Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

How the conception of control influences our understanding of actions

Abstract

Wilful movement requires neural control. Commonly, neural computations are thought to generate motor commands that bring the musculoskeletal system — that is, the plant — from its current physical state into a desired physical state. The current state can be estimated from past motor commands and from sensory information. Modelling movement on the basis of this concept of plant control strives to explain behaviour by identifying the computational principles for control signals that can reproduce the observed features of movements. From an alternative perspective, movements emerge in a dynamically coupled agent–environment system from the pursuit of subjective perceptual goals. Modelling movement on the basis of this concept of perceptual control aims to identify the controlled percepts and their coupling rules that can give rise to the observed characteristics of behaviour. In this Perspective, we discuss a broad spectrum of approaches to modelling human motor control and their notions of control signals, internal models, handling of sensory feedback delays and learning. We focus on the influence that the plant control and the perceptual control perspective may have on decisions when modelling empirical data, which may in turn shape our understanding of actions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: State feedback control (SFC) as an example of plant control using an internal forward model.
Fig. 2: Perceptual control scheme.
Fig. 3: Spinal cord circuitry that translates cortical predictions into skeletal muscle contractions.
Fig. 4: Plant control model of speech production with lateralized processing of spectral and temporal speech features.
Fig. 5: Perceptual control scheme of speech production with lateralized processing of spectral and temporal auditory features.

Similar content being viewed by others

References

  1. Uno, Y., Kawato, M. & Suzuki, R. Formation and control of optimal trajectory in human multijoint arm movement. Minimum torque-change model. Biol. Cybern. 61, 89–101 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Wolpert, D. M. Computational approaches to motor control. Trends Cogn. Sci. 1, 209–216 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Todorov, E. & Jordan, M. I. Optimal feedback control as a theory of motor coordination. Nat. Neurosci. 5, 1226–1235 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Parrell, B., Lammert, A. C., Ciccarelli, G. & Quatieri, T. F. Current models of speech motor control: a control-theoretic overview of architectures and properties. J. Acoust. Soc. Am. 145, 1456–1481 (2019).

    Article  PubMed  Google Scholar 

  5. Bian, T., Wolpert, D. M. & Jiang, Z.-P. Model-free robust optimal feedback mechanisms of biological motor control. Neural Comput. 32, 562–595 (2020).

    Article  PubMed  Google Scholar 

  6. Powers, W. T. Behavior: The Control of Perception (Aldine de Gruyter, 1973).

  7. Friston, K. J., Daunizeau, J., Kilner, J. & Kiebel, S. J. Action and behavior: a free-energy formulation. Biol. Cybern. 102, 227–260 (2010).

    Article  PubMed  Google Scholar 

  8. Friston, K. What is optimal about motor control? Neuron 72, 488–498 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Lefebvre, T. On optimal control and expectation-maximisation: theory and an outlook towards algorithms. Preprint at arXiv https://doi.org/10.48550/arXiv.2205.03279 (2022).

    Article  Google Scholar 

  10. Jordan, M. I. in Handbook of Perception and Action (eds Prinz, W. & Bridgeman, B.) Vol. 2, 71–120 (Elsevier, 1996).

  11. Todorov, E. Optimality principles in sensorimotor control. Nat. Neurosci. 7, 907–915 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Körding, K. P. & Wolpert, D. M. The loss function of sensorimotor learning. Proc. Natl Acad. Sci. USA 101, 9839–9842 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Franklin, D. W. & Wolpert, D. M. Computational mechanisms of sensorimotor control. Neuron 72, 425–442 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Hogan, N. An organizing principle for a class of voluntary movements. J. Neurosci. 4, 2745 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. d’Avella, A., Portone, A., Fernandez, L. & Lacquaniti, F. Control of fast-reaching movements by muscle synergy combinations. J. Neurosci. 26, 7791–7810 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Desmurget, M. & Grafton, S. Forward modeling allows feedback control for fast reaching movements. Trends Cogn. Sci. 4, 423–431 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Parrell, B. & Houde, J. Modeling the role of sensory feedback in speech motor control and learning. J. Speech Lang. Hear. Res. 62, 2963–2985 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Todorov, E., Li, W. & Pan, X. From task parameters to motor synergies: a hierarchical framework for approximately-optimal control of redundant manipulators. J. Robot. Syst. 22, 691–710 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wolpert, D. M. & Kawato, M. Multiple paired forward and inverse models for motor control. Neural Netw. 11, 1317–1329 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Tourville, J. A. & Guenther, F. H. The DIVA model: a neural theory of speech acquisition and production. Lang. Cogn. Process. 26, 952–981 (2011).

    Article  PubMed  Google Scholar 

  21. Haaland, K. Y. & Harrington, D. L. Hemispheric control of the initial and corrective components of aiming movements. Neuropsychologia 27, 961–969 (1989).

    Article  CAS  PubMed  Google Scholar 

  22. Sainburg, R. L. & Schaefer, S. Y. Interlimb differences in control of movement extent. J. Neurophysiol. 92, 1374–1383 (2004).

    Article  PubMed  Google Scholar 

  23. Miall, R. C. & Wolpert, D. M. Forward models for physiological motor control. Neural Netw. 9, 1265–1279 (1996).

    Article  PubMed  Google Scholar 

  24. Mehta, B. & Schaal, S. Forward models in visuomotor control. J. Neurophysiol. 88, 942–953 (2002).

    Article  PubMed  Google Scholar 

  25. Hermsdörfer, J. et al. The representation of predictive force control and internal forward models: evidence from lesion studies and brain imaging. Cogn. Process. 6, 48–58 (2005).

    Article  Google Scholar 

  26. McNamee, D. & Wolpert, D. M. Internal models in biological control. Annu. Rev. Control. Robot. Auton. Syst. 2, 339–364 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jordan, M. I. & Rumelhart, D. E. Forward models: supervised learning with a distal teacher. Cogn. Sci. 16, 307–354 (1992).

    Article  Google Scholar 

  28. Takagi, A., Ganesh, G., Yoshioka, T., Kawato, M. & Burdet, E. Physically interacting individuals estimate the partner’s goal to enhance their movements. Nat. Hum. Behav. 1, 0054 (2017).

    Article  Google Scholar 

  29. Shadmehr, R. & Krakauer, J. W. A computational neuroanatomy for motor control. Exp. Brain Res. 185, 359–381 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Houde, J. F. & Nagarajan, S. S. Speech production as state feedback control. Front. Hum. Neurosci. 5, 82 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hickok, G. Computational neuroanatomy of speech production. Nat. Rev. Neurosci. 13, 135–145 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Parrell, B., Ramanarayanan, V., Nagarajan, S. & Houde, J. The FACTS model of speech motor control: fusing state estimation and task-based control. PLoS Comput. Biol. 15, e1007321 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bernstein, N. A. The Co-ordination and Regulation of Movements (Pergamon, 1967).

  34. Patri, J.-F., Diard, J. & Perrier, P. Optimal speech motor control and token-to-token variability: a Bayesian modeling approach. Biol. Cybern. 109, 611 (2015).

    Article  PubMed  Google Scholar 

  35. Perrier, P., Ma, L. & Payan, Y. in Interspeech 2005 — Eurospeech, 9th Eur. Conf. Speech Communication and Technology, Lisbon, Portugal, September 4-8, 2005 (eds Trancoso, I. et al.) 1041–1044 (ISCA, 2005).

  36. Liu, D. & Todorov, E. Evidence for the flexible sensorimotor strategies predicted by optimal feedback control. J. Neurosci. 27, 9354–9368 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gray, R. Changes in movement coordination associated with skill acquisition in baseball batting: freezing/freeing degrees of freedom and functional variability. Front. Psychol. 11, 1295 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Latash, M. L., Scholz, J. P. & Schöner, G. Toward a new theory of motor synergies. Mot. Control. 11, 276–308 (2007).

    Article  Google Scholar 

  39. Latash, M. L. The bliss (not the problem) of motor abundance (not redundancy). Exp. Brain Res. 217, 1–5 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Latash, M. L. Laws of nature that define biological action and perception. Phys. Life Rev. 36, 47–67 (2021).

    Article  PubMed  Google Scholar 

  41. Wang, J., Lum, P. S., Shadmehr, R. & Lee, S. W. Perceived effort affects choice of limb and reaction time of movements. J. Neurophysiol. 125, 63–73 (2021).

    Article  PubMed  Google Scholar 

  42. Guenther, F. H., Hampson, M. & Johnson, D. A theoretical investigation of reference frames for the planning of speech movements. Psychol. Rev. 105, 611–633 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Perrier, P., Savariaux, C., Lebeau, J. & Magaña, G. in Proc. 14th Int. Congress of Phonetic Sciences 4 (eds. Ohala, J. J., Hasegawa, Y., Ohala, M., Granville, D. & Bailey, A. C.) (International Phonetic Association, 1999).

  44. Warren, W. H. The dynamics of perception and action. Psychol. Rev. 113, 358–389 (2006).

    Article  PubMed  Google Scholar 

  45. Fink, P. W., Foo, P. S. & Warren, W. H. Catching fly balls in virtual reality: a critical test of the outfielder problem. J. Vis. 9, 14 (2009).

    Article  Google Scholar 

  46. O’Regan, J. K. & Noë, A. A sensorimotor account of vision and visual consciousness. Behav. Brain Sci. 24, 939–973 (2001).

    Article  PubMed  Google Scholar 

  47. Bickhard, M. H. The interactivist model. Synthese 166, 547–591 (2009).

    Article  Google Scholar 

  48. Dewey, P. J. The reflex arc concept in psychology. Psychol. Rev. 3, 357–370 (1896).

    Article  Google Scholar 

  49. Feldman, A. G. & Levin, M. F. in Progress in Motor Control: A Multidisciplinary Perspective (ed. Sternad, D.) 699–726 (Springer US, 2009).

  50. Gibson, J. J. The Senses Considered as Perceptual Systems (Houghton Mifflin, 1966).

  51. Varela, F. J., Thompson, E. & Rosch, E. The Embodied Mind: Cognitive Science and Human Experience (MIT Press, 1991).

  52. Rietveld, E. & Kiverstein, J. A rich landscape of affordances. Ecol. Psychol. 26, 325–352 (2014).

    Article  Google Scholar 

  53. Warren, W. H. & Whang, S. Visual guidance of walking through apertures: body-scaled information for affordances. J. Exp. Psychol. Hum. Percept. Perform. 13, 371–383 (1987).

    Article  PubMed  Google Scholar 

  54. Cesari, P., Formenti, F. & Olivato, P. A common perceptual parameter for stair climbing for children, young and old adults. Hum. Mov. Sci. 22, 111–124 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Buhrmann, T., Di Paolo, E. & Barandiaran, X. A dynamical systems account of sensorimotor contingencies. Front. Psychol. 4, 285 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Seth, A. K. A predictive processing theory of sensorimotor contingencies: explaining the puzzle of perceptual presence and its absence in synesthesia. Cogn. Neurosci. 5, 97–118 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Mechsner, F., Kerzel, D., Knoblich, G. & Prinz, W. Perceptual basis of bimanual coordination. Nature 414, 69–73 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Hoffman, D. D., Singh, M. & Prakash, C. The interface theory of perception. Psychon. Bull. Rev. 22, 1480–1506 (2015).

    Article  PubMed  Google Scholar 

  59. Nikolić, D. Practopoiesis: or how life fosters a mind. J. Theor. Biol. 373, 40–61 (2015).

    Article  PubMed  Google Scholar 

  60. Cisek, P. Resynthesizing behavior through phylogenetic refinement. Atten. Percept. Psychophys. 81, 2265–2287 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Richardson, M., Shockley, K., Fajen, B. R., Riley, M. A. & Turvey, M. T. in Handbook of Cognitive Science: An Embodied Approach (eds Calvo, P. & Gomila, T.) 159–187 (Elsevier, 2008).

  62. Merel, J., Botvinick, M. & Wayne, G. Hierarchical motor control in mammals and machines. Nat. Commun. 10, 5489 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ito, T., Szabados, A., Caillet, J.-L. & Perrier, P. Quick compensatory mechanisms for tongue posture stabilization during speech production. J. Neurophysiol. 123, 2491–2503 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kaplan, H. S., Salazar Thula, O., Khoss, N. & Zimmer, M. Nested neuronal dynamics orchestrate a behavioral hierarchy across timescales. Neuron 105, 562–576.e9 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Brown, H., Adams, R. A., Parees, I., Edwards, M. & Friston, K. Active inference, sensory attenuation and illusions. Cogn. Process. 14, 411–427 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  66. von Helmholtz, H. Handbuch der physiologischen Optik (Leopold Voss, 1867).

  67. Rao, R. P. N. & Ballard, D. H. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2, 79–87 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Herbart, J. F. Psychologie als Wissenschaft neu gegründet auf Erfahrung, Metaphysik und Mathematik. Zweiter, analytischer Teil (Unzer, 1825).

  69. Stock, A. & Stock, C. A short history of ideo-motor action. Psychol. Res. 68, 176–188 (2004).

    Article  PubMed  Google Scholar 

  70. Hommel, B., Müsseler, J., Aschersleben, G. & Prinz, W. The theory of event coding (TEC): a framework for perception and action planning. Behav. Brain Sci. 24, 910–926 (2001).

    Article  Google Scholar 

  71. Marken, R. S. & Mansell, W. Perceptual control as a unifying concept in psychology. Rev. Gen. Psychol. 17, 190–195 (2013).

    Article  Google Scholar 

  72. Brette, R. Is coding a relevant metaphor for the brain? Behav. Brain Sci. 42, e215 (2019).

    Article  Google Scholar 

  73. Bruineberg, J., Kiverstein, J. & Rietveld, E. The anticipating brain is not a scientist: the free-energy principle from an ecological-enactive perspective. Synthese 195, 2417–2444 (2018).

    Article  PubMed  Google Scholar 

  74. Baltieri, M. & Buckley, C. L. in Artificial Life Conference Proceedings (eds Suzuki, R. & Iizuka, H.) 36–43 (MIT Press, 2017).

  75. Baltieri, M. & Buckley, C. PID control as a process of active inference with linear generative models. Entropy 21, 257 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Bruineberg, J. & Rietveld, E. Self-organization, free energy minimization, and optimal grip on a field of affordances. Front. Hum. Neurosci. 8, 599 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Saltzman, E. & Kelso, S. Skilled actions: a task-tynamic approach. Psychol. Rev. 94, 84–106 (1987).

    Article  CAS  PubMed  Google Scholar 

  78. Kelso, S. Dynamic Patterns: The Self-Organization of Brain and Behavior (MIT Press, 1995).

  79. Zhao, H. & Warren, W. H. On-line and model-based approaches to the visual control of action. Vis. Res. 110, 190–202 (2015).

    Article  PubMed  Google Scholar 

  80. Barker, R. G. Ecological Psychology: Concepts and Methods for Studying the Environment of Human Behavior (Stanford Univ. Press, 1968).

  81. Lobo, L., Heras-Escribano, M. & Travieso, D. The history and philosophy of ecological psychology. Front. Psychol. 9, 02228 (2018).

    Article  Google Scholar 

  82. Clark, A. Surfing Uncertainty: Prediction, Action, and the Embodied Mind (Oxford Univ. Press, 2015).

  83. Clark, A. Embodied prediction. Open MIND 7, 267–287 (2015).

    Google Scholar 

  84. Ahissar, E. & Assa, E. Perception as a closed-loop convergence process. eLife 5, e12830 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Buckley, C. L. & Toyoizumi, T. A theory of how active behavior stabilises neural activity: neural gain modulation by closed-loop environmental feedback. PLoS Comput. Biol. 14, e1005926 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Gottlieb, J. & Oudeyer, P.-Y. Towards a neuroscience of active sampling and curiosity. Nat. Rev. Neurosci. 19, 758–770 (2018).

    Article  CAS  PubMed  Google Scholar 

  87. Morillon, B. & Baillet, S. Motor origin of temporal predictions in auditory attention. Proc. Natl Acad. Sci. USA 114, E8913–E8921 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Schmidt-Kassow, M., Thöne, K. & Kaiser, J. Auditory–motor coupling affects phonetic encoding. Brain Res. 1716, 39–49 (2019).

    Article  CAS  PubMed  Google Scholar 

  89. Ramdya, P. et al. Climbing favours the tripod gait over alternative faster insect gaits. Nat. Commun. 8, 14494 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Matsumoto, T. & Tani, J. Goal-directed planning for habituated agents by active inference using a variational recurrent neural network. Entropy 22, 564 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Hanuschkin, A., Ganguli, S. & Hahnloser, R. H. R. A Hebbian learning rule gives rise to mirror neurons and links them to control theoretic inverse models. Front. Neural Circuits 7, 106 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Nazlı, İ., Ferrari, A., Huber-Huber, C. & de Lange, F. P. Statistical learning is not error-driven. Preprint at bioRxiv https://doi.org/10.1101/2022.02.07.479428 (2022).

    Article  Google Scholar 

  93. van Vugt, F. T. & Ostry, D. J. Early stages of sensorimotor map acquisition: learning with free exploration, without active movement or global structure. J. Neurophysiol. 122, 1708–1720 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Adams, R. A., Shipp, S. & Friston, K. J. Predictions not commands: active inference in the motor system. Brain Struct. Funct. 218, 611–643 (2013).

    Article  PubMed  Google Scholar 

  95. Wolpert, D., Diedrichsen, J. & Flanagan, J. Principles of sensorimotor learning. Nat. Rev. Neurosci. 12, 739–751 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Yildiz, I., Kriegstein, K. & Kiebel, S. From birdsong to human speech recognition: bayesian inference on a hierarchy of nonlinear dynamical systems. PLoS Comput. Biol. 9, e1003219 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Benrimoh, D., Parr, T., Adams, R. A. & Friston, K. Hallucinations both in and out of context: an active inference account. PLoS ONE 14, e0212379 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhao, H. & Warren, W. H. Intercepting a moving target: on-line or model-based control? J. Vis. 17, 12 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Pavlov, I. P. The Work of the Digestive Glands (Charles Griffin, 1902).

  100. Stepp, N. & Turvey, M. T. On strong anticipation. Cogn. Syst. Res. 11, 148–164 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Cavallo, A., Koul, A., Ansuini, C., Capozzi, F. & Becchio, C. Decoding intentions from movement kinematics. Sci. Rep. 6, 37036 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Soriano, M., Cavallo, A., D’Ausilio, A., Becchio, C. & Fadiga, L. Movement kinematics drive chain selection toward intention detection. Proc. Natl Acad. Sci. USA 115, 10452–10457 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Patri, J.-F. et al. Transient disruption of the inferior parietal lobule impairs the ability to attribute intention to action. Curr. Biol. 30, 4594–4605.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Aggelopoulos, N. C. Perceptual inference. Neurosci. Biobehav. Rev. 55, 375–392 (2015).

    Article  PubMed  Google Scholar 

  105. Shiller, D. M., Sato, M., Gracco, V. L. & Baum, S. R. Perceptual recalibration of speech sounds following speech motor learning. J. Acoust. Soc. Am. 125, 1103 (2009).

    Article  PubMed  Google Scholar 

  106. Patri, J.-F., Perrier, P., Schwartz, J.-L. & Diard, J. What drives the perceptual change resulting from speech motor adaptation? Evaluation of hypotheses in a Bayesian modeling framework. PLoS Comput. Biol. 14, e1005942 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Friston, K., Thornton, C. & Clark, A. Free-energy minimization and the dark-room problem. Front. Psychol. 3, 130 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Wiese, W. Action is enabled by systematic misrepresentations. Erkenntnis 82, 1233–1252 (2017).

    Article  Google Scholar 

  109. Shipp, S., Adams, R. A. & Friston, K. J. Reflections on agranular architecture: predictive coding in the motor cortex. Trends Neurosci. 36, 706–716 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Shipp, S. Neural elements for predictive coding. Front. Psychol. 7, 1792 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Perrier, P., Payan, Y., Buchaillard, S., Nazari, M. A. & Chabanas, M. Biomechanical models to study speech. Faits de. Lang. 37, 155–171 (2011).

    Article  Google Scholar 

  112. Lloyd, J. E., Stavness, I. & Fels, S. in Soft Tissue Biomechanical Modeling for Computer Assisted Surgery (ed. Payan, Y.) 355–394 (Springer, 2012).

  113. Maus, H.-M., Lipfert, S. W., Gross, M., Rummel, J. & Seyfarth, A. Upright human gait did not provide a major mechanical challenge for our ancestors. Nat. Commun. 1, 70 (2010).

    Article  PubMed  Google Scholar 

  114. Lobato-Rios, V. et al. NeuroMechFly, a neuromechanical model of adult Drosophila melanogaster. Nat. Methods 19, 620–627 (2022).

    Article  CAS  PubMed  Google Scholar 

  115. Friston, K. J. & Frith, C. D. Active inference, communication and hermeneutics. Cortex 68, 129–143 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Schwartz, J.-L., Basirat, A., Ménard, L. & Sato, M. The perception-for-action-control theory (PACT): a perceptuo-motor theory of speech perception. J. Neurolinguist. 25, 336–354 (2012).

    Article  Google Scholar 

  117. Moulin-Frier, C., Diard, J., Schwartz, J.-L. & Bessière, P. COSMO (“Communicating about Objects using Sensory–Motor Operations”): a Bayesian modeling framework for studying speech communication and the emergence of phonological systems. J. Phon. 53, 5–41 (2015).

    Article  Google Scholar 

  118. Barnaud, M.-L., Bessière, P., Diard, J. & Schwartz, J. Reanalyzing neurocognitive data on the role of the motor system in speech perception within COSMO, a Bayesian perceptuo-motor model of speech communication. Brain Lang. 187, 19–32 (2017).

    Article  PubMed  Google Scholar 

  119. Nabé, M., Schwartz, J.-L. & Diard, J. COSMO-Onset: a neurally-inspired computational model of spoken word recognition, combining top-down prediction and bottom-up detection of syllabic onsets. Front. Syst. Neurosci. 15, 653975 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Moore, R. K. & Nicolao, M. Toward a needs-based architecture for ‘intelligent’ communicative agents: speaking with intention. Front. Robot. AI 4, 00066 (2017).

    Article  Google Scholar 

  121. Patri, J.-F., Diard, J. & Perrier, P. Modeling sensory preference in speech motor planning: a Bayesian modeling framework. Front. Psychol. 10, 2339 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Sajid, N., Parr, T., Gajardo-Vidal, A., Price, C. J. & Friston, K. J. Paradoxical lesions, plasticity and active inference. Brain Commun. 2, fcaa164 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Friston, K. J. et al. Active listening. Hearing Res. 399, 107998 (2021).

    Article  Google Scholar 

  124. Buchaillard, S., Perrier, P. & Payan, Y. A biomechanical model of cardinal vowel production: muscle activations and the impact of gravity on tongue positioning. J. Acoust. Soc. Am. 126, 2033–2051 (2009).

    Article  PubMed  Google Scholar 

  125. Dang, J. & Honda, K. Estimation of vocal tract shapes from speech sounds with a physiological articulatory model. J. Phon. 30, 511–532 (2002).

    Article  Google Scholar 

  126. Schaal, S., Mohajerian, P. & Ijspeert, A. in Progress in Brain Research Vol. 165 (eds Cisek, P., Drew, T. & Kalaska, J. F.) 425–445 (Elsevier, 2007).

  127. Gandolla, M. et al. Re-thinking the role of motor cortex: context-sensitive motor outputs? NeuroImage 91, 366–374 (2014).

    Article  PubMed  Google Scholar 

  128. Scott, S. H. Inconvenient truths about neural processing in primary motor cortex. J. Physiol. 586, 1217–1224 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Shalit, U., Zinger, N., Joshua, M. & Prut, Y. Descending systems translate transient cortical commands into a sustained muscle activation signal. Cereb. Cortex 22, 1904–1914 (2012).

    Article  PubMed  Google Scholar 

  130. Todorov, E. Direct cortical control of muscle activation in voluntary arm movements: a model. Nat. Neurosci. 3, 391–398 (2000).

    Article  CAS  PubMed  Google Scholar 

  131. Bastos, A. M. et al. Canonical microcircuits for predictive coding. Neuron 76, 695–711 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Jordan, R. & Keller, G. B. Opposing influence of top-down and bottom-up input on excitatory layer 2/3 neurons in mouse primary visual cortex. Neuron 108, 1194–1206.e5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Stringer, C. et al. Spontaneous behaviors drive multidimensional, brainwide activity. Science 364, eaav7893 (2019).

    Article  CAS  Google Scholar 

  134. Mathis, M. W., Mathis, A. & Uchida, N. Somatosensory cortex plays an essential role in forelimb motor adaptation in mice. Neuron 93, 1493–1503.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kumar, N., Manning, T. F. & Ostry, D. J. Somatosensory cortex participates in the consolidation of human motor memory. PLoS Biol. 17, e3000469 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ohashi, H., Gribble, P. L. & Ostry, D. J. Somatosensory cortical excitability changes precede those in motor cortex during human motor learning. J. Neurophysiol. 122, 1397–1405 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Schubotz, R. I. Prediction of external events with our motor system: towards a new framework. Trends Cogn. Sci. 11, 211–218 (2007).

    Article  PubMed  Google Scholar 

  138. Saleh, M., Reimer, J., Penn, R., Ojakangas, C. L. & Hatsopoulos, N. G. Fast and slow oscillations in human primary motor cortex predict oncoming behaviorally relevant cues. Neuron 65, 461–471 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Hatsopoulos, N. G. & Suminski, A. J. Sensing with the motor cortex. Neuron 72, 477–487 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Cheung, C., Hamilton, L. S., Johnson, K. & Chang, E. F. The auditory representation of speech sounds in human motor cortex. eLife 5, e12577 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Felleman, D. J. & Van Essen, D. C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).

    Article  CAS  PubMed  Google Scholar 

  142. Covic, E. N. & Sherman, S. M. Synaptic properties of connections between the primary and secondary auditory cortices in mice. Cereb. Cortex 21, 2425–2441 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Tilsen, S. Detecting anticipatory information in speech with signal chopping. J. Phon. 82, 100996 (2020).

    Article  Google Scholar 

  144. Umeda, T., Isa, T. & Nishimura, Y. The somatosensory cortex receives information about motor output. Sci. Adv. 5, eaaw5388 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Takei, T., Lomber, S. G., Cook, D. J. & Scott, S. H. Transient deactivation of dorsal premotor cortex or parietal area 5 impairs feedback control of the limb in macaques. Curr. Biol. 31, 1476–1487.e5 (2021).

    Article  CAS  PubMed  Google Scholar 

  146. Feldman, A. G. New insights into action–perception coupling. Exp. Brain Res. 194, 39–58 (2009).

    Article  PubMed  Google Scholar 

  147. Hadjiosif, A. M., Krakauer, J. W. & Haith, A. M. Did we get sensorimotor adaptation wrong? Implicit adaptation as direct policy updating rather than forward-model-based learning. J. Neurosci. 41, 2747–2761 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Aschersleben, G. Temporal control of movements in sensorimotor synchronization. Brain Cogn. 48, 66–79 (2002).

    Article  PubMed  Google Scholar 

  149. Repp, B. H. Sensorimotor synchronization: a review of the tapping literature. Psychon. Bull. Rev. 12, 969–992 (2005).

    Article  PubMed  Google Scholar 

  150. Perrinet, L. U., Adams, R. A. & Friston, K. J. Active inference, eye movements and oculomotor delays. Biol. Cybern. 108, 777–801 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Gross, J. et al. The neural basis of intermittent motor control in humans. Proc. Natl Acad. Sci. USA 99, 2299–2302 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Fiebach, C. J. & Schubotz, R. I. Dynamic anticipatory processing of hierarchical sequential events: a common role for Broca’s area and ventral premotor cortex across domains? Cortex 42, 499–502 (2006).

    Article  PubMed  Google Scholar 

  153. Ding, N., Melloni, L., Zhang, H., Tian, X. & Poeppel, D. Cortical tracking of hierarchical linguistic structures in connected speech. Nat. Neurosci. 19, 158–164 (2016).

    Article  CAS  PubMed  Google Scholar 

  154. Flinker, A., Doyle, W. K., Mehta, A. D., Devinsky, O. & Poeppel, D. Spectrotemporal modulation provides a unifying framework for auditory cortical asymmetries. Nat. Hum. Behav. 3, 393 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Rankin, S. K., Fink, P. W. & Large, E. W. Fractal structure enables temporal prediction in music. J. Acoust. Soc. Am. 136, EL256–EL262 (2014).

    Article  PubMed  Google Scholar 

  156. Kelty-Stephen, D. & Dixon, J. Strong anticipation: multifractal cascade dynamics modulate scaling in synchronization behaviors. Chaos Solit. Fractals 44, 160–168 (2011).

    Article  Google Scholar 

  157. Pflug, A., Gompf, F., Muthuraman, M., Groppa, S. & Kell, C. A. Differential contributions of the two human cerebral hemispheres to action timing. eLife 8, e48404 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Chapman, S. Catching a baseball. Am. J. Phys. 36, 868 (1968).

    Article  Google Scholar 

  159. Postma, D. B. W., den Otter, A. R. & Zaal, F. T. J. M. Keeping your eyes continuously on the ball while running for catchable and uncatchable fly balls. PLoS ONE 9, e92392 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Dubois, D. M. in Anticipatory Behavior in Adaptive Learning Systems: Foundations, Theories, and Systems (eds Butz, M. V., Sigaud, O. & Gérard, P.) 110–132 (Springer, 2003).

  161. Roman, I. R., Washburn, A., Large, E. W., Chafe, C. & Fujioka, T. Delayed feedback embedded in perception–action coordination cycles results in anticipation behavior during synchronized rhythmic action: a dynamical systems approach. PLoS Comput. Biol. 15, e1007371 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Demos, A. P., Layeghi, H., Wanderley, M. M. & Palmer, C. Staying together: a bidirectional delay-coupled approach to joint action. Cogn. Sci. 43, e12766 (2019).

    Article  PubMed  Google Scholar 

  163. Guenther, F. H. Speech sound acquisition, coarticulation, and rate effects in a neural network model of speech production. Psychol. Rev. 102, 594–621 (1995).

    Article  CAS  PubMed  Google Scholar 

  164. Ostry, D. J., Gribble, P. L. & Gracco, V. L. Coarticulation of jaw movements in speech production: is context sensitivity in speech kinematics centrally planned? J. Neurosci. 16, 1570–1579 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Choi, J. Y., Hu, E. R. & Perrachione, T. K. Varying acoustic–phonemic ambiguity reveals that talker normalization is obligatory in speech processing. Atten. Percept. Psychophys. 80, 784–797 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Laurent, R., Barnaud, M.-L., Schwartz, J.-L., Bessière, P. & Diard, J. The complementary roles of auditory and motor information evaluated in a Bayesian perceptuo-motor model of speech perception. Psychol. Rev. 124, 572–602 (2017).

    Article  PubMed  Google Scholar 

  167. Kleinschmidt, D. F. & Jaeger, T. F. Robust speech perception: recognize the familiar, generalize to the similar, and adapt to the novel. Psychol. Rev. 122, 148–203 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Bourguignon, N. J., Baum, S. R. & Shiller, D. M. Please say what this word is — vowel-extrinsic normalization in the sensorimotor control of speech. J. Exp. Psychol. Hum. Percept. Perform. 42, 1039–1047 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Dehaene, S., Meyniel, F., Wacongne, C., Wang, L. & Pallier, C. The neural representation of sequences: from transition probabilities to algebraic patterns and linguistic trees. Neuron 88, 2–19 (2015).

    Article  CAS  PubMed  Google Scholar 

  170. Goldstein, L., Nam, H., Saltzman, E. & Chitoran, I. in Frontiers in Phonetics and Speech Science: Festschrift for Wu Zongji Beijing (eds Fant, G., Fujisaki, H. & Shen, J.) 239–249 (Commercial, 2009).

  171. Tilsen, S. Space and time in models of speech rhythm. Ann. N. Y. Acad. Sci. 1453, 47–66 (2019).

    Article  PubMed  Google Scholar 

  172. Warren, W. H. Non-Euclidean navigation. J. Exp. Biol. 222, jeb187971 (2019).

    Article  PubMed  Google Scholar 

  173. Hiesinger, P. R. The Self-Assembling Brain: How Neural Networks Grow Smarter (Princeton Univ. Press, 2021).

  174. Vollrath, F. & Krink, T. Spider webs inspiring soft robotics. J. R. Soc. Interface 17, 20200569 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Oberst, S. et al. Revisiting stigmergy in light of multi-functional, biogenic, termite structures as communication channel. Comput. Struct. Biotechnol. J. 18, 2522–2534 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Solomonoff, R. J. The discovery of algorithmic probability. J. Comput. Syst. Sci. 55, 73–88 (1997).

    Article  Google Scholar 

  177. Caballero, L., Hodge, B. & Hernandez, S. Conway’s ‘game of life’ and the epigenetic principle. Front. Cell Infect. Microbiol. 6, 57 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Niziolek, C. A., Nagarajan, S. S. & Houde, J. F. What does motor efference copy represent? Evidence from speech production. J. Neurosci. 33, 16110–16116 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Prablanc, C., Pélisson, D. & Goodale, M. A. Visual control of reaching movements without vision of the limb. I. Role of retinal feedback of target position in guiding the hand. Exp. Brain Res. 62, 293–302 (1986).

    Article  CAS  PubMed  Google Scholar 

  180. Stone, K. D. & Gonzalez, C. L. R. Grasping without sight: insights from the congenitally blind. PLoS ONE 9, e110175 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Waldstein, R. S. Effects of postlingual deafness on speech production: implications for the role of auditory feedback. J. Acoust. Soc. Am. 88, 2099–2114 (1990).

    Article  CAS  PubMed  Google Scholar 

  182. Lajoie, Y. et al. Gait of a deafferented subject without large myelinated sensory fibers below the neck. Neurology 47, 109–115 (1996).

    Article  CAS  PubMed  Google Scholar 

  183. De Letter, M., Criel, Y., Lind, A., Hartsuiker, R. & Santens, P. Articulation lost in space. The effects of local orobuccal anesthesia on articulation and intelligibility of phonemes. Brain Lang. 207, 104813 (2020).

    Article  PubMed  Google Scholar 

  184. Bernier, P.-M., Chua, R., Bard, C. & Franks, I. M. Updating of an internal model without proprioception: a deafferentation study. Neuroreport 17, 1421–1425 (2006).

    Article  PubMed  Google Scholar 

  185. Nougier, V. et al. Control of single-joint movements in deafferented patients: evidence for amplitude coding rather than position control. Exp. Brain Res. 109, 473–482 (1996).

    Article  CAS  PubMed  Google Scholar 

  186. Lametti, D. R., Nasir, S. M. & Ostry, D. J. Sensory preference in speech production revealed by simultaneous alteration of auditory and somatosensory feedback. J. Neurosci. 32, 9351–9358 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Houde, J. F. & Jordan, M. I. Sensorimotor adaptation in speech production. Science 279, 1213–1216 (1998).

    Article  CAS  PubMed  Google Scholar 

  188. Villacorta, V. M., Perkell, J. S. & Guenther, F. H. Sensorimotor adaptation to feedback perturbations of vowel acoustics and its relation to perception. J. Acoust. Soc. Am. 122, 2306–2319 (2007).

    Article  PubMed  Google Scholar 

  189. Howard, I. S., Ford, C., Cangelosi, A. & Franklin, D. W. Active lead-in variability affects motor memory formation and slows motor learning. Sci. Rep. 7, 7806 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Lateiner, J. E. & Sainburg, R. L. Differential contributions of vision and proprioception to movement accuracy. Exp. Brain Res. 151, 446–454 (2003).

    Article  PubMed  Google Scholar 

  191. Keough, D., Hawco, C. & Jones, J. A. Auditory-motor adaptation to frequency-altered auditory feedback occurs when participants ignore feedback. BMC Neurosci. 14, 25 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Perrier, P. Control and representations in speech production. ZAS Pap. Linguist. 40, 109–132 (2005).

    Article  Google Scholar 

  193. Kleber, B., Zeitouni, A. G., Friberg, A. & Zatorre, R. J. Experience-dependent modulation of feedback integration during singing: role of the right anterior insula. J. Neurosci. 33, 6070–6080 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Ohashi, H. & Ito, T. Recalibration of auditory perception of speech due to orofacial somatosensory inputs during speech motor adaptation. J. Neurophysiol. 122, 2076–2084 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  195. MacDonald, E. N., Purcell, D. W. & Munhall, K. G. Probing the independence of formant control using altered auditory feedback. J. Acoust. Soc. Am. 129, 955–965 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Floegel, M., Fuchs, S. & Kell, C. A. Differential contributions of the two cerebral hemispheres to temporal and spectral speech feedback control. Nat. Commun. 11, 2839 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Yin, H. in The Interdisciplinary Handbook of Perceptual Control Theory: Living Control Systems IV (ed. Mansell, W.) 23–48 (Elsevier, 2020).

  198. Botvinick, M. & Toussaint, M. Planning as inference. Trends Cogn. Sci. 16, 485–488 (2012).

    Article  PubMed  Google Scholar 

  199. Henin, S. et al. Learning hierarchical sequence representations across human cortex and hippocampus. Sci. Adv. 7, eabc4530 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Lakoff, G. & Johnson, M. Metaphors We Live By (Univ. Chicago Press, 1980).

  201. Nickerson, R. S. Confirmation bias: a ubiquitous phenomenon in many guises. Rev. Gen. Psychol. 2, 175–220 (1998).

    Article  Google Scholar 

  202. Ijspeert, A. J., Nakanishi, J., Hoffmann, H., Pastor, P. & Schaal, S. Dynamical movement primitives: learning attractor models for motor behaviors. Neural Comput. 25, 328–373 (2013).

    Article  PubMed  Google Scholar 

  203. Parrell, B. & Lammert, A. C. Bridging dynamical systems and optimal trajectory approaches to speech motor control with dynamic movement primitives. Front. Psychol. 10, 2251 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Bickhard, M. H. Interactivism: a manifesto. N. Ideas Psychol. 27, 85–95 (2009).

    Article  Google Scholar 

  205. Mansell, W., Curtis, A. & Zink, S. Observers fail to detect that behavior is the control of perception: a computer demonstration of unintended writing. J. Exp. Psychol. Gen. 148, e23–e29 (2019).

    Article  PubMed  Google Scholar 

  206. Marken, R. S. Testing for controlled variables: a model-based approach to determining the perceptual basis of behavior. Atten. Percept. Psychophys. 76, 255–263 (2013).

    Article  Google Scholar 

  207. Tourville, J. A., Reilly, K. J. & Guenther, F. H. Neural mechanisms underlying auditory feedback control of speech. Neuroimage 39, 1429–1443 (2008).

    Article  PubMed  Google Scholar 

  208. Miller, H. E. & Guenther, F. H. Modelling speech motor programming and apraxia of speech in the DIVA/GODIVA neurocomputational framework. Aphasiology 35, 424–441 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Albouy, P., Benjamin, L., Morillon, B. & Zatorre, R. J. Distinct sensitivity to spectrotemporal modulation supports brain asymmetry for speech and melody. Science 367, 1043–1047 (2020).

    Article  CAS  PubMed  Google Scholar 

  210. Boyd, I. A., Gladden, M. H., McWilliam, P. N. & Ward, J. Control of dynamic and static nuclear bag fibres and nuclear chain fibres by gamma and beta axons in isolated cat muscle spindels. J. Physiol. 265, 133–162 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Niziolek, C. A. & Guenther, F. H. Vowel category boundaries enhance cortical and behavioral responses to speech feedback alterations. J. Neurosci. 33, 12090–12098 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Daliri, A. & Dittman, J. Successful auditory motor adaptation requires task-relevant auditory errors. J. Neurophysiol. 122, 552–562 (2019).

    Article  PubMed  Google Scholar 

  213. Giret, N., Kornfeld, J., Ganguli, S. & Hahnloser, R. H. R. Evidence for a causal inverse model in an avian cortico-basal ganglia circuit. Proc. Natl Acad. Sci. USA 111, 6063–6068 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Prather, J. F., Peters, S., Nowicki, S. & Mooney, R. Precise auditory–vocal mirroring in neurons for learned vocal communication. Nature 451, 305–310 (2008).

    Article  CAS  PubMed  Google Scholar 

  215. Gallese, V. & Goldman, A. Mirror neurons and the simulation theory of mind-reading. Trends Cogn. Sci. 2, 9 (1998).

    Article  Google Scholar 

  216. Nazari, M. A., Perrier, P., Chabanas, M. & Payan, Y. Shaping by stiffening: a modeling study for lips. Mot. Control. 15, 141–168 (2011).

    Article  Google Scholar 

  217. Lanillos, P., Dean-Leon, E. & Cheng, G. Yielding self-perception in robots through sensorimotor contingencies. IEEE Trans. Cogn. Dev. Syst. 9, 100–112 (2017).

    Article  Google Scholar 

  218. Schoeller, F., Miller, M., Salomon, R. & Friston, K. J. Trust as extended control: human–machine interactions as active inference. Front. Syst. Neurosci. 15, 669810 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Lanillos, P. et al. Active inference in robotics and artificial agents: survey and challenges. Preprint at arXiv https://doi.org/10.48550/arXiv.2112.01871 (2021).

    Article  Google Scholar 

  220. Eberle, H., Nasuto, S. J. & Hayashi, Y. Synchronization-based control for a collaborative robot. R. Soc. Open Sci. 7, 201267 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Maye, A. & Engel, A. K. Extending sensorimotor contingency theory: prediction, planning, and action generation. Adapt. Behav. 21, 423–436 (2013).

    Article  Google Scholar 

  222. Haazebroek, P., van Dantzig, S. & Hommel, B. A computational model of perception and action for cognitive robotics. Cogn. Process. 12, 355–365 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank S. Fuchs and B. Morillon for inspirational discussions and helpful feedback on a previous version of their manuscript. C.A.K. was supported by an Emmy Noether grant of the German Research foundation, P.P. was supported by a grant from the Multidisciplinary Institute in Artificial Intelligence of the Université Grenoble Alpes (MIAI@Grenoble Alpes, ANR-19-P3IA-0003) and J.K. was supported by a scholarship of the Polytechnic Foundation Frankfurt.

Author information

Authors and Affiliations

Authors

Contributions

The authors all researched data for the article, provided substantial contributions to discussion of its content, wrote the article, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Christian A. Kell.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks K. Friston and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Floegel, M., Kasper, J., Perrier, P. et al. How the conception of control influences our understanding of actions. Nat Rev Neurosci 24, 313–329 (2023). https://doi.org/10.1038/s41583-023-00691-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-023-00691-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing