133–143 (2018).

    Article  PubMed  Google Scholar 

  20. Knoblich, G., Stottmeister, F. & Kircher, T. Self-monitoring in patients with schizophrenia. Psychol. Med. 34, 1561–1569 (2004).

    Article  PubMed  Google Scholar 

  21. Asai, T. Self is ‘other’, other is ‘self’: poor self-other discriminability explains schizotypal twisted agency judgment. Psychiat. Res. 246, 593–600 (2016).

    Article  Google Scholar 

  22. Garbarini, F. et al. Abnormal sense of agency in patients with schizophrenia: evidence from bimanual coupling paradigm. Front. Behav. Neurosci. 10, 43 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Green, D. & Swets, J. Signal Detection Theory and Psychophysics (Wiley, 1966).

  24. Haggard, P., Clark, S. & Kalogeras, J. Voluntary action and conscious awareness. Nat. Neurosci. 5, 382–385 (2002).

    Article  PubMed  Google Scholar 

  25. Moore, J. W. & Obhi, S. S. Intentional binding and the sense of agency: a review. Conscious. Cogn. 21, 546–561 (2012).

    Article  PubMed  Google Scholar 

  26. Ricciardi, L. et al. Acting without being in control: exploring volition in Parkinson’s disease with impulsive compulsive behaviours. Park. Relat. Disord. 40, 51–57 (2017).

    Article  Google Scholar 

  27. Moore, J. W. et al. Ketamine administration in healthy volunteers reproduces aberrant agency experiences associated with schizophrenia. Cogn. Neuropsychiat. 16, 364–381 (2011).

    Article  Google Scholar 

  28. Saito, N. et al. Altered awareness of action in Parkinson’s disease: evaluations by explicit and implicit measures. Sci. Rep. 7, 8019 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wolpe, N. et al. The medial frontal–prefrontal network for altered awareness and control of action in corticobasal syndrome. Brain 137, 208–220 (2014).

    Article  PubMed  Google Scholar 

  30. Saito, N., Takahata, K., Murai, T. & Takahashi, H. Discrepancy between explicit judgement of agency and implicit feeling of agency: implications for sense of agency and its disorders. Conscious. Cogn. 37, https://doi.org/10.1016/j.concog.2015.07.011 (2015).

  31. Majchrowicz, B. & Wierzchoń, M. Unexpected action outcomes produce enhanced temporal binding but diminished judgement of agency. Conscious. Cogn. 65, 310–324 (2018).

    Article  PubMed  Google Scholar 

  32. Ebert, J. P. & Wegner, D. M. Time warp: authorship shapes the perceived timing of actions and events. Conscious. Cogn. 19, 481–489 (2010).

    Article  PubMed  Google Scholar 

  33. Wen, W., Yamashita, A. & Asama, H. The influence of action-outcome delay and arousal on sense of agency and the intentional binding effect. Conscious. Cogn. 36, 87–95 (2015).

    Article  PubMed  Google Scholar 

  34. Buehner, M. J. Understanding the past, predicting the future: causation, not intentional action, is the root of temporal binding. Psychol. Sci. 23, 1490–1497 (2012).

    Article  PubMed  Google Scholar 

  35. Kirsch, W., Kunde, W. & Herbort, O. Intentional binding is unrelated to action intention. J. Exp. Psychol. Hum. Percept. Perform. 45, 378–385 (2019).

    Article  PubMed  Google Scholar 

  36. Wohlschläger, A., Haggard, P., Gesierich, B. & Prinz, W. The perceived onset time of self- and other-generated actions. Psychol. Sci. 14, 586–591 (2003).

    Article  PubMed  Google Scholar 

  37. Suzuki, K., Lush, P., Seth, A. K. & Roseboom, W. Intentional binding without intentional action. Psychol. Sci. 30, 842–853 (2019).

    Article  PubMed  Google Scholar 

  38. Jo, H.-G., Wittmann, M., Hinterberger, T. & Schmidt, S. The readiness potential reflects intentional binding. Front. Hum. Neurosci. 8, 421 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Goldberg, M., Busch, N. & van der Meer, E. The amount of recent action-outcome coupling modulates the mechanisms of the intentional binding effect: a behavioral and ERP study. Conscious. Cogn. 56, 135–149 (2017).

    Article  PubMed  Google Scholar 

  40. Buehner, M. J. & Humphreys, G. R. Causal binding of actions to their effects. Psychol. Sci. 20, 1221–1228 (2009).

    Article  PubMed  Google Scholar 

  41. Cravo, A. M., Claessens, P. M. E. & Baldo, M. V. C. Voluntary action and causality in temporal binding. Exp. Brain Res. 199, 95–99 (2009).

    Article  PubMed  Google Scholar 

  42. Haggard, P. & Cole, J. Intention, attention and the temporal experience of action. Conscious. Cogn. 16, 211–220 (2007).

    Article  PubMed  Google Scholar 

  43. Block, R. A. & Zakay, D. Prospective and retrospective duration judgments: a meta-analytic review. Psychon. Bull. Rev. 4, 184–197 (1997).

    Article  PubMed  Google Scholar 

  44. New, J. J. & Scholl, B. J. Subjective time dilation: spatially local, object-based, or a global visual experience? J. Vis. 9, https://doi.org/10.1167/9.2.4 (2009).

  45. Haggard, P. Sense of agency in the human brain. Nat. Rev. Neurosci. 18, 197–208 (2017).

    Article  Google Scholar 

  46. Claxton, G. Why can’t we tickle ourselves? Percept. Mot. Skills 41, 335–338 (1975).

    Article  PubMed  Google Scholar 

  47. Blakemore, S.-J., Frith, C. D. & Wolpert, D. M. Spatio-temporal prediction modulates the perception of self-produced stimuli. J. Cogn. Neurosci. 11, 551–559 (1999).

    Article  PubMed  Google Scholar 

  48. Wen, W. Does delay in feedback diminish sense of agency? A review. Conscious. Cogn. 73, 102759 (2019).

    Article  PubMed  Google Scholar 

  49. Bays, P. M. & Wolpert, D. M. Computational principles of sensorimotor control that minimize uncertainty and variability. J. Physiol. 578, 387–396 (2007).

    Article  PubMed  Google Scholar 

  50. Lindner, A., Thier, P., Kircher, T. T. J., Haarmeier, T. & Leube, D. T. Disorders of agency in schizophrenia correlate with an inability to compensate for the sensory consequences of actions. Curr. Biol. 15, 1119–1124 (2005).

    Article  PubMed  Google Scholar 

  51. Roussel, C., Hughes, G. & Waszak, F. A preactivation account of sensory attenuation. Neuropsychologia 51, 922–929 (2013).

    Article  PubMed  Google Scholar 

  52. Wen, W., Brann, E., Di Costa, S. & Haggard, P. Enhanced perceptual processing of self-generated motion: evidence from steady-state visual evoked potentials. Neuroimage 175, 438–448 (2018).

    Article  PubMed  Google Scholar 

  53. Dewey, J. A. & Knoblich, G. Do implicit and explicit measures of the sense of agency measure the same thing? PLoS ONE 9, e110118 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wolpe, N. & Rowe, J. B. Beyond the ‘urge to move’: objective measures for the study of agency in the post-Libet era. Front. Hum. Neurosci. 8, 450 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Brown, H., Adams, R. A., Parees, I., Edwards, M. & Friston, K. Active inference, sensory attenuation and illusions. Cogn. Process. 14, 411–427 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Pareés, I. et al. Loss of sensory attenuation in patients with functional (psychogenic) movement disorders. Brain 137, 2916–2921 (2014).

    Article  PubMed  Google Scholar 

  57. Palmer, C. E., Davare, M. & Kilner, J. M. Physiological and perceptual sensory attenuation have different underlying neurophysiological correlates. J. Neurosci. 36, 10803–10812 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bays, P. M., Flanagan, J. R. & Wolpert, D. M. Attenuation of self-generated tactile sensations is predictive, not postdictive. PLoS Biol. 4, 281–284 (2006).

    Article  Google Scholar 

  59. Schwarz, K. A., Pfister, R., Kluge, M., Weller, L. & Kunde, W. Do we see it or not? Sensory attenuation in the visual domain. J. Exp. Psychol. Gen. 147, 418–430 (2018).

    Article  PubMed  Google Scholar 

  60. Cardoso-Leite, P., Mamassian, P., Schütz-Bosbach, S. & Waszak, F. A new look at sensory attenuation: action–effect anticipation affects sensitivity, not response bias. Psychol. Sci. 21, 1740–1745 (2010).

    Article  PubMed  Google Scholar 

  61. Desantis, A., Roussel, C. & Waszak, F. The temporal dynamics of the perceptual consequences of action–effect prediction. Cognition 132, 243–250 (2014).

    Article  PubMed  Google Scholar 

  62. Hughes, G. & Waszak, F. ERP correlates of action effect prediction and visual sensory attenuation in voluntary action. Neuroimage 56, 1632–1640 (2011).

    Article  PubMed  Google Scholar 

  63. Weiss, C., Herwig, A. & Schütz-Bosbach, S. The self in social interactions: sensory attenuation of auditory action effects is stronger in interactions with others. PLoS ONE 6, 16–18 (2011).

    Google Scholar 

  64. Horváth, J. Action-related auditory ERP attenuation: paradigms and hypotheses. Brain Res. 1626, 54–65 (2015).

    Article  PubMed  Google Scholar 

  65. Weiss, C., Herwig, A. & Schütz-Bosbach, S. The self in action effects: selective attenuation of self-generated sounds. Cognition 121, 207–218 (2011).

    Article  PubMed  Google Scholar 

  66. Neszmélyi, B. & Horváth, J. Action-related auditory ERP attenuation is not modulated by action effect relevance. Biol. Psychol. 161, 108029 (2021).

    Article  PubMed  Google Scholar 

  67. Brockhaus-dumke, A. et al. Impaired mismatch negativity generation in prodromal subjects and patients with schizophrenia. Schizophr. Res. 73, 297–310 (2005).

    Article  PubMed  Google Scholar 

  68. Zhao, J., Al-Aidroos, N. & Turk-Browne, N. B. Attention is spontaneously biased toward regularities. Psychol. Sci. 24, 667–677 (2013).

    Article  PubMed  Google Scholar 

  69. Wen, W. et al. The active sensing of control difference. iScience 23, 101112 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wen, W. et al. Categorical perception of control. eNeuro 7, ENEURO.0258-20.2020 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Morgan, S. T., Hansen, J. C. & Hillyard, S. Selective attention to stimulus location modulates the steady-state visual evoked potential. Proc. Natl Acad. Sci. USA 93, 4770–4774 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Wen, W. & Haggard, P. Prediction error and regularity detection underlie two dissociable mechanisms for computing the sense of agency. Cognition 195, 104074 (2020).

    Article  PubMed  Google Scholar 

  73. Wang, S., Rajananda, S., Lau, H. & Knotts, J. D. New measures of agency from an adaptive sensorimotor task. PLoS ONE 15, e0244113 (2021).

    Article  Google Scholar 

  74. Gentsch, A. & Schütz-Bosbach, S. I did it: unconscious expectation of sensory consequences modulates the experience of self-agency and its functional signature. J. Cogn. Neurosci. 23, 3817–3828 (2011).

    Article  PubMed  Google Scholar 

  75. Bednark, J. G., Poonian, S. K., Palghat, K., McFadyen, J. & Cunnington, R. Identity-specific predictions and implicit measures of agency. Psychol. Conscious. Theory Res. Pract. 2, 253–268 (2015).

    Google Scholar 

  76. Timm, J., SanMiguel, I., Keil, J., Schröger, E. & Schönwiesner, M. Motor intention determines senseory attenuation of brain responses to self-initiated sounds. J. Cogn. Neurosci. 26, 1481–1489 (2014).

    Article  PubMed  Google Scholar 

  77. Kühn, S. et al. Whodunnit? Electrophysiological correlates of agency judgements. PLoS ONE 6, e28657 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Gentsch, A., Kathmann, N. & Schütz-Bosbach, S. Reliability of sensory predictions determines the experience of self-agency. Behav. Brain Res. 228, 415–422 (2012).

    Article  PubMed  Google Scholar 

  79. Toida, K., Ueno, K. & Shimada, S. Neural basis of the time window for subjective motor–auditory integration. Front. Hum. Neurosci. 9, 688 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Thelen, E., ScottKelso, J. A. & Fogel, A. Self-organizing systems and infant motor development. Dev. Rev. 7, 39–65 (1987).

    Article  Google Scholar 

  81. Rochat, P. & Striano, T. Emerging self-exploration by 2-month-old infants. Dev. Sci. 2, 206–218 (1999).

    Article  Google Scholar 

  82. Wang, Q. et al. Infants in control: rapid anticipation of action outcomes in a gaze-contingent paradigm. PLoS ONE 7, 1–6 (2012).

    Google Scholar 

  83. Miyazaki, M., Takahashi, H., Rolf, M., Okada, H. & Omori, T. The image-scratch paradigm: a new paradigm for evaluating infants’ motivated gaze control. Sci. Rep. 4, 1–6 (2014).

    Google Scholar 

  84. Zaadnoordijk, L., Otworowska, M., Kwisthout, J. & Hunnius, S. Can infants’ sense of agency be found in their behavior? Insights from babybot simulations of the mobile-paradigm. Cognition 181, 58–64 (2018).

    Article  PubMed  Google Scholar 

  85. Karsh, N. & Eitam, B. I control therefore I do: judgments of agency influence action selection. Cognition 138, 122–131 (2015).

    Article  PubMed  Google Scholar 

  86. Karsh, N., Eitam, B., Mark, I. & Higgins, E. T. Bootstrapping agency: how control-relevant information affects motivation. J. Exp. Psychol. Gen. 145, 1333–1350 (2016).

    Article  PubMed  Google Scholar 

  87. Tanaka, T., Watanabe, K. & Tanaka, K. Immediate action effects motivate actions based on the stimulus–response relationship. Exp. Brain Res. 239, 67–78 (2021).

    Article  PubMed  Google Scholar 

  88. Hemed, E., Bakbani-Elkayam, S., Teodorescu, A. R., Yona, L. & Eitam, B. Evaluation of an action’s effectiveness by the motor system in a dynamic environment. J. Exp. Psychol. Gen. 149, 935–948 (2020).

    Article  PubMed  Google Scholar 

  89. Karsh, N. et al. The differential impact of a response’s effectiveness and its monetary value on response-selection. Sci. Rep. 10, 3405 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Penton, T., Wang, X., Pierre, M., Catmur, C. & Bird, G. The influence of action–outcome contingency on motivation from control. Exp. Brain Res. 236, 3239–3249 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Di Costa, S., Théro, H., Chambon, V. & Haggard, P. Try and try again: post-error boost of an implicit measure of agency. Q. J. Exp. Psychol. 71, 1584–1595 (2018).

    Article  Google Scholar 

  92. Wen, W. et al. Perception and control: individual difference in the sense of agency is associated with learnability in sensorimotor adaptation. Sci. Rep. 11, 20542 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Cohen, J. D., McClure, S. M. & Yu, A. J. Should I stay or should I go? How the human brain manages the trade-off between exploitation and exploration. Phil. Trans. R. Soc. B 362, 933–942 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Pekny, S. E., Izawa, J. & Shadmehr, R. Reward-dependent modulation of movement variability. J. Neurosci. 35, 4015–4024 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Dezza, I. C., Yu, A. J., Cleeremans, A. & Alexander, W. Learning the value of information and reward over time when solving exploration-exploitation problems. Sci. Rep. 7, 16919 (2017).

    Article  Google Scholar 

  96. Laureiro-Martínez, D., Brusoni, S., Canessa, N. & Zollo, M. Understanding the exploration-exploitation dilemma: an fMRI study of attention control and decision-making performance. Strateg. Manag. J. 36, 319–338 (2015).

    Article  Google Scholar 

  97. Mcclure, S. M., Gilzenrat, M. S. & Cohen, J. D. An exploration-exploitation model based on norepinephrine and dopamine activity. Adv. Neural Inf. Process. Syst. 18, 867–874 (2005).

    Google Scholar 

  98. Wen, W., Yamashita, A. & Asama, H. Measurement of the perception of control during continuous movement using electroencephalography. Front. Hum. Neurosci. 11, 392 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Vernon, R. Unintended consequences. Polit. Theory 7, 57–73 (1979).

    Article  Google Scholar 

  100. Caspar, E. A., Christensen, J. F., Cleeremans, A. & Haggard, P. Coercion changes the sense of agency in the human brain. Curr. Biol. 26, 585–592 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Milgram, S. Behavioral study of obedience. J. Abnorm. Soc. Psychol. 67, 371–378 (1963).

    Article  Google Scholar 

  102. Griggs, R. A. Milgram’s obedience study: a contentious classic reinterpreted. Teach. Psychol. 44, 32–37 (2017).

    Article  Google Scholar 

  103. Caspar, E. A., Ioumpa, K., Keysers, C. & Gazzola, V. Obeying orders reduces vicarious brain activation towards victims’ pain. Neuroimage 222, 117251 (2020).

    Article  PubMed  Google Scholar 

  104. Caspar, E. A., Cleeremans, A. & Haggard, P. Only giving orders? An experimental study of the sense of agency when giving or receiving commands. PLoS ONE 13, e0204027 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Beyer, F., Sidarus, N., Bonicalzi, S. & Haggard, P. Beyond self-serving bias: diffusion of responsibility reduces sense of agency and outcome monitoring. Soc. Cogn. Affect. Neurosci. 12, 138–145 (2017).

    Article  PubMed  Google Scholar 

  106. Sidarus, N., Travers, E., Haggard, P. & Beyer, F. How social contexts affect cognition: mentalizing interferes with sense of agency during voluntary action. J. Exp. Soc. Psychol. 89, 103994 (2020).

    Article  Google Scholar 

  107. Maselli, A. & Slater, M. The building blocks of the full body ownership illusion. Front. Hum. Neurosci. 7, 83 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Wen, W. et al. Goal-directed movement enhances body representation updating. Front. Hum. Neurosci. 10, 1–10 (2016).

    Google Scholar 

  109. Tsakiris, M., Prabhu, G. & Haggard, P. Having a body versus moving your body: how agency structures body-ownership. Conscious. Cogn. 15, 423–432 (2006).

    Article  PubMed  Google Scholar 

  110. Kalckert, A. & Ehrsson, H. H. Moving a rubber hand that feels like your own: a dissociation of ownership and agency. Front. Hum. Neurosci. 6, 40 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Asai, T. Agency elicits body-ownership: proprioceptive drift toward a synchronously acting external proxy. Exp. Brain Res. 234, 1163–1174 (2016).

    Article  PubMed  Google Scholar 

  112. Maister, L., Slater, M., Sanchez-Vives, M. V. & Tsakiris, M. Changing bodies changes minds: owning another body affects social cognition. Trends Cogn. Sci. 19, 6–12 (2015).

    Article  PubMed  Google Scholar 

  113. Peck, T. C., Seinfeld, S., Aglioti, S. M. & Slater, M. Putting yourself in the skin of a black avatar reduces implicit racial bias. Conscious. Cogn. 22, 779–787 (2013).

    Article  PubMed  Google Scholar 

  114. Kilteni, K., Bergstrom, I. & Slater, M. Drumming in immersive virtual reality: the body shapes the way we play. IEEE Trans. Vis. Comput. Graph. 19, 597–605 (2013).

    Article  PubMed  Google Scholar 

  115. Banakou, D., Groten, R. & Slater, M. Illusory ownership of a virtual child body causes overestimation of object sizes and implicit attitude changes. Proc. Natl Acad. Sci. USA 110, 12846–12851 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Frith, C. D., Blakemore, S.-J. & Wolpert, D. M. Abnormalities in the awareness and control of action. Phil. Trans. R. Soc. Lond. B 355, 1771–1788 (2000).

    Article  Google Scholar 

  117. Blakemore, S.-J., Wolpert, D. M. & Frith, C. D. Abnormalities in the awareness of action. Trends Cogn. Sci. 6, 237–242 (2002).

    Article  PubMed  Google Scholar 

  118. Sato, A. & Yasuda, A. Illusion of sense of self-agency: discrepancy between the predicted and actual sensory consequences of actions modulates the sense of self-agency, but not the sense of self-ownership. Cognition 94, 241–255 (2005).

    Article  PubMed  Google Scholar 

  119. Carruthers, G. The case for the comparator model as an explanation of the sense of agency and its breakdowns. Conscious. Cogn. 21, 30–45 (2012).

    Article  PubMed  Google Scholar 

  120. Elsner, B. & Hommel, B. Effect anticipation and action control. J. Exp. Psychol. Hum. Percept. Perform. 27, 229–240 (2001).

    Article  PubMed  Google Scholar 

  121. Wegner, D. M., Sparrow, B. & Winerman, L. Vicarious agency: experiencing control over the movements of others. J. Pers. Soc. Psychol. 86, 838–848 (2004).

    Article  PubMed  Google Scholar 

  122. Wegner, D. M. The mind’s best trick: how we experience conscious will. Trends Cogn. Sci. 7, 65–69 (2003).

    Article  PubMed  Google Scholar 

  123. Wen, W., Yamashita, A. & Asama, H. The sense of agency during continuous action: performance is more important than action–feedback association. PLoS ONE 10, e0125226 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Inoue, K., Takeda, Y. & Kimura, M. Sense of agency in continuous action: assistance-induced performance improvement is self-attributed even with knowledge of assistance. Conscious. Cogn. 48, 246–252 (2017).

    Article  PubMed  Google Scholar 

  125. Aoyagi, K. et al. Modified sensory feedback enhances the sense of agency during continuous body movements in virtual reality. Sci. Rep. 11, 2553 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Metcalfe, J. & Greene, M. J. Metacognition of agency. J. Exp. Psychol. Gen. 136, 184–199 (2007).

    Article  PubMed  Google Scholar 

  127. Metcalfe, J., Eich, T. S. & Miele, D. B. Metacognition of agency: proximal action and distal outcome. Exp. Brain Res. 229, 485–496 (2013).

    Article  PubMed  Google Scholar 

  128. Howard, E. E., Edwards, S. G. & Bayliss, A. P. Physical and mental effort disrupts the implicit sense of agency. Cognition 157, 114–125 (2016).

    Article  PubMed  Google Scholar 

  129. Demanet, J., Muhle-Karbe, P. S., Lynn, M. T., Blotenberg, I. & Brass, M. Power to the will: how exerting physical effort boosts the sense of agency. Cognition 129, 574–578 (2013).

    Article  PubMed  Google Scholar 

  130. Moore, J. W. & Fletcher, P. C. Sense of agency in health and disease: a review of cue integration approaches. Conscious. Cogn. 21, 59–68 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Synofzik, M., Vosgerau, G. & Lindner, A. Me or not me — an optimal integration of agency cues? Conscious. Cogn. 18, 1065–1068 (2009).

    Article  PubMed  Google Scholar 

  132. Ernst, M. O. & Banks, M. S. Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415, 429–433 (2002).

    Article  PubMed  Google Scholar 

  133. Parvin, D. E., McDougle, S. D., Taylor, J. A. & Ivry, R. B. Credit assignment in a motor decision making task is influenced by agency and not sensorimotor prediction errors. J. Neurosci. 38, 3601–3617 (2018).

    Article  Google Scholar 

  134. David, N. New frontiers in the neuroscience of the sense of agency. Front. Hum. Neurosci. 6, 161 (2012).

    PubMed  PubMed Central  Google Scholar 

  135. Farrer, C. & Frith, C. D. C. D. Experiencing oneself vs another person as being the cause of an action: the neural correlates of the experience of agency. Neuroimage 15, 596–603 (2002).

    Article  PubMed  Google Scholar 

  136. Sperduti, M., Delaveau, P., Fossati, P. & Nadel, J. Different brain structures related to self- and external-agency attribution: a brief review and meta-analysis. Brain Struct. Funct. 216, 151–157 (2011).

    Article  PubMed  Google Scholar 

  137. Seghezzi, S., Zirone, E., Paulesu, E. & Zapparoli, L. The brain in (willed) action: a meta-analytical comparison of imaging studies on motor intentionality and sense of agency. Front. Psychol. 10, 804 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Zito, G. A., Wiest, R. & Aybek, S. Neural correlates of sense of agency in motor control: a neuroimaging meta-analysis. PLoS ONE 15, e0234321 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Farrer, C. et al. Modulating the experience of agency: a positron emission tomography study. Neuroimage 18, 324–333 (2003).

    Article  PubMed  Google Scholar 

  140. Farrer, C. et al. The angular gyrus computes action awareness representations. Cereb. Cortex 18, 254–261 (2008).

    Article  PubMed  Google Scholar 

  141. Kühn, S., Brass, M. & Haggard, P. Feeling in control: Neural correlates of experience of agency. Cortex 49, 1935–1942 (2013).

    Article  PubMed  Google Scholar 

  142. Tsakiris, M., Longo, M. R. & Haggard, P. Having a body versus moving your body: neural signatures of agency and body-ownership. Neuropsychologia 48, 2740–2749 (2010).

    Article  PubMed  Google Scholar 

  143. Spengler, S., von Cramon, D. Y. & Brass, M. Was it me or was it you? How the sense of agency originates from ideomotor learning revealed by fMRI. Neuroimage 46, 290–298 (2009).

    Article  PubMed  Google Scholar 

  144. Ohata, R. et al. Sense of agency beyond sensorimotor process: decoding self–other action attribution in the human brain. Cereb. Cortex 30, 4076–4091 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Fukushima, H., Goto, Y., Maeda, T., Kato, M. & Umeda, S. Neural substrates for judgment of self-agency in ambiguous situations. PLoS One 8, e72267 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Cavanna, A. E. & Trimble, M. R. The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129, 564–583 (2006).

    Article  PubMed  Google Scholar 

  147. Farrer, C. et al. Neural correlates of action attribution in schizophrenia. Psychiat. Res. Neuroimaging 131, 31–44 (2004).

    Article  Google Scholar 

  148. Khalighinejad, N. & Haggard, P. Modulating human sense of agency with non-invasive brain stimulation. Cortex 69, 93–103 (2015).

    Article  PubMed  Google Scholar 

  149. Blakemore, S. J., Wolpert, D. M. & Frith, C. D. The cerebellum is involved in predicting the sensory consequences of action. Neuroreport 12, 1879–1884 (2001).

    Article  PubMed  Google Scholar 

  150. Schultz, W. Dopamine reward prediction-error signalling: a two-component response. Nat. Rev. Neurosci. 17, 183–195 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Wolpert, D. M., Miall, R. C. & Kawato, M. Internal models in the cerebellum. Trends Cogn. Sci. 2, 338–347 (1998).

    Article  PubMed  Google Scholar 

  152. Shadmehr, R., Smith, M. A. & Krakauer, J. W. Error correction, sensory prediction, and adaptation in motor control. Annu. Rev. Neurosci. 33, 89–108 (2010).

    Article  PubMed  Google Scholar 

  153. Imamizu, H. et al. Human cerebellar activity reflecting an acquired internal model of a new tool. Nature 403, 192–195 (2000).

    Article  PubMed  Google Scholar 

  154. Stein, J. Cerebellar forward models to control movement. J. Physiol. 587, 299–299 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Blakemore, S.-J., Wolpert, D. M. & Frith, C. D. The cerebellum contributes to somatosensory cortical activity during self-produced tactile stimulation. Neuroimage 10, 448–459 (1999).

    Article  PubMed  Google Scholar 

  156. Kilteni, K. & Ehrsson, H. H. Functional connectivity between the cerebellum and somatosensory areas implements the attenuation of self-generated touch. J. Neurosci. 40, 894–906 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Koreki, A. et al. Dysconnectivity of the agency network in schizophrenia: a functional magnetic resonance imaging study. Front. Psychiat. 10, 171 (2019).

    Article  Google Scholar 

  158. Moore, J. W. et al. Dopaminergic medication boosts action–effect binding in Parkinson’s disease. Neuropsychologia 48, 1125–1132 (2010).

    Article  PubMed  Google Scholar 

  159. Wen, W., Kuroki, Y. & Asama, H. The sense of agency in driving automation. Front. Psychol. 10, 02691 (2019).

    Article  Google Scholar 

  160. Garcia, P. et al. Trauma pod: a semi-automated telerobotic surgical system. Int. J. Med. Robot. Comput. Assist. Surg. 5, 136–146 (2009).

    Article  Google Scholar 

  161. Dagnino, G., Georgilas, I., Tarassoli, P., Atkins, R. & Dogramadzi, S. Vision-based real-time position control of a semi-automated system for robot-assisted joint fracture surgery. Int. J. Comput. Assist. Radiol. Surg. 11, 437–455 (2016).

    Article  PubMed  Google Scholar 

  162. Limerick, H., Coyle, D. & Moore, J. W. The experience of agency in human–computer interactions: a review. Front. Hum. Neurosci. 8, 643 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  163. van der Wel, R. P. R. D. Me and we: metacognition and performance evaluation of joint actions. Cognition 140, 49–59 (2015).

    Article  PubMed  Google Scholar 

  164. Dewey, J. A., Pacherie, E. & Knoblich, G. The phenomenology of controlling a moving object with another person. Cognition 132, 383–397 (2014).

    Article  PubMed  Google Scholar 

  165. van der Wel, R. P. R. D., Sebanz, N. & Knoblich, G. The sense of agency during skill learning in individuals and dyads. Conscious. Cogn. 21, 1267–1279 (2012).

    Article  PubMed  Google Scholar 

  166. Yun, S. et al. Investigating the relationship between assisted driver’s SoA and EEG. In Proc. 5th Int. Conf. on NeuroRehabilitation (ICNR2018) Vol. 21 (Springer, 2018).

  167. Tanimoto, T., Shinohara, K. & Yoshinada, H. Research on effective teleoperation of construction machinery fusing manual and automatic operation. Robomech J. 4, 14 (2017).

    Article  Google Scholar 

  168. Victor, T. W. et al. Automation expectation mismatch: Incorrect prediction despite eyes on threat and hands on wheel. Hum. Factors 60, 1095–1116 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Tuomela, R. Joint intention, we-mode and I-mode. Midwest. Stud. Phil. 30, 35–58 (2006).

    Article  Google Scholar 

  170. Zander, T. O. & Kothe, C. Towards passive brain–computer interfaces: applying brain–computer interface technology to human–machine systems in general. J. Neural Eng. 8, 025005 (2011).

    Article  PubMed  Google Scholar 

  171. Bi, L., Feleke, A. & Guan, C. A review on EMG-based motor intention prediction of continuous human upper limb motion for human–robot collaboration. Biomed. Signal. Process. Control. 51, 113–127 (2019).

    Article  Google Scholar 

  172. Çığ Karaman, Ç. & Sezgin, T. M. Gaze-based predictive user interfaces: visualizing user intentions in the presence of uncertainty. Int. J. Hum. Comput. Stud. 111, 78–91 (2018).

    Article  Google Scholar 

  173. Shishkin, S. L. et al. EEG negativity in fixations used for gaze-based control: toward converting intentions into actions with an eye–brain–computer interface. Front. Neurosci. 10, 528 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Wen, W., Yun, S., Yamashita, A., Northcutt, B. D. & Asama, H. Deceleration assistance mitigated the trade-off between sense of agency and driving performance. Front. Psychol. 12, 643516 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Takagi, A., Ganesh, G., Yoshioka, T., Kawato, M. & Burdet, E. Physically interacting individuals estimate the partner’s goal to enhance their movements. Nat. Hum. Behav. 1, 0054 (2017).

    Article  Google Scholar 

  176. Li, R. et al. Indirect shared control for cooperative driving between driver and automation in steer-by-wire vehicles. IEEE Trans. Intell. Transp. Syst. 22, 7826–7836 (2020).

    Article  Google Scholar 

  177. Logan, G. D. & Crump, M. J. C. Cognitive illusions of authorship reveal hierarchical error detection in skilled typists. Science 330, 683–686 (2010).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Japan Society for the Promotion of Science (KAKENHI grants 19H05725, 19H05729 and 21H03780). H.I. was partially supported by the Japan Agency for Medical Research and Development (grant JP18dm0307008).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Wen Wen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Psychology thanks Baruch Eitam, Kanji Tanaka, and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Readiness potential

A slow negative electroencephalography (EEG) potential preceding the onset of voluntary movement, associated with movement preparation and decision-making.

Pre-activated

Neurons responsible for processing predicted sensory feedback are activated prior to the input of the actual sensory feedback, resulting in a smaller change in the activation of these neurons after the sensory feedback.

Steady-state visual evoked potential

(SSVEP). A measure of brain activity synchronized to a visual stimulus presented at a certain frequency, with an amplitude that is greatly influenced by attention.

N1

Also known as the N100. A negative-going electrophysiological potential that peaks around 80–120 ms after the onset of an event. The peak’s amplitude depends on the salience of the event.

P3

Also known as the P300. A positive-going electrophysiological potential that peaks roughly 250–500 ms after the onset of an event. The peak reflects categorization and evaluation.

Mismatch negativity

A negative electrophysiological component that peaks around 100–250 ms after the onset of a rare stimulus in a sequence of repetitive stimuli, independently of attention.

Efference copy

The internal duplicates of a motor command in the brain, used to predict the sensory feedback of the motor command.

Proprioception

The internally generated sense of self-movement and body position.

Cerebellar forward models

Motor control models, acquired in the cerebellum, that transform a set of efference copies of motor commands into predicted sensory feedback.

Electromyogram

Recording of electrical activity produced by skeletal muscles from the skin surface above the muscle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, W., Imamizu, H. The sense of agency in perception, behaviour and human–machine interactions. Nat Rev Psychol 1, 211–222 (2022). https://doi.org/10.1038/s44159-022-00030-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44159-022-00030-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing