Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Combinatorial interventions in aging

Subjects

Abstract

Insight on the underlying mechanisms of aging will advance our ability to extend healthspan, treat age-related pathology and improve quality of life. Multiple genetic and pharmacological manipulations extend longevity in different species, yet monotherapy may be relatively inefficient, and we have limited data on the effect of combined interventions. Here we summarize interactions between age-related pathways and discuss strategies to simultaneously retard these in different organisms. In some cases, combined manipulations additively increase their impact on common hallmarks of aging and lifespan, suggesting they quantitatively participate within the same pathway. In other cases, interactions affect different hallmarks, suggesting their joint manipulation may independently maximize their effects on lifespan and healthy aging. While most interaction studies have been conducted with invertebrates and show varying levels of translatability, the conservation of pro-longevity pathways offers an opportunity to identify ‘druggable’ targets relevant to multiple human age-associated pathologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hierarchical frameworks for aging interaction analysis.
Fig. 2: Select interactions between mechanisms or hallmarks of aging.
Fig. 3: An example of interactions within a hallmark: mitochondria-related mechanisms.
Fig. 4: Overview of interactions between different processes (hallmarks) of aging.

Similar content being viewed by others

References

  1. de Magalhaes, J. P. & Toussaint, O. GenAge: a genomic and proteomic network map of human ageing. FEBS Lett. 571, 243–247 (2004).

    Article  PubMed  Google Scholar 

  2. Barardo, D. G. et al. Machine learning for predicting lifespan-extending chemical compounds. Aging 9, 1721–1737 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Parkhitko, A. A., Filine, E., Mohr, S. E., Moskalev, A. & Perrimon, N. Targeting metabolic pathways for extension of lifespan and healthspan across multiple species. Ageing Res. Rev. 64, 101188 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Moskalev, A. et al. Targeting aging mechanisms: pharmacological perspectives. Trends Endocrinol. Metab. 33, 266–280 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Hoffman, J. M. et al. Effects of age, sex, and genotype on high-sensitivity metabolomic profiles in the fruit fly, Drosophila melanogaster. Aging Cell 13, 596–604 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Parkhitko, A. A., Jouandin, P., Mohr, S. E. & Perrimon, N. Methionine metabolism and methyltransferases in the regulation of aging and lifespan extension across species. Aging Cell 18, e13034 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).

    Article  CAS  PubMed  Google Scholar 

  8. Golubev, A. G. An essay on the nominal vs. real definitions of aging. Biogerontology 22, 441–457 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Liu, Y. J., McIntyre, R. L., Janssens, G. E. & Houtkooper, R. H. Mitochondrial fission and fusion: a dynamic role in aging and potential target for age-related disease. Mech. Ageing Dev. 186, 111212 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Riuzzi, F. et al. Cellular and molecular mechanisms of sarcopenia: the S100B perspective. J. Cachexia Sarcopenia Muscle 9, 1255–1268 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  11. He, Y. et al. Cellular senescence in sarcopenia: possible mechanisms and therapeutic potential. Front. Cell Dev. Biol. 9, 793088 (2021).

    Article  PubMed  Google Scholar 

  12. Phillips, P. C. The language of gene interaction. Genetics 149, 1167–1171 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gems, D., Pletcher, S. & Partridge, L. Interpreting interactions between treatments that slow aging. Aging Cell 1, 1–9 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Kang, J. et al. Ribosomal proteins and human diseases: molecular mechanisms and targeted therapy. Signal Transduct. Target. Ther. 6, 323 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ferre, M., Amati-Bonneau, P., Tourmen, Y., Malthiery, Y. & Reynier, P. eOPA1: an online database for OPA1 mutations. Hum. Mutat. 25, 423–428 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Berdynski, M. et al. SOD1 mutations associated with amyotrophic lateral sclerosis analysis of variant severity. Sci. Rep. 12, 103 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mannick, J. B. & Lamming, D. W. Targeting the biology of aging with mTOR inhibitors. Nat. Aging https://doi.org/10.1038/s43587-023-00416-y (2023).

    Article  PubMed  Google Scholar 

  19. Tatar, M., Bartke, A. & Antebi, A. The endocrine regulation of aging by insulin-like signals. Science 299, 1346–1351 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Chen, D. et al. Germline signaling mediates the synergistically prolonged longevity produced by double mutations in daf-2 and rsks-1 in C. elegans. Cell Rep. 5, 1600–1610 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lan, J. et al. Translational regulation of non-autonomous mitochondrial stress response promotes longevity. Cell Rep. 28, 1050–1062 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hansen, M. et al. Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging cell 6, 95–110 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Greer, E. L. & Brunet, A. Different dietary restriction regimens extend lifespan by both independent and overlapping genetic pathways in C. elegans. Aging Cell 8, 113–127 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Kenyon, C., Chang, J., Gensch, E., Rudner, A. & Tabtiang, R. A C. elegans mutant that lives twice as long as wild type. Nature 366, 461–464 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Giannakou, M. E., Goss, M. & Partridge, L. Role of dFOXO in lifespan extension by dietary restriction in Drosophila melanogaster: not required, but its activity modulates the response. Aging Cell 7, 187–198 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Min, K. J., Yamamoto, R., Buch, S., Pankratz, M. & Tatar, M. Drosophila lifespan control by dietary restriction independent of insulin-like signaling. Aging Cell 7, 199–206 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Brown-Borg, H. M., Borg, K. E., Meliska, C. J. & Bartke, A. Dwarf mice and the ageing process. Nature 384, 33 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Bartke, A. et al. Extending the lifespan of long-lived mice. Nature 414, 412 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Bonkowski, M. S., Rocha, J. S., Masternak, M. M., Al Regaiey, K. A. & Bartke, A. Targeted disruption of growth hormone receptor interferes with the beneficial actions of calorie restriction. Proc. Natl Acad. Sci. USA 103, 7901–7905 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yu, D. et al. Calorie-restriction-induced insulin sensitivity is mediated by adipose mTORC2 and not required for lifespan extension. Cell Rep. 29, 236–248 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dhillon, R. S. et al. SIRT3 deficiency decreases oxidative metabolism capacity but increases lifespan in male mice under caloric restriction. Aging Cell 21, e13721 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hofer, S. J., Davinelli, S., Bergmann, M., Scapagnini, G. & Madeo, F. Caloric restriction mimetics in nutrition and clinical trials. Front. Nutr. 8, 717343 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Madeo, F., Pietrocola, F., Eisenberg, T. & Kroemer, G. Caloric restriction mimetics: towards a molecular definition. Nat. Rev. Drug Discov. 13, 727–740 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Parkhitko, A. A., Favorova, O. O., Khabibullin, D. I., Anisimov, V. N. & Henske, E. P. Kinase mTOR: regulation and role in maintenance of cellular homeostasis, tumor development, and aging. Biochemistry 79, 88–101 (2014).

    CAS  PubMed  Google Scholar 

  35. Selvarani, R., Mohammed, S. & Richardson, A. Effect of rapamycin on aging and age-related diseases-past and future. Geroscience 43, 1135–1158 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Bjedov, I. et al. Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab. 11, 35–46 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fok, W. C. et al. Short-term treatment with rapamycin and dietary restriction have overlapping and distinctive effects in young mice. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 68, 108–116 (2013).

    Article  CAS  Google Scholar 

  38. Fok, W. C. et al. Combined treatment of rapamycin and dietary restriction has a larger effect on the transcriptome and metabolome of liver. Aging Cell 13, 311–319 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Fok, W. C. et al. Short-term rapamycin treatment in mice has few effects on the transcriptome of white adipose tissue compared to dietary restriction. Mech. Ageing Dev. 140, 23–29 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bratic, A. & Larsson, N. G. The role of mitochondria in aging. J. Clin. Investig. 123, 951–957 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Feng, J., Bussiere, F. & Hekimi, S. Mitochondrial electron transport is a key determinant of life span in Caenorhabditis elegans. Dev. Cell 1, 633–644 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Dillin, A. et al. Rates of behavior and aging specified by mitochondrial function during development. Science 298, 2398–2401 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Copeland, J. M. et al. Extension of Drosophila life span by RNAi of the mitochondrial respiratory chain. Curr. Biol. 19, 1591–1598 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Yang, W. & Hekimi, S. Two modes of mitochondrial dysfunction lead independently to lifespan extension in Caenorhabditis elegans. Aging Cell 9, 433–447 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Kayser, E. B., Sedensky, M. M. & Morgan, P. G. The effects of complex I function and oxidative damage on lifespan and anesthetic sensitivity in Caenorhabditis elegans. Mech. Ageing Dev. 125, 455–464 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Youle, R. J. & van der Bliek, A. M. Mitochondrial fission, fusion, and stress. Science 337, 1062–1065 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu, Y. J. et al. Mitochondrial translation and dynamics synergistically extend lifespan in C. elegans through HLH-30. J. Cell Biol. https://doi.org/10.1083/jcb.201907067 (2020).

  48. Navarro-Gonzalez, C. et al. Mutations in the Caenorhabditis elegans orthologs of human genes required for mitochondrial tRNA modification cause similar electron transport chain defects but different nuclear responses. PLoS Genet. 13, e1006921 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Suzuki, T. & Suzuki, T. A complete landscape of post-transcriptional modifications in mammalian mitochondrial tRNAs. Nucleic Acids Res. 42, 7346–7357 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Arantes-Oliveira, N., Berman, J. R. & Kenyon, C. Healthy animals with extreme longevity. Science 302, 611 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Hsin, H. & Kenyon, C. Signals from the reproductive system regulate the lifespan of C. elegans. Nature 399, 362–366 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Tu, M. P., Epstein, D. & Tatar, M. The demography of slow aging in male and female Drosophila mutant for the insulin-receptor substrate homologue chico. Aging Cell 1, 75–80 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Clancy, D. J. et al. Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292, 104–106 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Oliver, B., Perrimon, N. & Mahowald, A. P. The ovo locus is required for sex-specific germ line maintenance in Drosophila. Genes Dev. 1, 913–923 (1987).

    Article  CAS  PubMed  Google Scholar 

  55. Sgro, C. M. & Partridge, L. A delayed wave of death from reproduction in Drosophila. Science 286, 2521–2524 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Antebi, A. Steroid regulation of C. elegans diapause, developmental timing, and longevity. Curr. Top. Dev. Biol. 105, 181–212 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Larsen, P. L., Albert, P. S. & Riddle, D. L. Genes that regulate both development and longevity in Caenorhabditis elegans. Genetics 139, 1567–1583 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Perez-Jimenez, M. M. et al. Steroid hormones sulfatase inactivation extends lifespan and ameliorates age-related diseases. Nat. Commun. 12, 49 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kregel, K. C. & Zhang, H. J. An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R18–R36 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Snell, T. W., Fields, A. M. & Johnston, R. K. Antioxidants can extend lifespan of Brachionus manjavacas (Rotifera), but only in a few combinations. Biogerontology 13, 261–275 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wu, J. Z. et al. Pyrroloquinoline quinone enhances the resistance to oxidative stress and extends lifespan upon DAF-16 and SKN-1 activities in C. elegans. Exp. Gerontol. 80, 43–50 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Sasakura, H. et al. Lifespan extension by peroxidase and dual oxidase-mediated ROS signaling through pyrroloquinoline quinone in C. elegans. J. Cell Sci. 130, 2631–2643 (2017).

    CAS  PubMed  Google Scholar 

  63. Schriner, S. E. et al. Decreased mitochondrial superoxide levels and enhanced protection against paraquat in Drosophila melanogaster supplemented with Rhodiola rosea. Free Radic. Res 43, 836–843 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Schriner, S. E., Avanesian, A., Liu, Y., Luesch, H. & Jafari, M. Protection of human cultured cells against oxidative stress by Rhodiola rosea without activation of antioxidant defenses. Free Radic. Biol. Med. 47, 577–584 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Bayliak, M. M. & Lushchak, V. I. The golden root, Rhodiola rosea, prolongs lifespan but decreases oxidative stress resistance in yeast Saccharomyces cerevisiae. Phytomedicine 18, 1262–1268 (2011).

    Article  PubMed  Google Scholar 

  66. Wiegant, F. A. et al. Plant adaptogens increase lifespan and stress resistance in C. elegans. Biogerontology 10, 27–42 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Schriner, S. E. et al. Extension of Drosophila lifespan by Rhodiola rosea through a mechanism independent from dietary restriction. PLoS ONE 8, e63886 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Van Raamsdonk, J. M. & Hekimi, S. Deletion of the mitochondrial superoxide dismutase sod-2 extends lifespan in Caenorhabditis elegans. PLoS Genet. 5, e1000361 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Yen, K. & Mobbs, C. V. Evidence for only two independent pathways for decreasing senescence in Caenorhabditis elegans. Age 32, 39–49 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Sagi, D. & Kim, S. K. An engineering approach to extending lifespan in C. elegans. PLoS Genet. 8, e1002780 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sagi, D. The addition of a developmental factor, unc-62, to already long-lived worms increases lifespan and healthspan. Biol. Open 6, 1796–1801 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Hou, L. et al. A systems approach to reverse engineer lifespan extension by dietary restriction. Cell Metab. 23, 529–540 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Davidsohn, N. et al. A single combination gene therapy treats multiple age-related diseases. Proc. Natl Acad. Sci. USA 116, 23505–23511 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhang, Y. et al. The starvation hormone, fibroblast growth factor-21, extends lifespan in mice. eLife 1, e00065 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kurosu, H. et al. Suppression of aging in mice by the hormone Klotho. Science 309, 1829–1833 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Brooks, W. W. & Conrad, C. H. Myocardial fibrosis in transforming growth factor beta(1)heterozygous mice. J. Mol. Cell. Cardiol. 32, 187–195 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Baker, D. J. et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479, 232–236 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhu, Y. et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14, 644–658 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Xu, M. et al. Senolytics improve physical function and increase lifespan in old age. Nat. Med. 24, 1246–1256 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kulkarni, A. S., Gubbi, S. & Barzilai, N. Benefits of metformin in attenuating the hallmarks of aging. Cell Metab. https://doi.org/10.1016/j.cmet.2020.04.001 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Anisimov, V. N. et al. Effect of metformin on life span and on the development of spontaneous mammary tumors in HER-2/neu transgenic mice. Exp. Gerontol. 40, 685–693 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Martin-Montalvo, A. et al. Metformin improves healthspan and lifespan in mice. Nat. Commun. 4, 2192 (2013).

    Article  PubMed  Google Scholar 

  83. Strong, R. et al. Longer lifespan in male mice treated with a weakly estrogenic agonist, an antioxidant, an alpha-glucosidase inhibitor or a Nrf2-inducer. Aging Cell 15, 872–884 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Barzilai, N., Crandall, J. P., Kritchevsky, S. B. & Espeland, M. A. Metformin as a tool to target aging. Cell Metab. 23, 1060–1065 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Harrison, D. E. et al. Acarbose improves health and lifespan in aging HET3 mice. Aging cell 18, e12898 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Strong, R. et al. Lifespan benefits for the combination of rapamycin plus acarbose and for captopril in genetically heterogeneous mice. Aging Cell 21, e13724 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Jiang, Z. et al. Short term treatment with a cocktail of rapamycin, acarbose and phenylbutyrate delays aging phenotypes in mice. Sci. Rep. 12, 7300 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lamming, D. W. et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335, 1638–1643 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lamming, D. W. et al. Young and old genetically heterogeneous HET3 mice on a rapamycin diet are glucose intolerant but insulin sensitive. Aging Cell 12, 712–718 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Weiss, R., Fernandez, E., Liu, Y., Strong, R. & Salmon, A. B. Metformin reduces glucose intolerance caused by rapamycin treatment in genetically heterogeneous female mice. Aging 10, 386–401 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Spindler, S. R., Mote, P. L. & Flegal, J. M. Combined statin and angiotensin-converting enzyme (ACE) inhibitor treatment increases the lifespan of long-lived F1 male mice. Age 38, 379–391 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Evason, K., Huang, C., Yamben, I., Covey, D. F. & Kornfeld, K. Anticonvulsant medications extend worm life-span. Science 307, 258–262 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Evason, K., Collins, J. J., Huang, C., Hughes, S. & Kornfeld, K. Valproic acid extends Caenorhabditis elegans lifespan. Aging cell 7, 305–317 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Admasu, T. D. et al. Drug synergy slows aging and improves healthspan through igf and srebp lipid signaling. Dev. Cell 47, 67–79 (2018).

    Article  CAS  PubMed  Google Scholar 

  95. Castillo-Quan, J. I. et al. Lithium promotes longevity through GSK3/NRF2-dependent hormesis. Cell Rep. 15, 638–650 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Slack, C. et al. The Ras-Erk-ETS-signaling pathway is a drug target for longevity. Cell 162, 72–83 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Castillo-Quan, J. I. et al. A triple drug combination targeting components of the nutrient-sensing network maximizes longevity. Proc. Natl Acad. Sci USA 116, 20817–20819 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Danilov, A. et al. Selective anticancer agents suppress aging in Drosophila. Oncotarget 4, 1507–1526 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Bustos, V. & Partridge, L. Good ol’ fat: links between lipid signaling and longevity. Trends Biochem. Sci. 42, 812–823 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Johnson, A. A. & Stolzing, A. The role of lipid metabolism in aging, lifespan regulation, and age-related disease. Aging Cell 18, e13048 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hou, N. S. & Taubert, S. Function and regulation of lipid biology in Caenorhabditis elegans aging. Front Physiol. 3, 143 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Huang, X. et al. Reducing signs of aging and increasing lifespan by drug synergy. Aging Cell 12, 652–660 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Huang, X., Leggas, M. & Dickson, R. C. Drug synergy drives conserved pathways to increase fission yeast lifespan. PLoS ONE 10, e0121877 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Hubbard, B. P. & Sinclair, D. A. Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends Pharmacol. Sci. 35, 146–154 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Mercken, E. M. et al. SRT2104 extends survival of male mice on a standard diet and preserves bone and muscle mass. Aging Cell. 13, 787–796 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mitchell, S. J. et al. The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet. Cell Rep. 6, 836–843 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Minor, R. K. et al. SRT1720 improves survival and healthspan of obese mice. Sci. Rep. 1, 70 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Palliyaguru, D. L. et al. Combining a high dose of metformin with the SIRT1 activator, SRT1720, reduces life span in aged mice fed a high-fat diet. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 75, 2037–2041 (2020).

    Article  CAS  Google Scholar 

  109. Shen, Z., Hinson, A., Miller, R. A. & Garcia, G. G. Cap-independent translation: a shared mechanism for lifespan extension by rapamycin, acarbose, and 17α-estradiol. Aging Cell 20, e13345 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Tiku, V. et al. Small nucleoli are a cellular hallmark of longevity. Nat. Commun. 8, 16083 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Annibal, A. et al. Regulation of the one carbon folate cycle as a shared metabolic signature of longevity. Nat. Commun. 12, 3486 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Qiao, H. H. et al. An efficient and multiple target transgenic RNAi technique with low toxicity in Drosophila. Nat. Commun. 9, 4160 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Port, F. & Bullock, S. L. Augmenting CRISPR applications in Drosophila with tRNA-flanked sgRNAs. Nat. Methods 13, 852–854 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Parkhitko, A. A. et al. Cross-species identification of PIP5K1-, splicing- and ubiquitin-related pathways as potential targets for RB1-deficient cells. PLoS Genet. 17, e1009354 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Norris, A. D., Gracida, X. & Calarco, J. A. CRISPR-mediated genetic interaction profiling identifies RNA binding proteins controlling metazoan fitness. eLife https://doi.org/10.7554/eLife.28129 (2017).

  116. Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, 3156 (2013).

    Article  Google Scholar 

  117. Fahy, G. M. et al. Reversal of epigenetic aging and immunosenescent trends in humans. Aging Cell 18, e13028 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kaeberlein, T. L. et al. Lifespan extension in Caenorhabditis elegans by complete removal of food. Aging Cell 5, 487–494 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Hoffmann, M. et al. MICS-1 interacts with mitochondrial ATAD-3 and modulates lifespan in C. elegans. Exp. Gerontol. 47, 270–275 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Zimmerman, S. M., Hinkson, I. V., Elias, J. E. & Kim, S. K. Reproductive aging drives protein accumulation in the uterus and limits lifespan in C. elegans. PLoS Genet. 11, e1005725 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Jia, K., Albert, P. S. & Riddle, D. L. DAF-9, a cytochrome P450 regulating C. elegans larval development and adult longevity. Development 129, 221–231 (2002).

    Article  CAS  PubMed  Google Scholar 

  122. Snell, T. W., Johnston, R. K., Rabeneck, B., Zipperer, C. & Teat, S. Joint inhibition of TOR and JNK pathways interacts to extend the lifespan of Brachionus manjavacas (Rotifera). Exp. Gerontol. 52, 55–69 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Roux, A. E., Quissac, A., Chartrand, P., Ferbeyre, G. & Rokeach, L. A. Regulation of chronological aging in Schizosaccharomyces pombe by the protein kinases Pka1 and Sck2. Aging Cell 5, 345–357 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Shaposhnikov, M. V. et al. Molecular mechanisms of exceptional lifespan increase of Drosophila melanogaster with different genotypes after combinations of pro-longevity interventions. Commun. Biol. 5, 566 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of General Medical Sciences R35 GM146869 (to A.A.P.), NIA R00 AG057792 (to A.A.P.), NIA R03 AG075651 (to A.A.P.), NIA P30 AG024827 pilot grant (to A.A.P.), Richard King Mellon Foundation award (to A.A.P.), NIA R01 AG059563 (to M.T.) and NIA R01 AG069639 (to M.T.).

Author information

Authors and Affiliations

Authors

Contributions

A.A.P., E.F. and M.T. wrote the manuscript and prepared the figures.

Corresponding authors

Correspondence to Andrey A. Parkhitko or Marc Tatar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Aging thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parkhitko, A.A., Filine, E. & Tatar, M. Combinatorial interventions in aging. Nat Aging 3, 1187–1200 (2023). https://doi.org/10.1038/s43587-023-00489-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43587-023-00489-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing