Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Short and dysfunctional telomeres sensitize the kidneys to develop fibrosis

Abstract

Accumulation of short telomeres is a hallmark of aging. Mutations in telomerase or telomere-binding proteins lead to telomere shortening or dysfunction and are at the origin of human pathologies known as ‘telomere syndromes’, which are characterized by loss of the regenerative capacity of tissues and fibrotic pathologies. Here, we generated two mouse models of kidney fibrosis, either by combining telomerase deficiency to induce telomere shortening and a low dose of folic acid, or by conditionally deleting Trf1, a component of the shelterin telomere protective complex, from the kidneys. We find that short telomeres sensitize the kidneys to develop fibrosis in response to folic acid and exacerbate the epithelial-to-mesenchymal transition (EMT) program. Trf1 deletion in kidneys led to fibrosis and EMT activation. Our findings suggest that telomere shortening or dysfunction may contribute to pathological, age-associated renal fibrosis by influencing the EMT program.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A mouse model of kidney fibrosis is associated with short telomeres.
Fig. 2: Severe kidney dysfunction in telomerase-deficient mice treated with a sublethal dose of folic acid.
Fig. 3: Telomerase-deficient mice show collagen deposition and activated myofibroblasts in the kidney after a sublethal dose of folic acid.
Fig. 4: Increased kidney apoptosis and senescence in telomerase-deficient mice after a sublethal dose of folic acid.
Fig. 5: Short telomeres induce tubular damage and immune infiltration in kidney.
Fig. 6: Hyperactivation of EMT and TGFβ-signaling pathways in telomerase-deficient mice.
Fig. 7: Trf1 deletion induces renal fibrosis.
Fig. 8: TERT activation rescued the EMT phenotype in vitro.

Similar content being viewed by others

Data availability

RNA-seq data have been deposited in the National Center for Biotechnology Information’s Gene Expression Omnibus under accession GSE162447 (subseries GSE162445 and GSE162446). The Molecular Signatures database used in the study is available at https://www.gsea-msigdb.org/gsea/msigdb/. All other data supporting the findings of this study are available from the corresponding author upon request.

References

  1. Luyckx, V. A., Tonelli, M. & Stanifer, J. W. The global burden of kidney disease and the sustainable development goals. Bull. World Health Organ. 96, 414–422C (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Humphreys, B. D. Mechanisms of renal fibrosis. Annu. Rev. Physiol. 80, 309–326 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Dongre, A. & Weinberg, R. A. New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol. 20, 69–84 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Grande, M. T. et al. Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nat. Med. 21, 989–997 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Inoue, T., Okada, H., Takenaka, T., Watanabe, Y. & Suzuki, H. A case report suggesting the occurrence of epithelial–mesenchymal transition in obstructive nephropathy. Clin. Exp. Nephrol. 13, 385–388 (2009).

    Article  PubMed  Google Scholar 

  6. Martinez, P. & Blasco, M. A. Telomere-driven diseases and telomere-targeting therapies. J. Cell Biol. 216, 875–887 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. de Lange, T. Shelterin-mediated telomere protection. Annu. Rev. Genet. 52, 223–247 (2018).

    Article  PubMed  CAS  Google Scholar 

  8. Armanios, M. & Blackburn, E. H. The telomere syndromes. Nat. Rev. Genet. 13, 693–704 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Blackburn, E. H. Telomere states and cell fates. Nature 408, 53–56 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Blasco, M. A. Telomeres and human disease: ageing, cancer and beyond. Nat. Rev. Genet. 6, 611–622 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. IJpma, A. S. & Greider, C. W. Short telomeres induce a DNA damage response in Saccharomyces cerevisiae. Mol. Biol. Cell 14, 987–1001 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Blasco, M. A., Funk, W., Villeponteau, B. & Greider, C. W. Functional characterization and developmental regulation of mouse telomerase RNA. Science 269, 1267–1270 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Flores, I., Cayuela, M. L. & Blasco, M. A. Effects of telomerase and telomere length on epidermal stem cell behavior. Science 309, 1253–1256 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Armanios, M. Y. et al. Telomerase mutations in families with idiopathic pulmonary fibrosis. N. Engl. J. Med. 356, 1317–1326 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Armanios, M. Telomerase mutations and the pulmonary fibrosis–bone marrow failure syndrome complex. N. Engl. J. Med. 367, 384 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Mitchell, J. R., Wood, E. & Collins, K. A telomerase component is defective in the human disease dyskeratosis congenita. Nature 402, 551–555 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Tsakiri, K. D. et al. Adult-onset pulmonary fibrosis caused by mutations in telomerase. Proc. Natl Acad. Sci. USA 104, 7552–7557 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Coresh, J., Astor, B. C., Greene, T., Eknoyan, G. & Levey, A. S. Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third National Health and Nutrition Examination Survey. Am. J. Kidney Dis. 41, 1–12 (2003).

    Article  PubMed  Google Scholar 

  20. Beier, F., Foronda, M., Martinez, P. & Blasco, M. A. Conditional TRF1 knockout in the hematopoietic compartment leads to bone marrow failure and recapitulates clinical features of dyskeratosis congenita. Blood 120, 2990–3000 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Bar, C. et al. Telomerase gene therapy rescues telomere length, bone marrow aplasia and survival in mice with aplastic anemia. Blood 127, 1770–1779 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Povedano, J. M., Martinez, P., Flores, J. M., Mulero, F. & Blasco, M. A. Mice with pulmonary fibrosis driven by telomere dysfunction. Cell Rep. 12, 286–299 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Povedano, J. M. et al. Therapeutic effects of telomerase in mice with pulmonary fibrosis induced by damage to the lungs and short telomeres. eLife 7, e31299 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Blasco, M. A. et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91, 25–34 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Lee, H. W. et al. Essential role of mouse telomerase in highly proliferative organs. Nature 392, 569–574 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Herrera, E. et al. Disease states associated with telomerase deficiency appear earlier in mice with short telomeres. EMBO J. 18, 2950–2960 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bajwa, A. et al. Sphingosine kinase 2 deficiency attenuates kidney fibrosis via IFN-γ. J. Am. Soc. Nephrol. 28, 1145–1161 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Yang, B. et al. PHF14: an innate inhibitor against the progression of renal fibrosis following folic acid-induced kidney injury. Sci. Rep. 7, 39888 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Long, D. A., Woolf, A. S., Suda, T. & Yuan, H. T. Increased renal angiopoietin-1 expression in folic acid-induced nephrotoxicity in mice. J. Am. Soc. Nephrol. 12, 2721–2731 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Damera, S. et al. Serum alkaline phosphatase levels associate with elevated serum C-reactive protein in chronic kidney disease. Kidney Int. 79, 228–233 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Leibovitch, I., Ben-Chaim, J., Ramon, J. & Goldwasser, B. Increased serum alkaline phosphatase activity: a possible indicator of renal damage. J. Clin. Lab. Anal. 5, 406–409 (1991).

    Article  CAS  PubMed  Google Scholar 

  32. Collen, M. J., Ansher, A. F., Chapman, A. B., Mackow, R. C. & Lewis, J. H. Serum amylase in patients with renal insufficiency and renal failure. Am. J. Gastroenterol. 85, 1377–1380 (1990).

    CAS  PubMed  Google Scholar 

  33. Moyses-Neto, M. et al. Acute renal failure and hypercalcemia. Ren. Fail. 28, 153–159 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Barreto, F. C., Barreto, D. V., Massy, Z. A. & Drueke, T. B. Strategies for phosphate control in patients with CKD. Kidney Int. Rep. 4, 1043–1056 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cole, N. I. et al. Serum sodium concentration and the progression of established chronic kidney disease. J. Nephrol. 32, 259–264 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Korgaonkar, S. et al. Serum potassium and outcomes in CKD: insights from the RRI-CKD cohort study. Clin. J. Am. Soc. Nephrol. 5, 762–769 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang, H.-C., Zuo, Y. & Fogo, A. B. Models of chronic kidney disease. Drug Discov. Today Dis. Models 7, 13–19 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kalluri, R. & Neilson, E. G. Epithelial–mesenchymal transition and its implications for fibrosis. J. Clin. Invest. 112, 1776–1784 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Blasco, M. A. Telomere length, stem cells and aging. Nat. Chem. Biol. 3, 640–649 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. d’Adda di Fagagna, F. et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 426, 194–198 (2003).

    Article  PubMed  CAS  Google Scholar 

  41. Gonzalez-Suarez, E., Samper, E., Flores, J. M. & Blasco, M. A. Telomerase-deficient mice with short telomeres are resistant to skin tumorigenesis. Nat. Genet. 26, 114–117 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Han, W. K., Bailly, V., Abichandani, R., Thadhani, R. & Bonventre, J. V. Kidney injury molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int. 62, 237–244 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Humphreys, B. D. et al. Chronic epithelial kidney injury molecule-1 expression causes murine kidney fibrosis. J. Clin. Invest. 123, 4023–4035 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nickolas, T. L. et al. Sensitivity and specificity of a single emergency department measurement of urinary neutrophil gelatinase-associated lipocalin for diagnosing acute kidney injury. Ann. Intern. Med. 148, 810–819 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Stemmler, M. P., Eccles, R. L., Brabletz, S. & Brabletz, T. Non-redundant functions of EMT transcription factors. Nat. Cell Biol. 21, 102–112 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Lovisa, S. et al. Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat. Med. 21, 998–1009 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schietke, R. et al. The lysyl oxidases LOX and LOXL2 are necessary and sufficient to repress E-cadherin in hypoxia: insights into cellular transformation processes mediated by HIF-1. J. Biol. Chem. 285, 6658–6669 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Reginensi, A. et al. SOX9 controls epithelial branching by activating RET effector genes during kidney development. Hum. Mol. Genet. 20, 1143–1153 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lindström, N. O. et al. Progressive recruitment of mesenchymal progenitors reveals a time-dependent process of cell fate acquisition in mouse and human nephrogenesis. Dev. Cell 45, 651–660 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Angelotti, M. L. et al. Characterization of renal progenitors committed toward tubular lineage and their regenerative potential in renal tubular injury. Stem Cells 30, 1714–1725 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Davies, J. A. et al. Development of an siRNA-based method for repressing specific genes in renal organ culture and its use to show that the Wt1 tumour suppressor is required for nephron differentiation. Hum. Mol. Genet. 13, 235–246 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Rothenpieler, U. W. & Dressler, G. R. Pax-2 is required for mesenchyme-to-epithelium conversion during kidney development. Development 119, 711–720 (1993).

    Article  CAS  PubMed  Google Scholar 

  53. Huang, B. et al. Wt1 and Pax2 re-expression is required for epithelial–mesenchymal transition in 5/6 nephrectomized rats and cultured kidney tubular epithelial cells. Cells Tissues Organs 195, 296–312 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Ma, Y. et al. Cloning and characterization of two promoters for the human HSAL2 gene and their transcriptional repression by the Wilms’ tumor suppressor gene product. J. Biol. Chem. 276, 48223–48230 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Xu, Y. & Sun, Z. Molecular basis of Klotho: from gene to function in aging. Endocr. Rev. 36, 174–193 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Vera, E., Bernardes de Jesus, B., Foronda, M., Flores, J. M. & Blasco, M. A. Telomerase reverse transcriptase synergizes with calorie restriction to increase health span and extend mouse longevity. PLoS ONE 8, e53760 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bielesz, B. et al. Epithelial Notch signaling regulates interstitial fibrosis development in the kidneys of mice and humans. J. Clin. Invest. 120, 4040–4054 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Edeling, M., Ragi, G., Huang, S., Pavenstädt, H. & Susztak, K. Developmental signalling pathways in renal fibrosis: the roles of Notch, Wnt and Hedgehog. Nat. Rev. Nephrol. 12, 426–439 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Huang, S. et al. Jagged1/Notch2 controls kidney fibrosis via Tfam-mediated metabolic reprogramming. PLoS Biol. 16, e2005233 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Bejarano, L. et al. Safety of whole-body abrogation of the TRF1 shelterin protein in wild-type and cancer-prone mouse models. iScience 19, 572–585 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Greider, C. W. & Blackburn, E. H. The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell 51, 887–898 (1987).

    Article  CAS  PubMed  Google Scholar 

  62. Fazilaty, H. et al. A gene regulatory network to control EMT programs in development and disease. Nat. Commun. 10, 5115 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Liu, Y. et al. The telomerase reverse transcriptase is limiting and necessary for telomerase function in vivo. Curr. Biol. 10, 1459–1462 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Martínez, P. et al. Increased telomere fragility and fusions resulting from TRF1 deficiency lead to degenerative pathologies and increased cancer in mice. Genes Dev. 23, 2060–2075 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Ruzankina, Y. et al. Deletion of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss. Cell Stem Cell 1, 113–126 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Terryn, S. et al. A primary culture of mouse proximal tubular cells, established on collagen-coated membranes. Am. J. Physiol. Renal Physiol. 293, F476–F485 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Graña, O., Rubio-Camarillo, M., Fdez-Riverola, F., Pisano, D. G. & Glez-Peña, D. Nextpresso: next-generation sequencing expression analysis pipeline. Curr. Bioinform. 13, 583–591 (2017).

    Article  CAS  Google Scholar 

  68. Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Subramanian, A. et al. Gene-set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research in the Blasco laboratory is funded by the Spanish State Research Agency, Ministry of Science and Innovation, cofounded by the European Regional Development Fund (AF2017-82623-R and SAF2015-72455-EXP), the Comunidad de Madrid Project (S2017/BMD-3770), the World Cancer Research Project (16-1177), the European Research Council (SHELTERINS GA882385) and the Fundación Botín (Spain).

Author information

Authors and Affiliations

Authors

Contributions

M.A.B. secured funding and conceived the original idea, designed and interpreted results, and wrote the paper. P.M. designed and interpreted results and contributed to writing the paper. S.S. designed, performed and interpreted experiments and contributed to writing the paper. O.G.-C. analyzed the RNA-seq data.

Corresponding author

Correspondence to Maria A. Blasco.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Aging thanks Zhaoyong Hu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Extended Data Fig. 1 Telomerase-deficient mice with short telomeres do not spontaneously develop renal fibrosis.

a, Scheme of the experimental approach. b-f, Representative images and quantification of Masson trichrome (b), Sirius Red (c), PAS-Diastase (d), SMA (e) and E-cadherin (f) in Tert+/+ and G3Tert−/− mice. g-h, Representative images and quantification of p21 (g) and CC3 (h) immunohistochemistry stainings in Tert+/+ and G3Tert−/− mice. Insets show amplified images. A t-test two tailed was used for statistical analysis. Data is presented as mean values +/- SEM. The number of mice analyzed per genotype is indicated.

Extended Data Fig. 2 Blood parameters.

Blood creatinine (a) and blood urea nitrogen (BUN) (b) levels of untreated and FA treated Tert+/+ and G3Tert−/− mice. Blood samples were collected at days 2, 7 and 14. Mice were sacrificed at day 14. a, Two-way Anova with post hoc Bonferroni test was used for statistical analysis. Data is presented as mean values +/- SEM. The number of mice analyzed per genotype is indicated. *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001.

Extended Data Fig. 3 Effect of short telomeres on cell cycle regulators.

Relative expression of CCnd1, CCnd2, CCnb1 and CCne1 in Tert+/+, FA-treated Tert+/+, G3Tert−/− and FA-treated G3Tert−/− mice 14 days after administration of a low dose of FA. One-way Anova was used for statistical analysis. Data is presented as mean values +/- SEM. The number of mice analyzed per genotype is indicated. *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001.

Extended Data Fig. 4 Effect of shorter telomeres on EMT related genes.

a, Gene expression data obtained by RNA-seq of kidney samples from 7- and 47-week old Terc+/+ and G3 Tert−/− mice. b, Gene Set Enrichment Analysis (GSEA) plots for the EMT pathway. False Discovery Rates (FDR) are indicated. Samples correspond to kidneys of five independent Tert+/+, G3 Tert−/− mice.

Extended Data Fig. 5 Effect of shorter telomeres on nephric‐progenitor genes.

a, Relative expression of Sox-9, Wt-1, Pax-2, Sall2, Acvr2b, Klotho in in Tert+/+, FA-treated Tert+/+, G3Tert−/− and FA-treated G3Tert−/− mice 14 days after administration of a low dose of FA. b, Representative images and quantification of Sox-9 immunohistochemistry staining. The insets show amplified images. One-way Anova was used for statistical analysis. One-way Anova was used for statistical analysis. Data is presented as mean values +/- SEM. The number of mice analyzed per genotype is indicated. *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001

Extended Data Fig. 6 Effect of shorter telomeres on Notch-targeted genes.

Relative expression of Notch1, 2, 3, Jagged1 and Tfam in Tert+/+, FA-treated Tert+/+, G3Tert−/− and FA-treated G3Tert−/− mice 14 days after administration of a low dose of FA. One-way Anova was used for statistical analysis. Data is presented as mean values +/- SEM. The number of mice analyzed per genotype is indicated. *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001.

Extended Data Fig. 7 TERT activation rescued the EMT phenotype in vitro.

a,b, Microscopic bright field images of proximal tubule cell (PTC) culture at day 8 (a) and day 14 post-transduction with either the empty or the mTert containing vector (b). c, Representative images of Immunofluorescence for E-Cadherin, SMA and Tgfβ1. Twenty micrographs were captured from each condition.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saraswati, S., Martínez, P., Graña-Castro, O. et al. Short and dysfunctional telomeres sensitize the kidneys to develop fibrosis. Nat Aging 1, 269–283 (2021). https://doi.org/10.1038/s43587-021-00040-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43587-021-00040-8

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research