Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Placing nanoplastics in the context of global plastic pollution

Abstract

Numerous studies have made the ubiquitous presence of plastic in the environment undeniable, and thus it no longer comes as a surprise when scientists measure the accumulation of macroplastic litter and microplastic fragments in both urban and remote sites. Nanoplastics have recently emerged in the discussions of scientists, regulators and the public, as the weathering of macroplastics may lead to a substantial burden of nanoplastics in various ecosystems. While nanoplastics particles themselves have not (yet) been extensively measured in the environment, there is increased concern that this size fraction of plastic may be more extensively distributed and hazardous that larger-sized particles. This assessment may emanate from an unease with the term ‘nano’, which may elicit a negative response over uncertainties of the pervasiveness of nanoplastics specifically, or from the lessons learned by many years of intensive environmental health and safety research of engineered nanomaterials. Ultimately, the different physical and chemical characteristics of the different size classes of plastic pollution (macroplastics, microplastics and nanoplastics) will result in divergent fate and hazards. As nanoscientists specializing in understanding the fate, transport and interactions of nanoparticles in human and environmental systems, in this Perspective, we try to place nanoplastics in the context of global plastic pollution by assessing its sources and risks, and by assessing commonalities nanoplastics may share with other nanosized objects in environmental systems, such as engineered nanomaterials and natural colloids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Particle size and its role in biological interactions and physicochemical behaviour.
Fig. 2: Approximate sizes of natural and anthropogenic particles in comparison to organisms.
Fig. 3: A range of viewpoints influence perceptions of nanoplastics.

Similar content being viewed by others

References

  1. Boucher, J. & Friot, D. Primary Microplastics in the Oceans: A Global Evaluation of Sources (IUCN, 2017).

  2. Lambert, S. & Wagner, M. Characterisation of nanoplastics during the degradation of polystyrene. Chemosphere 145, 265–268 (2016).

    Article  CAS  Google Scholar 

  3. El Hadri, H., Gigault, J., Maxit, B., Grassl, B. & Reynaud, S. Nanoplastic from mechanically degraded primary and secondary microplastics for environmental assessments. NanoImpact 17, 100206 (2020).

    Article  Google Scholar 

  4. Sauvé, S. & Desrosiers, M. A review of what is an emerging contaminant. Chem. Cent. J. 8, 15 (2014).

    Article  Google Scholar 

  5. Haward, M. Plastic pollution of the world’s seas and oceans as a contemporary challenge in ocean governance. Nat. Commun. 9, 667 (2018).

    Article  Google Scholar 

  6. Landon-Lane, M. Corporate social responsibility in marine plastic debris governance. Mar. Pollut. Bull. 127, 310–319 (2018).

    Article  CAS  Google Scholar 

  7. Loges, B. & Jakobi, A. P. Not more than the sum of its parts: de-centered norm dynamics and the governance of plastics. Environ. Polit. 29, 1004–1023 (2019).

    Article  Google Scholar 

  8. Lau, W. W. et al. Evaluating scenarios toward zero plastic pollution. Science 369, 1455–1461 (2020).

    Article  CAS  Google Scholar 

  9. Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

    Article  Google Scholar 

  10. Ryberg, M. W., Hauschild, M. Z., Wang, F., Averous-Monnery, S. & Laurent, A. Global environmental losses of plastics across their value chains. Resour. Conserv. Recycl. 151, 104459 (2019).

    Article  Google Scholar 

  11. Boucher, J., Dubois, C., Kounina, A. & Puydarrieux, P. Review of Plastic Footprint Methodologies (IUCN, 2019).

  12. Lambert, S. & Wagner, M. in Freshwater Microplastics (eds Wagner, M. & Lambert, S.) 1–23 (Springer, 2018).

  13. Lambert, S. & Wagner, M. Environmental performance of bio-based and biodegradable plastics: the road ahead. Chem. Soc. Rev. 46, 6855–6871 (2017).

    Article  CAS  Google Scholar 

  14. Waters, C. N. et al. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 351, aad2622 (2016).

    Article  Google Scholar 

  15. Horn, O., Nalli, S., Cooper, D. & Nicell, J. Plasticizer metabolites in the environment. Water Res. 38, 3693–3698 (2004).

    Article  CAS  Google Scholar 

  16. Erler, C. & Novak, J. Bisphenol a exposure: human risk and health policy. J. Pediatr. Nurs. 25, 400–407 (2010).

    Article  Google Scholar 

  17. Wazir, U., Mokbel, K., Bisphenol, A. & Concise, A. Review of literature and a discussion of health and regulatory implications. In vivo 33, 1421–1423 (2019).

    Article  CAS  Google Scholar 

  18. Dauvergne, P. The power of environmental norms: marine plastic pollution and the politics of microbeads. Environ. Polit. 27, 579–597 (2018).

    Article  Google Scholar 

  19. Mitrano, D. M. & Wohlleben, W. Microplastic regulation should be more precise to incentivize both innovation and environmental safety. Nat. Commun. 11, 5324 (2020).

    Article  CAS  Google Scholar 

  20. Eriksen, M. et al. Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS ONE 9, e111913 (2014).

    Article  Google Scholar 

  21. Simon, B. What are the most significant aspects of supporting the circular economy in the plastic industry? Resour. Conserv. Recycl. 141, 299–300 (2019).

    Article  Google Scholar 

  22. Sources, Fate and Effects of Microplastics in the Marine Environment: A Global Assessment (GESAMP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection, 2015).

  23. Lusher, A. L., Tirelli, V., O’Connor, I. & Officer, R. Microplastics in Arctic polar waters: the first reported values of particles in surface and sub-surface samples. Sci. Rep. 5, 14947 (2015).

    Article  CAS  Google Scholar 

  24. Bergmann, M. et al. White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Sci. Adv. 5, eaax1157 (2019).

    Article  CAS  Google Scholar 

  25. Bergmann, M. et al. High quantities of microplastic in Arctic deep-sea sediments from the HAUSGARTEN observatory. Environ. Sci. Technol. 51, 11000–11010 (2017).

    Article  CAS  Google Scholar 

  26. Vianello, A., Jensen, R. L., Liu, L. & Vollertsen, J. Simulating human exposure to indoor airborne microplastics using a breathing thermal manikin. Sci. Rep. 9, 8670 (2019).

    Article  Google Scholar 

  27. Zhang, Q. et al. Microplastic fallout in different indoor environments. Environ. Sci. Technol. 54, 6530–6539 (2020).

    Article  CAS  Google Scholar 

  28. Shruti, V., Peréz-Guevara, F., Elizalde-Martínez, I. & Kutralam-Muniasamy, G. First study of its kind on the microplastic contamination of soft drinks, cold tea and energy drinks—future research and environmental considerations. Sci. Total Environ. 726, 138580 (2020).

    Article  CAS  Google Scholar 

  29. Hernandez, L. M. et al. Plastic teabags release billions of microparticles and nanoparticles into tea. Environ. Sci. Technol. 53, 12300–12310 (2019).

    Article  CAS  Google Scholar 

  30. Cox, K. D. et al. Human consumption of microplastics. Environ. Sci. Technol. 53, 7068–7074 (2019).

    Article  CAS  Google Scholar 

  31. Provencher, J. F. et al. Proceed with caution: the need to raise the publication bar for microplastics research. Sci. Total Environ. 748, 141426 (2020).

    Article  CAS  Google Scholar 

  32. Mintenig, S. M., Bauerlein, P., Koelmans, A. A., Dekker, S. C. & van Wezel, A. Closing the gap between small and smaller: towards a framework to analyse nano-and microplastics in aqueous environmental samples. Environ. Sci. Nano 5, 1640–1649 (2018).

    Article  CAS  Google Scholar 

  33. Gigault, J., Pedrono, B., Maxit, B. & Ter Halle, A. Marine plastic litter: the unanalyzed nano-fraction. Environ. Sci. Nano 3, 346–350 (2016).

    Article  CAS  Google Scholar 

  34. González-Pleiter, M. et al. Secondary nanoplastics released from a biodegradable microplastic severely impact freshwater environments. Environ. Sci. Nano 6, 1382–1392 (2019).

    Article  Google Scholar 

  35. Koelmans, A. A. Besseling, E. & Shim, W. J. in Marine Anthropogenic Litter (eds Bergmann, M. et al.) 325–340 (Springer, 2015).

  36. Wright, S. L., Thompson, R. C. & Galloway, T. S. The physical impacts of microplastics on marine organisms: a review. Environ. Pollut. 178, 483–492 (2013).

    Article  CAS  Google Scholar 

  37. Alexy, P. et al. Managing the analytical challenges related to micro-and nanoplastics in the environment and food: filling the knowledge gaps. Food Addit. Contam. Part A 37, 1–10 (2020).

    Article  CAS  Google Scholar 

  38. Sendra, M., Sparaventi, E., Novoa, B. & Figueras, A. An overview of the internalization and effects of microplastics and nanoplastics as pollutants of emerging concern in bivalves. Sci. Total Environ. 753, 142024 (2020).

    Article  Google Scholar 

  39. Al-Sid-Cheikh, M. et al. Uptake, whole-body distribution, and depuration of nanoplastics by the scallop Pecten maximus at environmentally realistic concentrations. Envion. Sci. Technol. 52, 14480–14486 (2018).

    Article  CAS  Google Scholar 

  40. Li, Z., Feng, C., Wu, Y. & Guo, X. Impacts of nanoplastics on bivalve: fluorescence tracing of organ accumulation, oxidative stress and damage. J. Hazard. Mater. 392, 122418 (2020).

    Article  CAS  Google Scholar 

  41. Bouwmeester, H., Hollman, P. C. & Peters, R. J. Potential health impact of environmentally released micro-and nanoplastics in the human food production chain: experiences from nanotoxicology. Environ. Sci. Technol. 49, 8932–8947 (2015).

    Article  CAS  Google Scholar 

  42. Wright, S. L. & Kelly, F. J. Plastic and human health: a micro issue? Environ. Sci. Technol. 51, 6634–6647 (2017).

    Article  CAS  Google Scholar 

  43. Hartmann, N. B. et al. Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environ. Sci. Technol. 53, 1039–1047 (2019).

    Article  CAS  Google Scholar 

  44. Gigault, J. et al. Current opinion: what is a nanoplastic? Environ. Pollut. 235, 1030–1034 (2018).

    Article  CAS  Google Scholar 

  45. Maynard, A. D. Don’t define nanomaterials. Nature 475, 31 (2011).

    Article  CAS  Google Scholar 

  46. Stamm, H. Nanomaterials should be defined. Nature 476, 399 (2011).

    Article  CAS  Google Scholar 

  47. Miernicki, M., Hofmann, T., Eisenberger, I., von der Kammer, F. & Praetorius, A. Legal and practical challenges in classifying nanomaterials according to regulatory definitions. Nat. Nanotechnol. 14, 208–216 (2019).

    Article  CAS  Google Scholar 

  48. Toumey, C. The philosopher and the engineer. Nat. Nanotechnol. 11, 306–307 (2016).

    Article  CAS  Google Scholar 

  49. Auffan, M. et al. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol. 4, 634–641 (2009).

    Article  CAS  Google Scholar 

  50. Zhang, H. et al. Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano 6, 4349–4368 (2012).

    Article  CAS  Google Scholar 

  51. Burello, E. & Worth, A. P. A theoretical framework for predicting the oxidative stress potential of oxide nanoparticles. Nanotoxicology 5, 228–235 (2011).

    Article  CAS  Google Scholar 

  52. Koelmans, A. A., Bakir, A., Burton, G. A. & Janssen, C. R. Microplastic as a vector for chemicals in the aquatic environment: critical review and model-supported reinterpretation of empirical studies. Environ. Sci. Technol. 50, 3315–3326 (2016).

    Article  CAS  Google Scholar 

  53. Lohmann, R. Microplastics are not important for the cycling and bioaccumulation of organic pollutants in the oceans—but should microplastics be considered POPs themselves? Integr. Environ. Assess. Manag. 13, 460–465 (2017).

    Article  CAS  Google Scholar 

  54. Cedervall, T. et al. Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl Acad. Sci. USA 104, 2050–2055 (2007).

    Article  CAS  Google Scholar 

  55. Docter, D. et al. The nanoparticle biomolecule corona: lessons learned–challenge accepted? Chem. Soc. Rev. 44, 6094–6121 (2015).

    Article  CAS  Google Scholar 

  56. Freland, S., Kaegi, R., Hufenus, R. & Mitrano, D. M. Long-term assessment of nanoplastic particle and microplastic fiber flux through a pilot wastewater treatment plant using metal-doped plastics. Water Res 182, 115860 (2020).

    Article  Google Scholar 

  57. Keller, A. S., Jimenez-Martinez, J. & Mitrano, D. M. Transport of nano-and microplastic through unsaturated porous media from sewage sludge application. Environ. Sci. Technol. 54, 911–920 (2019).

    Article  Google Scholar 

  58. Mayor, S. & Pagano, R. E. Pathways of clathrin-independent endocytosis. Nat. Rev. Mol. Cell Biol. 8, 603–612 (2007).

    Article  CAS  Google Scholar 

  59. McNeil, S. E. Nanoparticle therapeutics: a personal perspective. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1, 264–271 (2009).

    Article  CAS  Google Scholar 

  60. Wang, F. et al. Time resolved study of cell death mechanisms induced by amine-modified polystyrene nanoparticles. Nanoscale 5, 10868–10876 (2013).

    Article  CAS  Google Scholar 

  61. Geiser, M. & Kreyling, W. G. Deposition and biokinetics of inhaled nanoparticles. Part. Fibre Toxicol. 7, 2 (2010).

    Article  Google Scholar 

  62. Donaldson, K., Murphy, F. A., Duffin, R. & Poland, C. A. Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part. Fibre Toxicol. 7, 5 (2010).

    Article  Google Scholar 

  63. Geiser, M. et al. Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ. Health Perspect. 113, 1555–1560 (2005).

    Article  Google Scholar 

  64. Wick, P. et al. Barrier capacity of human placenta for nanosized materials. Environ. Health Perspect. 118, 432–436 (2010).

    Article  CAS  Google Scholar 

  65. Mastrangelo, G. et al. Lung cancer risk in workers exposed to poly (vinyl chloride) dust: a nested case-referent study. Occup. Environ. Med. 60, 423–428 (2003).

    Article  CAS  Google Scholar 

  66. Rothen-Rutishauser, B., Blank, F., Mühlfeld, C. & Gehr, P. In vitro models of the human epithelial airway barrier to study the toxic potential of particulate matter. Expert Opin. Drug Metab. Toxicol. 4, 1075–1089 (2008).

    Article  CAS  Google Scholar 

  67. Borm, P. J. & Kreyling, W. Toxicological hazards of inhaled nanoparticles—potential implications for drug delivery. J. Nanosci. Nanotechnol. 4, 521–531 (2004).

    Article  CAS  Google Scholar 

  68. Hesler, M. et al. Multi-endpoint toxicological assessment of polystyrene nano- and microparticles in different biological models in vitro. Toxicol. In Vitro 61, 104610 (2019).

    Article  CAS  Google Scholar 

  69. Donaldson, K., Stone, V., Tran, C., Kreyling, W. & Borm, P. J. Nanotoxicology 61, 727–728 (2004).

    CAS  Google Scholar 

  70. Lehner, R., Weder, C., Petri-Fink, A. & Rothen-Rutishauser, B. Emergence of nanoplastic in the environment and possible impact on human health. Environ. Sci. Technol. 53, 1748–1765 (2019).

    Article  CAS  Google Scholar 

  71. Nguyen, B. et al. Separation and analysis of microplastics and nanoplastics in complex environmental samples. Acc. Chem. Res. 52, 858–866 (2019).

    Article  CAS  Google Scholar 

  72. Hüffer, T., Praetorius, A., Wagner, S., von der Kammer, F. & Hofmann, T. Microplastic exposure assessment in aquatic environments: learning from similarities and differences to engineered nanoparticles. Environ. Sci. Technol. 51, 2499–2507 (2017).

    Article  Google Scholar 

  73. Zhang, M. et al. Detection of engineered nanoparticles in aquatic environments: current status and challenges in enrichment, separation, and analysis. Environ. Sci. Nano 6, 709–735 (2019).

    Article  CAS  Google Scholar 

  74. Hildebrandt, L., Mitrano, D. M., Zimmermann, T. & Pröfrock, D. A nanoplastic sampling and enrichment approach by continuous flow centrifugation. Front. Environ. Sci. 8, 89 (2020).

    Google Scholar 

  75. Hochella, M. F. et al. Natural, incidental, and engineered nanomaterials and their impacts on the Earth system. Science 363, eaau8299 (2019).

    Article  Google Scholar 

  76. Hochell, M. F., Aruguete, D. M., Kim, B. & Madden, A. S. in Nature’s Nanostructures 1–42 (Pan Stanford, 2012).

  77. Nanotechnologies—Terminology, I., Definitions for Nano-objects—Nanoparticle, Nanofibre and Nanoplate (International Organization for Standardization, 2008).

  78. Buffle, J. The key role of environmental colloids/nanoparticles for the sustainability of life. Environ. Chem. 3, 155–158 (2006).

    Article  CAS  Google Scholar 

  79. Yang, Y. et al. Characterization of food-grade titanium dioxide: the presence of nanosized particles. Environ. Sci. Technol. 48, 6391–6400 (2014).

    Article  CAS  Google Scholar 

  80. Stark, W. J., Stoessel, P. R., Wohlleben, W. & Hafner, A. Industrial applications of nanoparticles. Chem. Soc. Rev. 44, 5793–5805 (2015).

    Article  CAS  Google Scholar 

  81. Mitrano, D. M., Motellier, S., Clavaguera, S. & Nowack, B. Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products. Environ. Int. 77, 132–147 (2015).

    Article  CAS  Google Scholar 

  82. Wagner, S., Gondikas, A., Neubauer, E., Hofmann, T. & von der Kammer, F. Spot the difference: engineered and natural nanoparticles in the environment—release, behavior, and fate. Angew. Chem. Int. Ed. 53, 12398–12419 (2014).

    CAS  Google Scholar 

  83. Zhang, Y. et al. Atmospheric microplastics: a review on current status and perspectives. Earth Sci. Rev. 203, 103118 (2020).

    Article  CAS  Google Scholar 

  84. Cole, M., Lindeque, P., Halsband, C. & Galloway, T. S. Microplastics as contaminants in the marine environment: a review. Mar. Pollut. Bull. 62, 2588–2597 (2011).

    Article  CAS  Google Scholar 

  85. Pico, Y., Alfarhan, A. & Barcelo, D. Nano-and microplastic analysis: focus on their occurrence in freshwater ecosystems and remediation technologies. Trends Anal. Chem. 113, 409–425 (2019).

    Article  CAS  Google Scholar 

  86. Oberdörster, E. Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ. Health Perspect. 112, 1058–1062 (2004).

    Article  Google Scholar 

  87. Yazdi, A. S. et al. Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1α and IL-1β. Proc. Natl Acad. Sci. USA 107, 19449–19454 (2010).

    Article  CAS  Google Scholar 

  88. Horngren, T. & Kolodziejczyk, B. Microplastic and nanoplastic pollution threatens our environment. How should we respond? World Economic Forum https://www.weforum.org/agenda/2018/10/micro-and-nano-plastics-the-next-global-epidemics/ (2018).

  89. Backhaus, T. & Wagner, M. Microplastics in the environment: Much ado about nothing? A debate. Global Chall. 4, 1900022 (2018).

    Article  Google Scholar 

  90. Wigger, H., Kägi, R., Wiesner, M. & Nowack, B. Exposure and possible risks of engineered nanomaterials in the environment—current knowledge and directions for the future. Rev. Geophys. 58, e2020RG000710 (2020).

    Article  Google Scholar 

  91. Jesus, S. et al. Hazard assessment of polymeric nanobiomaterials for drug delivery: what can we learn from literature so far. Front. Bioeng. Biotechnol. 7, 261 (2019).

    Article  Google Scholar 

  92. Hauser, M., Li, G. & Nowack, B. Environmental hazard assessment for polymeric and inorganic nanobiomaterials used in drug delivery. J. Nanobiotechnol. 17, 56 (2019).

    Article  Google Scholar 

  93. Reidy, B., Haase, A., Luch, A., Dawson, K. A. & Lynch, I. Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials 6, 2295–2350 (2013).

    Article  CAS  Google Scholar 

  94. Maynard, A. D. & Aitken, R. J. ‘Safe handling of nanotechnology’ ten years on. Nat. Nanotechnol. 11, 998–1000 (2016).

    Article  CAS  Google Scholar 

  95. Valsami-Jones, E. & Lynch, I. How safe are nanomaterials? Science 350, 388–389 (2015).

    Article  CAS  Google Scholar 

  96. Milosevic, A., Romeo, D. & Wick, P. Understanding nanomaterial biotransformation: an unmet challenge to achieving predictive nanotoxicology. Small 16, 1907650 (2020).

    Article  CAS  Google Scholar 

  97. Stone, V. et al. ITS-NANO—prioritising nanosafety research to develop a stakeholder driven intelligent testing strategy. Part. Fibre Toxicol. 11, 9 (2014).

    Article  Google Scholar 

  98. Grieger, K. et al. Best practices from nano-risk analysis relevant for other emerging technologies. Nat. Nanotechnol. 14, 998–1001 (2019).

    Article  CAS  Google Scholar 

  99. Hüffer, T., Praetorius, A., Wagner, S., von der Kammer, F. & Hofmann, T. Microplastic exposure assessment in aquatic environments: learning from similarities and differences to engineered nanoparticles. Environ. Sci. Technol. 51, 2499–2507 (2017).

    Article  Google Scholar 

  100. Hristozov, D. et al. Frameworks and tools for risk assessment of manufactured nanomaterials. Environ. Int. 95, 36–53 (2016).

    Article  CAS  Google Scholar 

  101. Romeo, D., Salieri, B., Hischier, R., Nowack, B. & Wick, P. An integrated pathway based on in vitro data for the human hazard assessment of nanomaterials. Environ. Int. 137, 105505 (2020).

    Article  CAS  Google Scholar 

  102. Salieri, B. et al. Relative potency factor approach enables the use of in vitro information for estimation of human effect factors for nanoparticle toxicity in life-cycle impact assessment. Nanotoxicology 14, 275–286 (2020).

    Article  CAS  Google Scholar 

  103. Faria, M. et al. Minimum information reporting in bio–nano experimental literature. Nat. Nanotechnol. 13, 777–785 (2018).

    Article  CAS  Google Scholar 

  104. Fox-Glassman, K. T. & Weber, E. U. What makes risk acceptable? Revisiting the 1978 psychological dimensions of perceptions of technological risks. J. Math. Psychol. 75, 157–169 (2016).

    Article  Google Scholar 

  105. Leslie, H. & Depledge, M. Where is the evidence that human exposure to microplastics is safe? Environ. Int. 142, 105807 (2020).

    Article  CAS  Google Scholar 

  106. Wardman, T., Koelmans, A. A., Whyte, J. & Pahl, S. Communicating the absence of evidence for microplastics risk: balancing sensation and reflection. Environ. Int. 150, 106116 (2020).

    Article  Google Scholar 

  107. Gouin, T. et al. Clarifying the absence of evidence regarding human health risks to microplastic particles in drinking-water: high quality robust data wanted. Environ. Int. 150, 106141 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

D.M.M. was supported through the Swiss National Science Foundation, grant number PCEFP2_186856.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise M. Mitrano.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Martin Wagner and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitrano, D.M., Wick, P. & Nowack, B. Placing nanoplastics in the context of global plastic pollution. Nat. Nanotechnol. 16, 491–500 (2021). https://doi.org/10.1038/s41565-021-00888-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-021-00888-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing