Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Computational models to confront the complex pollution footprint of plastic in the environment

Abstract

The threat posed by plastic in the environment is poorly characterized due to uncertainties and unknowns about sources, transport, transformation and removal processes, and the properties of the plastic pollution itself. Plastic creates a footprint of particulate pollution with a diversity of composition, size and shape, and a halo of chemicals. In this Perspective, we argue that process-based mass-balance models could provide a platform to synthesize knowledge about plastic pollution as a function of its measurable intrinsic properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Plastic produces a complex footprint of chemical and particle pollution in the environment.
Fig. 2: Building blocks of multimedia mass-balance models for plastics.
Fig. 3: Relationship between mutually consistent evaluative unit world models, local and regional models and highly resolved global-scale models for plastic.

Similar content being viewed by others

References

  1. Borrelle, S. B. et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 369, 1515–1518 (2020).

    Article  Google Scholar 

  2. Geyer, R., Jambeck, J. R. & Law, K. L. Production, use and fate of all plastics ever made. Sci. Adv. 3, 1700782 (2017).

    Article  Google Scholar 

  3. MacLeod, M., Arp, H. P. H., Tekman, M. B. & Jahnke, A. The global threat from plastic pollution. Science 373, 61–65 (2021).

    Article  Google Scholar 

  4. Persson, L. M. et al. Confronting unknown planetary boundary threats from chemical pollution. Environ. Sci. Technol. 47, 12619–12622 (2013).

    Article  Google Scholar 

  5. MacLeod, M. et al. Identifying chemicals that are planetary boundary threats. Environ. Sci. Technol. 48, 11057–11063 (2014).

    Article  Google Scholar 

  6. Jahnke, A. et al. Reducing uncertainty and confronting ignorance about the possible impacts of weathering plastic in the marine environment. Environ. Sci. Technol. Lett. 4, 85–90 (2017).

    Article  Google Scholar 

  7. Villarrubia-Gómez, P., Cornell, S. E. & Fabres, J. Marine plastic pollution as a planetary boundary threat—the drifting piece in the sustainability puzzle. Mar. Policy 96, 213–220 (2018).

    Article  Google Scholar 

  8. Arp, H. P. H. et al. Weathering plastics as a planetary boundary threat: exposure, fate and hazards. Environ. Sci. Technol. 55, 7246–7255 (2021).

    Article  Google Scholar 

  9. Persson, L. et al. Outside the safe operating space of the planetary boundary for novel entities. Environ. Sci. Technol. 56, 1510–1521 (2022).

    Article  Google Scholar 

  10. United Nations Environment Assembly of the United Nations Environment Programme. Draft Resolution: End Plastic Pollution: Towards an International Legally Binding Instrument UNEP/EA.5/L.213/Rev.1 (UNEP, 2022); https://wedocs.unep.org/bitstream/handle/20.500.11822/38522/k2200647_-_unep-ea-5-l-23-rev-1_-_advance.pdf

  11. Horton, A. A., Walton, A., Spurgeon, D. J., Lahive, E. & Svendsen, C. Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci. Total Environ. 586, 127–141 (2017).

    Article  Google Scholar 

  12. Allen, D. et al. Microplastics and nanoplastics in the marine-atmosphere environment. Nat. Rev. Earth Environ. 3, 393–405 (2022).

    Article  Google Scholar 

  13. Silva, A. B. et al. Microplastics in the environment: challenges in analytical chemistry—a review. Anal. Chim. Acta 1017, 1–19 (2018).

    Article  Google Scholar 

  14. Rochman, C. M. et al. Rethinking microplastics as a diverse contaminant suite. Environ. Toxicol. Chem. 38, 703–711 (2019).

    Article  Google Scholar 

  15. Bank, M. S., Mitrano, D. M., Rillig, M. C., Lin, C. S. K. & Ok, Y. S. Embrace complexity to understand microplastic pollution. Nat. Rev. Earth Environ. 3, 736–737 (2022).

    Article  Google Scholar 

  16. Funtowicz, S. O. & Ravetz, J. R. A new scientific methodology for global environmental issues. Ecol. Econ. Sci. Manag. Sustain. 10, 137–152 (1991).

    Google Scholar 

  17. Wania, F. & Mackay, D. The evolution of mass balance models of persistent organic pollutant fate in the environment. Environ. Pollut. 100, 223–240 (1999).

    Article  Google Scholar 

  18. Buser, A. M. et al. Good modeling practice guidelines for applying multimedia models in chemical assessments. Integr. Environ. Assess. Manag. 8, 703–708 (2012).

    Article  Google Scholar 

  19. McKone, T. E. & MacLeod, M. Tracking multiple pathways of human exposure to persistent multimedia pollutants: regional, continental and global-scale models. Annu. Rev. Environ. Resour. 28, 463–492 (2003).

    Article  Google Scholar 

  20. MacLeod, M., Scheringer, M., McKone, T. E. & Hungerbühler, K. The state of multimedia mass-balance modeling in environmental science and decision-making. Environ. Sci. Technol. 44, 8360–8364 (2010).

    Article  Google Scholar 

  21. Wang, Z., Walker, G. W., Muir, D. C. & Nagatani-Yoshida, K. Toward a global understanding of chemical pollution: a first comprehensive analysis of national and regional chemical inventories. Environ. Sci. Technol. 54, 2575–2584 (2020).

    Article  Google Scholar 

  22. Wiesinger, H., Wang, Z. & Hellweg, S. Deep dive into plastic monomers, additives and processing aids. Environ. Sci. Technol. 55, 9339–9351 (2021).

    Article  Google Scholar 

  23. Uzun, P., Farazande, S. & Guven, B. Mathematical modeling of microplastic abundance, distribution and transport in water environments: a review. Chemosphere 288, 132517 (2022).

    Article  Google Scholar 

  24. Koelmans, A. A., Kooi, M., Law, K. L. & Van Sebille, E. All is not lost: deriving a top-down mass budget of plastic at sea. Environ. Res. Lett. 12, 114028 (2017).

    Article  Google Scholar 

  25. Kaandorp, M. L., Dijkstra, H. A. & van Sebille, E. Closing the Mediterranean marine floating plastic mass budget: inverse modeling of sources and sinks. Environ. Sci. Technol. 54, 11980–11989 (2020).

    Article  Google Scholar 

  26. Baughman, G. L. & Lassiter, R. R. in Estimating the Hazard of Chemical Substances to Aquatic Life, Special Technical Publication Vol. 657 (ed. Cairns, J.) 35–54 (ASTM International, 1978).

  27. Mackay, D. Finding fugacity feasible. Environ. Sci. Technol. 13, 1218–1223 (1979).

    Article  Google Scholar 

  28. Mackay, D., Di Guardo, A., Paterson, S., Kicsi, G. & Cowan, C. E. Assessing the fate of new and existing chemicals: a five‐stage process. Environ. Toxicol. Chem. 15, 1618–1626 (1996).

    Article  Google Scholar 

  29. Hollander, A., Schoorl, M. & van de Meent, D. SimpleBox 4.0: improving the model while keeping it simple. Chemosphere 148, 99–107 (2016).

    Article  Google Scholar 

  30. Meesters, J. A., Koelmans, A. A., Quik, J. T., Hendriks, A. J. & van de Meent, D. Multimedia modeling of engineered nanoparticles with SimpleBox4nano: model definition and evaluation. Environ. Sci. Technol. 48, 5726–5736 (2014).

    Article  Google Scholar 

  31. Liu, H. H., Bilal, M., Lazareva, A., Keller, A. & Cohen, Y. Simulation tool for assessing the release and environmental distribution of nanomaterials. Beilstein J. Nanotechnol. 6, 938–951 (2015).

    Article  Google Scholar 

  32. Waldschläger, K. et al. Learning from natural sediments to tackle microplastics challenges: a multidisciplinary perspective. Earth Sci. Rev. 228, 104021 (2022).

    Article  Google Scholar 

  33. Alimi, O. S., Farner-Budarz, J., Hernandez, L. M. & Tufenkji, N. Microplastics and nanoplastics in aquatic environments: aggregation, deposition and enhanced contaminant transport. Environ. Sci. Technol. 52, 1704–1724 (2018).

    Article  Google Scholar 

  34. Hüffer, T., Praetorius, A., Wagner, S., Von der Kammer, F. & Hofmann, T. Microplastic exposure assessment in aquatic environments: learning from similarities and differences to engineered nanoparticles. Environ. Sci. Technol. 51, 2499–2507 (2017).

    Article  Google Scholar 

  35. Besseling, E., Quik, J. T., Sun, M. & Koelmans, A. A. Fate of nano-and microplastic in freshwater systems: a modeling study. Environ. Pollut. 220, 540–548 (2017).

    Article  Google Scholar 

  36. Domercq, P., Praetorius, A. & MacLeod, M. The Full Multi: an open-source framework for modeling the transport and fate of nano- and microplastics in aquatic systems. Environ. Model. Softw. 148, 105291 (2022).

    Article  Google Scholar 

  37. Waldschläger, K. & Schüttrumpf, H. Effects of particle properties on the settling and rise velocities of microplastics in freshwater under laboratory conditions. Environ. Sci. Technol. 53, 1958–1966 (2019).

    Article  Google Scholar 

  38. Khatmullina, L. & Isachenko, I. Settling velocity of microplastic particles of regular shapes. Mar. Pollut. Bull. 114, 871–880 (2017).

    Article  Google Scholar 

  39. Kooi, M., Nes, E. H. V., Scheffer, M. & Koelmans, A. A. Ups and downs in the ocean: effects of biofouling on vertical transport of microplastics. Environ. Sci. Technol. 51, 7963–7971 (2017).

    Article  Google Scholar 

  40. Fischer, R. et al. Modelling submerged biofouled microplastics and their vertical trajectories. Biogeosciences 19, 2211–2234 (2022).

    Article  Google Scholar 

  41. Sipe, J. M. et al. From bottle to microplastics: can we estimate how our plastic products are breaking down? Sci. Total Environ. 814, 152460 (2022).

    Article  Google Scholar 

  42. Pfohl, P. et al. Environmental degradation of microplastics: how to measure fragmentation rates to secondary micro- and nanoplastic fragments and dissociation into dissolved organics. Environ. Sci. Technol. 56, 11323–11334 (2022).

    Article  Google Scholar 

  43. Gewert, B., Plassmann, M., Sandblom, O. & MacLeod, M. Identification of chain scission products released to water by plastic exposed to ultraviolet light. Environ. Sci. Technol. Lett. 5, 272–276 (2018).

    Article  Google Scholar 

  44. Walsh, A. N. et al. Plastic formulation is an emerging control of its photochemical fate in the ocean. Environ. Sci. Technol. 55, 12383–12392 (2021).

    Article  Google Scholar 

  45. Albergamo, V., Wohlleben, W. & Plata, D. Photochemical weathering of polyurethane microplastics produced complex and dynamic mixtures of dissolved organic chemicals. Environ. Sci. Process. Impacts https://doi.org/10.1039/D2EM00415A (2023).

  46. Brahney, J. et al. Constraining the atmospheric limb of the plastic cycle. Proc. Natl Acad. Sci. USA 118, e2020719118 (2021).

    Article  Google Scholar 

  47. Kooi, M. & Koelmans, A. A. Simplifying microplastic via continuous probability distributions for size, shape and density. Environ. Sci. Technol. Lett. 6, 551–557 (2019).

    Article  Google Scholar 

  48. Giudice, F., La Rosa, G. & Risitano, A. Product Design for the Environment: a Life Cycle Approach (CRC Press, 2006).

  49. Zimmerman, J. B. & Anastas, P. T. Toward substitution with no regrets. Science 347, 1198–1199 (2015).

    Article  Google Scholar 

  50. Zuin, V. G. & Kümmerer, K. Chemistry and materials science for a sustainable circular polymeric economy. Nat. Rev. Mater. 7, 76–78 (2022).

    Article  Google Scholar 

  51. European Union. Circular Economy Action Plan for a Cleaner and More Competitive Europe (Directorate-General for Communication, 2020); https://op.europa.eu/en/publication-detail/-/publication/45cc30f6-cd57-11ea-adf7-01aa75ed71a1

  52. McLachlan, M. S. Can the Stockholm Convention address the spectrum of chemicals currently under regulatory scrutiny? Advocating a more prominent role for modeling in POP screening assessment. Environ. Sci. Process. Impacts 20, 32–37 (2018).

    Article  Google Scholar 

  53. Wegmann, F., Cavin, L., MacLeod, M., Scheringer, M. & Hungerbühler, K. The OECD software tool for screening chemicals for persistence and long-range transport potential. Environ. Model. Softw. 24, 228–237 (2009).

    Article  Google Scholar 

  54. Gouin, T., Mackay, D., Webster, E. & Wania, F. Screening chemicals for persistence in the environment. Environ. Sci. Technol. 34, 881–884 (2000).

    Article  Google Scholar 

  55. Fenner, K. et al. Comparing estimates of persistence and long-range transport potential among multimedia models. Environ. Sci. Technol. 39, 1932–1942 (2005).

    Article  Google Scholar 

  56. Jager, T. et al. Evaluation of EUSES: Inventory of Experiences and Validation Activities, report no. 679102048 (RIVM, 1998).

  57. MacLeod, M. & Mackay, D. An assessment of the environmental fate and exposure of benzene and the chlorobenzenes in Canada. Chemosphere 38, 1777–1796 (1999).

    Article  Google Scholar 

  58. Cowan‐Ellsberry, C. E. et al. Modeling exposure to persistent chemicals in hazard and risk assessment. Integr. Environ. Assess. Manag. Int. J. 5, 662–679 (2009).

    Google Scholar 

  59. Di Guardo, A., Gouin, T., MacLeod, M. & Scheringer, M. Environmental fate and exposure models: advances and challenges in 21st century chemical risk assessment. Environ. Sci. Process. Impacts 20, 58–71 (2018).

    Article  Google Scholar 

  60. Woodward, J., Li, J., Rothwell, J. & Hurley, R. Acute riverine microplastic contamination due to avoidable releases of untreated wastewater. Nat. Sustain. 4, 793–802 (2021).

    Article  Google Scholar 

  61. Treilles, R. et al. Microplastic and microfiber fluxes in the Seine River: flood events versus dry periods. Sci. Total Environ. 805, 150123 (2022).

    Article  Google Scholar 

  62. IPCC. Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Shukla, P. R. et al.) (Cambridge Univ. Press, 2022); https://doi.org/10.1017/9781009157926

  63. Weiss, L. et al. The missing ocean plastic sink: gone with the rivers. Science 373, 107–111 (2021).

    Article  Google Scholar 

  64. Nizzetto, L., Bussi, G., Futter, M. N., Butterfield, D. & Whitehead, P. G. A theoretical assessment of microplastic transport in river catchments and their retention by soils and river sediments. Environ. Sci. Process. Impacts 18, 1050–1059 (2016).

    Article  Google Scholar 

  65. de Souza Machado, A. A., Kloas, W., Zarfl, C., Hempel, S. & Rillig, M. C. Microplastics as an emerging threat to terrestrial ecosystems. Glob. Change Biol. 24, 1405–1416 (2018).

    Article  Google Scholar 

  66. Riahi, K. et al. The shared socioeconomic pathways and their energy, land use and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

    Article  Google Scholar 

  67. Swart, R. J., Raskin, P. & Robinson, J. The problem of the future: sustainability science and scenario analysis. Glob. Environ. Change 14, 137–146 (2004).

    Article  Google Scholar 

  68. Hader, J. D., Lane, T., Boxall, A. B., MacLeod, M. & Di Guardo, A. Enabling forecasts of environmental exposure to chemicals in European agriculture under global change. Sci. Total Environ. 840, 156478 (2022).

    Article  Google Scholar 

  69. Hoellein, T. J. & Rochman, C. M. The ‘plastic cycle’: a watershed‐scale model of plastic pools and fluxes. Front. Ecol. Environ. 19, 176–183 (2021).

    Article  Google Scholar 

  70. Simon, N. et al. A binding global agreement to address the life cycle of plastics. Science 373, 43–47 (2021).

    Article  Google Scholar 

  71. Kawecki, D., Scheeder, P. R. & Nowack, B. Probabilistic material flow analysis of seven commodity plastics in Europe. Environ. Sci. Technol. 52, 9874–9888 (2018).

    Article  Google Scholar 

  72. Barker, M. et al. Introducing the FAIR Principles for research software. Sci. Data 9, 622 (2022).

    Article  Google Scholar 

  73. Ince, D. C., Hatton, L. & Graham-Cumming, J. The case for open computer programs. Nature 482, 485–488 (2012).

    Article  Google Scholar 

  74. Jenkins, T. et al. Current state of microplastic pollution research data: trends in availability and sources of open data. Front. Environ. Sci. 10, 824 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

Funding to support this work came from the European Chemical Industry Council (CEFIC) through the Long-Range Research Initiative LRI-ECO56—UTOPIA: Development of a multimedia unit world open-source model for microplastic.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conceptualization of the article. M.M. led the writing, with contributions from other authors. A.P. created the figures. All authors reviewed and edited the manuscript.

Corresponding author

Correspondence to Matthew MacLeod.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Computational Science thanks Win Cowger and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Kaitlin McCardle, in collaboration with the Nature Computational Science team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MacLeod, M., Domercq, P., Harrison, S. et al. Computational models to confront the complex pollution footprint of plastic in the environment. Nat Comput Sci 3, 486–494 (2023). https://doi.org/10.1038/s43588-023-00445-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43588-023-00445-y

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene