Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Recognizing the long-term impacts of plastic particles for preventing distortion in decision-making

Abstract

There is a considerable knowledge gap regarding the long-term fate of plastics in the environment. Acknowledging this gap, in the context of life cycle assessment methods, is critical to account for the long-term fate of plastics in the decision-making process. Ignoring the long-term potential for environmental and health damage from plastic particles makes it difficult to defend a quantitative environmental assessment comparing fossil-based conventional plastics with other alternative materials. This Review highlights that the addition of a plastic particulate footprint as a midpoint impact indicator in life cycle assessments should be considered to quantify these overlooked long-term impacts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The life cycle of plastics.
Fig. 2: Environmental impacts of 1 kg of PET and PHA and their potential final fate damage, based on current LCA practice.
Fig. 3: Environmental impacts of an EoL scenario without potential for particulate plastic impacts.

Similar content being viewed by others

References

  1. Rillig, M. C., Kim, S. W., Kim, T. Y. & Waldman, W. R. The global plastic toxicity debt. Environ. Sci. Technol. 55, 2717–2719 (2021).

    Article  CAS  Google Scholar 

  2. Rahman, A., Sarkar, A., Yadav, O. P., Achari, G. & Slobodnik, J. Potential human health risks due to environmental exposure to nano- and microplastics and knowledge gaps: a scoping review. Sci. Total Environ. 757, 143872 (2021).

    Article  CAS  Google Scholar 

  3. Sorensen, R. M. & Jovanović, B. From nanoplastic to microplastic: a bibliometric analysis on the presence of plastic particles in the environment. Mar. Pollut. Bull. 163, 111926 (2021).

    Article  CAS  Google Scholar 

  4. Nielsen, T. D., Hasselbalch, J., Holmberg, K. & Stripple, J. Politics and the plastic crisis: a review throughout the plastic life cycle. Wiley Interdiscip. Rev. Energy Environ. 9, e360 (2020).

    CAS  Google Scholar 

  5. Bank, M. S. & Hansson, S. V. The plastic cycle: a novel and holistic paradigm for the Anthropocene. Environ. Sci. Technol. 53, 7177–7179 (2019).

    Article  CAS  Google Scholar 

  6. Zheng, J. & Suh, S. Strategies to reduce the global carbon footprint of plastics. Nat. Clim. Change 9, 374–378 (2019).

    Article  Google Scholar 

  7. Clause, A. G., Celestian, A. J. & Pauly, G. B. Plastic ingestion by freshwater turtles: a review and call to action. Sci. Rep. 11, 5672 (2021).

    Article  CAS  Google Scholar 

  8. Rai, P. K., Lee, J. L., Brow, R. & Kim, K. H. Environmental fate, ecotoxicity biomarkers, and potential health effects of micro- and nano-scale plastic contamination. J. Hazard. Mater. 403, 123910 (2021).

    Article  CAS  Google Scholar 

  9. Hernandez, L. M. et al. Plastic teabags release billions of microparticles and nanoparticles into tea. Environ. Sci. Technol. 53, 12300–12310 (2019).

    Article  CAS  Google Scholar 

  10. Sommer, F. et al. Tire abrasion as a major source of microplastics in the environment. Aerosol Air Qual. Res. 18, 2014–2028 (2018).

    Article  CAS  Google Scholar 

  11. Bergmann, M. et al. White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Sci. Adv. 5, 1157 (2019).

    Article  CAS  Google Scholar 

  12. Golwala, H., Zhang, X., Iskander, S. M. & Smith, A. L. Solid waste: an overlooked source of microplastics to the environment. Sci. Total Environ. 769, 144581 (2021).

    Article  CAS  Google Scholar 

  13. Chamas, A. et al. Degradation rates of plastics in the environment. ACS Sustain. Chem. Eng. 8, 3494–3511 (2020).

    Article  CAS  Google Scholar 

  14. Brahney, J., Hallerud, M., Heim, E., Hahnenberger, M. & Sukumaran, S. Plastic rain in protected areas of the United States. Science 368, 1257–1260 (2020).

    Article  CAS  Google Scholar 

  15. González-Pleiter, M. et al. Occurrence and transport of microplastics sampled within and above the planetary boundary layer. Sci. Total Environ. 761, 143213 (2021).

    Article  CAS  Google Scholar 

  16. Kwak, J. I. & An, Y. J. Microplastic digestion generates fragmented nanoplastics in soils and damages earthworm spermatogenesis and coelomocyte viability. J. Hazard. Mater. 402, 124034 (2021).

    Article  CAS  Google Scholar 

  17. Lehner, R., Weder, C., Petri-Fink, A. & Rothen-Rutishauser, B. Emergence of nanoplastic in the environment and possible impact on human health. Environ. Sci. Technol. 53, 1748–1765 (2019).

    Article  CAS  Google Scholar 

  18. Choi, D. et al. In vitro toxicity from a physical perspective of polyethylene microplastics based on statistical curvature change analysis. Sci. Total Environ. 752, 142242 (2021).

    Article  CAS  Google Scholar 

  19. Cox, K. D. et al. Human consumption of microplastics. Environ. Sci. Technol. 53, 7068–7074 (2019).

    Article  CAS  Google Scholar 

  20. Zimmermann, L., Dierkes, G., Ternes, T. A., Völker, C. & Wagner, M. Benchmarking the in vitro toxicity and chemical composition of plastic consumer products. Environ. Sci. Technol. 53, 11467–11477 (2019).

    Article  CAS  Google Scholar 

  21. Lithner, D., Larsson, A. & Dave, G. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Sci. Total Environ. 409, 3309–3324 (2011).

    Article  CAS  Google Scholar 

  22. Hahladakis, J. N., Velis, C., Weber, R., Iacovidou, E. & Purnell, P. An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater. 344, 179–199 (2018).

    Article  CAS  Google Scholar 

  23. Galloway T. S. et al. in Plastics and the Environment (eds Harrison, R. M. & Hester, R. E.) 131–155 (RSC, 2019).

  24. Bergami, E. et al. Long-term toxicity of surface-charged polystyrene nanoplastics to marine planktonic species Dunaliella tertiolecta and Artemia franciscana. Aquat. Toxicol. 189, 159–169 (2017).

    Article  CAS  Google Scholar 

  25. Zhang, F., Wang, Z., Wang, S., Fang, H. & Wang, D. Aquatic behavior and toxicity of polystyrene nanoplastic particles with different functional groups: complex roles of pH, dissolved organic carbon and divalent cations. Chemosphere 228, 195–203 (2019).

    Article  CAS  Google Scholar 

  26. Shiu, R. F. et al. Nano-plastics induce aquatic particulate organic matter (microgels) formation. Sci. Total Environ. 706, 135681 (2020).

    Article  CAS  Google Scholar 

  27. He, B., Duodu, G. O., Rintoul, L., Ayoko, G. A. & Goonetilleke, A. Influence of microplastics on nutrients and metal concentrations in river sediments. Environ. Pollut. 263, 114490 (2020).

    Article  CAS  Google Scholar 

  28. Rillig, M. C. & Lehmann, A. Microplastic in terrestrial ecosystems. Science 368, 1430–1431 (2020).

    Article  CAS  Google Scholar 

  29. Fred-Ahmadu, O. H. et al. Interaction of chemical contaminants with microplastics: principles and perspectives. Sci. Total Environ. 706, 135978 (2020).

    Article  CAS  Google Scholar 

  30. Bradney, L. et al. Particulate plastics as a vector for toxic trace-element uptake by aquatic and terrestrial organisms and human health risk. Environ. Int. 131, 104937 (2019).

    Article  CAS  Google Scholar 

  31. Verdú, I., González-Pleiter, M., Leganés, F., Rosal, R. & Fernández-Piñas, F. Microplastics can act as vector of the biocide triclosan exerting damage to freshwater microalgae. Chemosphere 266, 129193 (2021).

    Article  CAS  Google Scholar 

  32. Deng, Y. et al. Enhanced reproductive toxicities induced by phthalates contaminated microplastics in male mice (Mus musculus). J. Hazard. Mater. 406, 124644 (2021).

    Article  CAS  Google Scholar 

  33. Schwarz, A. E. et al. Plastic recycling in a circular economy; determining environmental performance through an LCA matrix model approach. Waste Manage. 121, 331–342 (2021).

    Article  CAS  Google Scholar 

  34. Sazdovski, I., Bala, A. & Fullana-i-Palmer, P. Linking LCA literature with circular economy value creation: a review on beverage packaging. Sci. Total Environ. 771, 145322 (2021).

    Article  CAS  Google Scholar 

  35. Millar, N., McLaughlin, E. & Börger, T. The circular economy: swings and roundabouts? Ecol. Econ. 158, 11–19 (2019).

    Article  Google Scholar 

  36. Korhonen, J., Nuur, C., Feldmann, A. & Birkie, S. E. Circular economy as an essentially contested concept. J. Clean. Prod. 175, 544–552 (2018).

    Article  Google Scholar 

  37. Sonnemann, G. et al. in Life Cycle Assessment: Theory and Practice (eds Hauschild, M. Z. et al.) 429–463 (Springer, 2018).

  38. McManus, M. C. et al. Challenge clusters facing LCA in environmental decision-making—what we can learn from biofuels. Int. J. Life Cycle Assess. 20, 1399–1414 (2015).

    Article  Google Scholar 

  39. Kousemaker, T. M., Jonker, G. H. & Vakis, A. I. LCA practices of plastics and their recycling: a critical review. Appl. Sci. 11, 3305 (2021).

    Article  CAS  Google Scholar 

  40. Schleicher, U. The uses of life cycle assessment for European legislation. Int. J. Life Cycle Assess. 1, 42–44 (1996).

    Article  Google Scholar 

  41. European Parliament and Council Directive 94/62/EC of 20 December 1994 on packaging and packaging waste. Official J. L 365, 10–23 (1994).

  42. Tamburini, E. et al. Plastic (PET) vs bioplastic (PLA) or refillable aluminium bottles—what is the most sustainable choice for drinking water? A life-cycle (LCA) analysis. Environ. Res. 196, 110974 (2021).

    Article  CAS  Google Scholar 

  43. Ahamed, A. et al. Life cycle assessment of plastic grocery bags and their alternatives in cities with confined waste management structure: a Singapore case study. J. Clean. Prod. 278, 123956 (2021).

    Article  CAS  Google Scholar 

  44. Zanghelini, G. M., Cherubini, E., Dias, R., Kabe, Y. H. O. & Delgado, J. J. S. Comparative life cycle assessment of drinking straws in Brazil. J. Clean. Prod. 276, 123070 (2020).

    Article  Google Scholar 

  45. Abejón, R., Bala, A., Vázquez-Rowe, I., Aldaco, R. & Fullana-i-Palmer, P. When plastic packaging should be preferred: life cycle analysis of packages for fruit and vegetable distribution in the Spanish peninsular market. Resour. Conserv. Recycl. 155, 104666 (2020).

    Article  Google Scholar 

  46. Liu, G. et al. Environmental impacts characterization of packaging waste generated by urban food delivery services. A big-data analysis in Jing-Jin-Ji region (China). Waste Manage. 117, 157–169 (2020).

    Article  Google Scholar 

  47. Cherubini, E. et al. Environmental sustainability for highways operation: comparative analysis of plastic and steel screen anti-glare systems. J. Clean. Prod. 240, 118152 (2019).

    Article  Google Scholar 

  48. Herberz, T., Barlow, C. Y. & Finkbeiner, M. Sustainability assessment of a single-use plastics ban. Sustainability 12, 3746 (2020).

    Article  CAS  Google Scholar 

  49. Van Der Werf, H. M. G., Knudsen, M. T. & Cederberg, C. Towards better representation of organic agriculture in life cycle assessment. Nat. Sustain. 3, 419–425 (2020).

    Article  Google Scholar 

  50. Maraveas, C. Environmental sustainability of plastic in agriculture. Agriculture 10, 310 (2020).

    Article  CAS  Google Scholar 

  51. Mitrano, D. M., Wick, P. & Nowack, B. Placing nanoplastics in the global context of plastic pollution. Nat. Nanotechnol. 16, 491–500 (2021).

    Article  CAS  Google Scholar 

  52. Kefer, S., Miesbauer, O. & Langowski, H. C. Environmental microplastic particles vs. engineered plastic microparticles—a comparative review. Polymers 13, 2881 (2021).

    Article  CAS  Google Scholar 

  53. Nessi, S. et al. Life Cycle Assessment (LCA) of Alternative Feedstocks for Plastics Production (Publications Office of the European Union, 2021).

  54. David, G., Michel, J., Gastaldi, E., Gontard, N. & Angellier-Coussy, H. How vine shoots as fillers impact the biodegradation of PHBV-based composites. Int. J. Mol. Sci. 21, 228 (2020).

    Article  CAS  Google Scholar 

  55. Suzuki, M., Tachibana, Y., Kasuya & Ki. Biodegradability of poly(3-hydroxyalkanoate) and poly(ε-caprolactone) via biological carbon cycles in marine environments. Polym. J. 53, 47–66 (2021).

    Article  CAS  Google Scholar 

  56. Croxatto Vega, G. C. et al. Maximizing environmental impact savings potential through innovative biorefinery alternatives: an application of the TM-LCA framework for regional scale impact assessment. Sustainability 11, 3836 (2019).

    Article  CAS  Google Scholar 

  57. Wernet, G. et al. The ecoinvent database version 3 (part I): overview and methodology. Int. J. Life Cycle Assess. 21, 1218–1230 (2016).

    Article  Google Scholar 

  58. Bisinella, V., Albizzati, P. F., Astrup, T. F. & Damgaard, A. Life Cycle Assessment of Management Options for Beverage Packaging Waste (Danish Ministry of Environment and Food, 2018).

  59. Pizzol, M., Weidema, B., Brandão, M. & Osset, P. Monetary valuation in life cycle assessment: a review. J. Clean. Prod. 86, 170–179 (2015).

    Article  Google Scholar 

  60. Sohn, J. et al. Argumentation corrected context weighting-life cycle assessment: a practical method of including stakeholder perspectives in multi-criteria decision support for LCA. Sustainability 12, 2170 (2020).

    Article  Google Scholar 

  61. Huijbregts, M. A. J. et al. ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 22, 138–147 (2017).

    Article  Google Scholar 

  62. OpenLCA v.1.10 (GreenDelta, 2021); https://OpenLCA.org

  63. Eriksen, M. K., Pivnenko, K., Faraca, G., Boldrin, A. & Astrup, T. F. Dynamic material flow analysis of PET, PE, and PP flows in Europe: evaluation of the potential for circular economy. Environ. Sci. Technol. 54, 16166–16175 (2020).

    Article  CAS  Google Scholar 

  64. Matthews, C., Moran, F. & Jaiswal, A. K. A review on European Union’s strategy for plastics in a circular economy and its impact on food safety. J. Clean. Prod. 283, 125263 (2021).

    Article  Google Scholar 

  65. Corona, B., Shen, L., Reike, D., Rosales Carreon, J. & Worrell, E. Towards sustainable development through the circular economy: a review and critical assessment on current circularity metrics. Resour. Conserv. Recyc. 151, 1–15 (2019).

    Article  Google Scholar 

  66. Bjørnbet, M. M., Skaar, C., Fet, A. M. & Schulte, K. Ø. Circular economy in manufacturing companies: a review of case study literature. J. Clean. Prod. 294, 126268 (2021).

    Article  Google Scholar 

  67. Jahnke, A. et al. Reducing uncertainty and confronting ignorance about the possible impacts of weathering plastic in the marine environment. Environ. Sci. Technol. Lett. 4, 85–90 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

N.G., G.D. and J.S. acknowledge financial support from Project NoAW: No Agro-Waste—Innovative approaches to turn agricultural waste into ecological and economic assets (http://noaw2020.eu/). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 688338.

Author information

Authors and Affiliations

Authors

Contributions

N.G. led the manuscript conception, design, writing and revisions. G.D., A.G. and J.S. contributed to the design of the work, content development, writing and revisions.

Corresponding authors

Correspondence to Nathalie Gontard, Grégoire David, Alice Guilbert or Joshua Sohn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Viktor Kouloumpis, Timothy M. Kousemaker and Stig Irving Olsen for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gontard, N., David, G., Guilbert, A. et al. Recognizing the long-term impacts of plastic particles for preventing distortion in decision-making. Nat Sustain 5, 472–478 (2022). https://doi.org/10.1038/s41893-022-00863-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-022-00863-2

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene