Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Photocatalytic CO2 reduction

Subjects

Abstract

Using sunlight to power CO2 conversion into value-added chemicals and fuels is a promising technology to use anthropogenic CO2 emissions for alleviating our dependence on fossil fuels. In this Primer, we provide a holistic step-by-step guide for the experimentation of photocatalytic CO2 reduction, including catalyst synthesis and characterization, reactor construction, photocatalytic testing and mechanism exploration. We compare and analyse the state-of-the-art results with different photocatalysts and discuss possible reaction mechanisms. Furthermore, important considerations regarding practical application of photocatalytic CO2 reduction are highlighted and strategies to enhance energy conversion efficiency and product selectivity are summarized. This Primer also reveals current issues of reproducibility, standardizes data reporting and proposes a unified operation condition. Finally, future directions are outlined in terms of experiments, calculations, big-data development and practical application.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Principles of photocatalytic CO2 reduction.
Fig. 2: Flow chart of experimentation for photocatalytic CO2 reduction.
Fig. 3: Schematic reactors for photocatalytic CO2 reduction.
Fig. 4: Literature overview of the numeric metrics in photocatalytic CO2 reduction processes.
Fig. 5: Possible routes of heterogeneous photocatalytic CO2 reduction reaction.

Similar content being viewed by others

References

  1. Wang, L. et al. Surface strategies for catalytic CO2 reduction: from two-dimensional materials to nanoclusters to single atoms. Chem. Soc. Rev. 48, 5310–5349 (2019). This article summarizes the surface modification strategies for low-dimensional catalysts applied in heterogeneous photocatalytic CO2 reduction.

    Article  Google Scholar 

  2. Friedlingstein, P. et al. Global carbon budget 2022. Earth Syst. Sci. Data 14, 4811–4900 (2022).

    Article  ADS  Google Scholar 

  3. Al-Ghussain, L. Global warming: review on driving forces and mitigation. Environ. Prog. Sustain. Energy 38, 13–21 (2019).

    Article  Google Scholar 

  4. Armstrong McKay, D. I. et al. Exceeding 1.5 °C global warming could trigger multiple climate tipping points. Science 377, eabn7950 (2022).

    Article  Google Scholar 

  5. Li, X., Yu, J., Jaroniec, M. & Chen, X. Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 119, 3962–4179 (2019). This is a comprehensive review regarding the roles, designs, modifications and applications of cocatalysts for photocatalytic CO2 reduction.

    Article  Google Scholar 

  6. Hu, Y. H. & Ruckenstein, E. Comment on “Dry reforming of methane by stable Ni–Mo nanocatalysts on single-crystalline MgO”. Science 368, eabb5459 (2020).

    Article  Google Scholar 

  7. Ozin, G. Accelerated optochemical engineering solutions to CO2 photocatalysis for a sustainable future. Matter 5, 2594–2614 (2022).

    Article  Google Scholar 

  8. Tountas, A. A. et al. Towards solar methanol: past, present, and future. Adv. Sci. 6, 1801903 (2019).

    Article  Google Scholar 

  9. Fang, S. et al. Turning dead leaves into an active multifunctional material as evaporator, photocatalyst, and bioplastic. Nat. Commun. 14, 1203 (2023).

    Article  ADS  Google Scholar 

  10. Albero, J., Peng, Y. & García, H. Photocatalytic CO2 reduction to C2+ products. ACS Catal. 10, 5734–5749 (2020).

    Article  Google Scholar 

  11. Wei, J., Yao, R., Han, Y., Ge, Q. & Sun, J. Towards the development of the emerging process of CO2 heterogenous hydrogenation into high-value unsaturated heavy hydrocarbons. Chem. Soc. Rev. 50, 10764–10805 (2021).

    Article  Google Scholar 

  12. Li, M., Sun, Z. & Hu, Y. H. Catalysts for CO2 reforming of CH4: a review. J. Mater. Chem. A 9, 12495–12520 (2021).

    Article  Google Scholar 

  13. Wagner, A., Sahm, C. D. & Reisner, E. Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO2 reduction. Nat. Catal. 3, 775–786 (2020).

    Article  Google Scholar 

  14. Birdja, Y. Y. et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4, 732–745 (2019).

    Article  ADS  Google Scholar 

  15. Wang, C., Sun, Z., Zheng, Y. & Hu, Y. H. Recent progress in visible light photocatalytic conversion of carbon dioxide. J. Mater. Chem. A 7, 865–887 (2019).

    Article  Google Scholar 

  16. Chang, X., Wang, T. & Gong, J. CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci. 9, 2177–2196 (2016).

    Article  Google Scholar 

  17. Inoue, T., Fujishima, A., Konishi, S. & Honda, K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277, 637–638 (1979). To our knowledge, this is the first known report on heterogeneous photocatalytic CO2 reduction.

    Article  ADS  Google Scholar 

  18. Fang, S. & Hu, Y. H. Thermo-photo catalysis: a whole greater than the sum of its parts. Chem. Soc. Rev. 51, 3609–3647 (2022).

    Article  Google Scholar 

  19. Li, K., Peng, B. & Peng, T. Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels. ACS Catal. 6, 7485–7527 (2016).

    Article  Google Scholar 

  20. Wang, Q. et al. Molecularly engineered photocatalyst sheet for scalable solar formate production from carbon dioxide and water. Nat. Energy 5, 703–710 (2020). This is a representative work of heterogenizing a molecular catalyst on a light-absorbing semiconductor sheet.

    Article  ADS  Google Scholar 

  21. Wang, S. et al. Porous hypercrosslinked polymer-TiO2-graphene composite photocatalysts for visible-light-driven CO2 conversion. Nat. Commun. 10, 676 (2019).

    Article  ADS  Google Scholar 

  22. Wang, Y. et al. Direct and indirect Z-scheme heterostructure-coupled photosystem enabling cooperation of CO2 reduction and H2O oxidation. Nat. Commun. 11, 3043 (2020).

    Article  ADS  Google Scholar 

  23. Yan, T. et al. How to make an efficient gas-phase heterogeneous CO2 hydrogenation photocatalyst. Energy Environ. Sci. 13, 3054–3063 (2020).

    Article  Google Scholar 

  24. Shangguan, W. et al. Molecular-level insight into photocatalytic CO2 reduction with H2O over Au nanoparticles by interband transitions. Nat. Commun. 13, 3894 (2022).

    Article  ADS  Google Scholar 

  25. Li, Y. et al. Boosting thermo-photocatalytic CO2 conversion activity by using photosynthesis-inspired electron–proton-transfer mediators. Nat. Commun. 12, 123 (2021).

    Article  ADS  Google Scholar 

  26. Zhang, X. et al. Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation. Nat. Commun. 8, 14542 (2017).

    Article  ADS  Google Scholar 

  27. Devasia, D., Wilson, A. J., Heo, J., Mohan, V. & Jain, P. K. A rich catalog of C–C bonded species formed in CO2 reduction on a plasmonic photocatalyst. Nat. Commun. 12, 2612 (2021).

    Article  ADS  Google Scholar 

  28. Zhan, C. et al. Plasmon-mediated chemical reactions. Nat. Rev. Methods Primers 3, 12 (2023).

    Article  Google Scholar 

  29. Zhan, C. et al. Disentangling charge carrier from photothermal effects in plasmonic metal nanostructures. Nat. Commun. 10, 2671 (2019).

    Article  ADS  Google Scholar 

  30. Kuramochi, Y., Ishitani, O. & Ishida, H. Reaction mechanisms of catalytic photochemical CO2 reduction using Re(I) and Ru(II) complexes. Coord. Chem. Rev. 373, 333–356 (2018).

    Article  Google Scholar 

  31. Yamazaki, Y., Takeda, H. & Ishitani, O. Photocatalytic reduction of CO2 using metal complexes. J. Photochem. Photobiol. C 25, 106–137 (2015). This article provides an overview on homogeneous photocatalytic CO2 reduction processes over metal complexes.

    Article  Google Scholar 

  32. Perazio, A., Lowe, G., Gobetto, R., Bonin, J. & Robert, M. Light-driven catalytic conversion of CO2 with heterogenized molecular catalysts based on fourth period transition metals. Coord. Chem. Rev. 443, 214018 (2021).

    Article  Google Scholar 

  33. Sun, W. et al. Heterogeneous reduction of carbon dioxide by hydride-terminated silicon nanocrystals. Nat. Commun. 7, 12553 (2016).

    Article  ADS  Google Scholar 

  34. Chen, G. et al. Alumina-supported CoFe alloy catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 hydrogenation to hydrocarbons. Adv. Mater. 30, 1704663 (2018).

    Article  Google Scholar 

  35. Hao, Y.-C. et al. Metal–organic framework membranes with single-atomic centers for photocatalytic CO2 and O2 reduction. Nat. Commun. 12, 2682 (2021).

    Article  ADS  Google Scholar 

  36. Niu, K. et al. A spongy nickel-organic CO2 reduction photocatalyst for nearly 100% selective CO production. Sci. Adv. 3, e1700921 (2017).

    Article  ADS  Google Scholar 

  37. Jiang, Z. et al. Filling metal–organic framework mesopores with TiO2 for CO2 photoreduction. Nature 586, 549–554 (2020). This work develops an efficient heterostructure photocatalyst by growing the light-absorbing TiO2 inside the catalytically active MOF backbone.

    Article  ADS  Google Scholar 

  38. Lan, G. et al. Biomimetic active sites on monolayered metal–organic frameworks for artificial photosynthesis. Nat. Catal. 5, 1006–1018 (2022).

    Article  Google Scholar 

  39. Li, H., Cheng, C., Yang, Z. & Wei, J. Encapsulated CdSe/CdS nanorods in double-shelled porous nanocomposites for efficient photocatalytic CO2 reduction. Nat. Commun. 13, 6466 (2022).

    Article  ADS  Google Scholar 

  40. Zhou, J. et al. Linking oxidative and reductive clusters to prepare crystalline porous catalysts for photocatalytic CO2 reduction with H2O. Nat. Commun. 13, 4681 (2022).

    Article  ADS  Google Scholar 

  41. Zhong, W. et al. A covalent organic framework bearing single Ni sites as a synergistic photocatalyst for selective photoreduction of CO2 to CO. J. Am. Chem. Soc. 141, 7615–7621 (2019). This report presents a COF catalyst bearing single Ni sites for photocatalytic CO2 reduction to CO.

    Article  Google Scholar 

  42. Dong, C. et al. Size-dependent activity and selectivity of carbon dioxide photocatalytic reduction over platinum nanoparticles. Nat. Commun. 9, 1252 (2018).

    Article  ADS  Google Scholar 

  43. Wan, L. et al. Cu2O nanocubes with mixed oxidation-state facets for (photo)catalytic hydrogenation of carbon dioxide. Nat. Catal. 2, 889–898 (2019).

    Article  Google Scholar 

  44. Sayed, M. et al. Sustained CO2-photoreduction activity and high selectivity over Mn, C-codoped ZnO core-triple shell hollow spheres. Nat. Commun. 12, 4936 (2021).

    Article  ADS  Google Scholar 

  45. Yan, T. et al. Polymorph selection towards photocatalytic gaseous CO2 hydrogenation. Nat. Commun. 10, 2521 (2019).

    Article  ADS  Google Scholar 

  46. Shown, I. et al. Carbon-doped SnS2 nanostructure as a high-efficiency solar fuel catalyst under visible light. Nat. Commun. 9, 169 (2018).

    Article  ADS  Google Scholar 

  47. Li, X. et al. Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers. Nat. Energy 4, 690–699 (2019). This work explores a representative 2D defect-rich photocatalyst for photocatalytic CO2 reduction.

    Article  ADS  Google Scholar 

  48. Kuehnel, M. F., Orchard, K. L., Dalle, K. E. & Reisner, E. Selective photocatalytic CO2 reduction in water through anchoring of a molecular Ni catalyst on CdS nanocrystals. J. Am. Chem. Soc. 139, 7217–7223 (2017).

    Article  Google Scholar 

  49. Feng, X. et al. Unlocking bimetallic active sites via a desalination strategy for photocatalytic reduction of atmospheric carbon dioxide. Nat. Commun. 13, 2146 (2022).

    Article  ADS  Google Scholar 

  50. Shi, Y. et al. Van der Waals gap-rich BiOCl atomic layers realizing efficient, pure-water CO2-to-CO photocatalysis. Nat. Commun. 12, 5923 (2021).

    Article  ADS  Google Scholar 

  51. Di, J. et al. Isolated single atom cobalt in Bi3O4Br atomic layers to trigger efficient CO2 photoreduction. Nat. Commun. 10, 2840 (2019).

    Article  ADS  Google Scholar 

  52. Li, M. M. J. et al. CO2 hydrogenation to methanol over catalysts derived from single cationic layer CuZnGa LDH precursors. ACS Catal. 8, 4390–4401 (2018).

    Article  Google Scholar 

  53. Huang, P. et al. Selective CO2 reduction catalyzed by single cobalt sites on carbon nitride under visible-light irradiation. J. Am. Chem. Soc. 140, 16042–16047 (2018).

    Article  Google Scholar 

  54. Bie, C., Zhu, B., Xu, F., Zhang, L. & Yu, J. In situ grown monolayer N-doped graphene on CdS hollow spheres with seamless contact for photocatalytic CO2 reduction. Adv. Mater. 31, 1902868 (2019).

    Article  Google Scholar 

  55. Zhu, X. et al. In-situ hydroxyl modification of monolayer black phosphorus for stable photocatalytic carbon dioxide conversion. Appl. Catal. B 269, 118760 (2020).

    Article  Google Scholar 

  56. Zhao, F. et al. Two-dimensional gersiloxenes with tunable bandgap for photocatalytic H2 evolution and CO2 photoreduction to CO. Nat. Commun. 11, 1443 (2020).

    Article  ADS  Google Scholar 

  57. Roy, S. & Reisner, E. Visible-light-driven CO2 reduction by mesoporous carbon nitride modified with polymeric cobalt phthalocyanine. Angew. Chem. Int. Ed. 58, 12180–12184 (2019).

    Article  Google Scholar 

  58. Wei, Y. et al. Highly efficient photocatalytic reduction of CO2 to CO by in situ formation of a hybrid catalytic system based on molecular iron quaterpyridine covalently linked to carbon nitride. Angew. Chem. Int. Ed. 61, e202116832 (2022).

    Article  Google Scholar 

  59. Ma, B. et al. Hybridization of molecular and graphene materials for CO2 photocatalytic reduction with selectivity control. J. Am. Chem. Soc. 143, 8414–8425 (2021).

    Article  Google Scholar 

  60. Stock, N. & Biswas, S. Synthesis of metal–organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 112, 933–969 (2012).

    Article  Google Scholar 

  61. Li, Y., Chen, W., Xing, G., Jiang, D. & Chen, L. New synthetic strategies toward covalent organic frameworks. Chem. Soc. Rev. 49, 2852–2868 (2020).

    Article  Google Scholar 

  62. Wang, J.-W. et al. Facile electron delivery from graphene template to ultrathin metal-organic layers for boosting CO2 photoreduction. Nat. Commun. 12, 813 (2021).

    Article  ADS  Google Scholar 

  63. Yuan, H., Cheng, B., Lei, J., Jiang, L. & Han, Z. Promoting photocatalytic CO2 reduction with a molecular copper purpurin chromophore. Nat. Commun. 12, 1835 (2021).

    Article  ADS  Google Scholar 

  64. Rao, H., Schmidt, L. C., Bonin, J. & Robert, M. Visible-light-driven methane formation from CO2 with a molecular iron catalyst. Nature 548, 74–77 (2017). This is a representative work on homogeneous photocatalytic CO2 reduction with a low-cost molecular iron catalyst.

    Article  ADS  Google Scholar 

  65. Guo, Z. et al. Selectivity control of CO versus HCOO production in the visible-light-driven catalytic reduction of CO2 with two cooperative metal sites. Nat. Catal. 2, 801–808 (2019). This work develops a binuclear molecular cobalt catalyst for homogeneous photocatalytic CO2 reduction towards formate.

    Article  Google Scholar 

  66. Wu, Y., Li, S., Chen, Y., He, W. & Guo, Z. Recent advances in noble metal complex based photodynamic therapy. Chem. Sci. 13, 5085–5106 (2022).

    Article  Google Scholar 

  67. Warnan, J. & Reisner, E. Synthetic organic design for solar fuel systems. Angew. Chem. Int. Ed. 59, 17344–17354 (2020).

    Article  Google Scholar 

  68. Hutton, G. A. M., Martindale, B. C. M. & Reisner, E. Carbon dots as photosensitisers for solar-driven catalysis. Chem. Soc. Rev. 46, 6111–6123 (2017).

    Article  Google Scholar 

  69. Lim, S. Y., Shen, W. & Gao, Z. Carbon quantum dots and their applications. Chem. Soc. Rev. 44, 362–381 (2015).

    Article  Google Scholar 

  70. Ma, Y. et al. Selective photocatalytic CO2 reduction in aerobic environment by microporous pd-porphyrin-based polymers coated hollow TiO2. Nat. Commun. 13, 1400 (2022).

    Article  ADS  Google Scholar 

  71. Wang, S. et al. Intermolecular cascaded π-conjugation channels for electron delivery powering CO2 photoreduction. Nat. Commun. 11, 1149 (2020). This work develops a photocatalyst consisting of conjugated polymers for photocatalytic CO2 reduction to CO.

    Article  ADS  Google Scholar 

  72. Cao, Y. et al. Modulating electron density of vacancy site by single Au atom for effective CO2 photoreduction. Nat. Commun. 12, 1675 (2021).

    Article  ADS  Google Scholar 

  73. Verma, P. et al. Charge-transfer regulated visible light driven photocatalytic H2 production and CO2 reduction in tetrathiafulvalene based coordination polymer gel. Nat. Commun. 12, 7313 (2021).

    Article  ADS  Google Scholar 

  74. Wang, C., Fang, S., Xie, S., Zheng, Y. & Hu, Y. H. Thermo-photo catalytic CO2 hydrogenation over Ru/TiO2. J. Mater. Chem. A 8, 7390–7394 (2020).

    Article  Google Scholar 

  75. Kang, Q. et al. Photocatalytic reduction of carbon dioxide by hydrous hydrazine over Au–Cu alloy nanoparticles supported on SrTiO3/TiO2 coaxial nanotube arrays. Angew. Chem. Int. Ed. 54, 841–845 (2015).

    Article  Google Scholar 

  76. Zhang, X. et al. Photocatalytic conversion of diluted CO2 into light hydrocarbons using periodically modulated multiwalled nanotube arrays. Angew. Chem. Int. Ed. 51, 12732–12735 (2012).

    Article  Google Scholar 

  77. Jiang, M., Gao, Y., Wang, Z. & Ding, Z. Photocatalytic CO2 reduction promoted by a CuCo2O4 cocatalyst with homogeneous and heterogeneous light harvesters. Appl. Catal. B 198, 180–188 (2016).

    Article  Google Scholar 

  78. Xie, S., Wang, Y., Zhang, Q., Deng, W. & Wang, Y. MgO- and Pt-promoted TiO2 as an efficient photocatalyst for the preferential reduction of carbon dioxide in the presence of water. ACS Catal. 4, 3644–3653 (2014). This work compares the solidvapour and solidliquidgas reaction modes for photocatalytic reduction of CO2 with H2O.

    Article  Google Scholar 

  79. Lu, K.-Q. et al. Rationally designed transition metal hydroxide nanosheet arrays on graphene for artificial CO2 reduction. Nat. Commun. 11, 5181 (2020).

    Article  ADS  Google Scholar 

  80. Zhou, Y. et al. Regulating photocatalytic CO2 reduction selectivity via steering cascade multi-step charge transfer pathways in 1T/2H-WS2/TiO2 heterojunctions. Chem. Eng. J. 447, 137485 (2022).

    Article  Google Scholar 

  81. Cao, S., Shen, B., Tong, T., Fu, J. & Yu, J. 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Adv. Funct. Mater. 28, 1800136 (2018).

    Article  Google Scholar 

  82. Di, J. et al. Cobalt nitride as a novel cocatalyst to boost photocatalytic CO2 reduction. Nano Energy 79, 105429 (2021).

    Article  Google Scholar 

  83. Tu, W. et al. An in situ simultaneous reduction-hydrolysis technique for fabrication of TiO2-graphene 2D sandwich-like hybrid nanosheets: graphene-promoted selectivity of photocatalytic-driven hydrogenation and coupling of CO2 into methane and ethane. Adv. Funct. Mater. 23, 1743–1749 (2013).

    Article  Google Scholar 

  84. Badiani, V. M. et al. Engineering electro- and photocatalytic carbon materials for CO2 reduction by formate dehydrogenase. J. Am. Chem. Soc. 144, 14207–14216 (2022).

    Article  Google Scholar 

  85. Miller, M. et al. Interfacing formate dehydrogenase with metal oxides for the reversible electrocatalysis and solar-driven reduction of carbon dioxide. Angew. Chem. Int. Ed. 58, 4601–4605 (2019).

    Article  Google Scholar 

  86. Woolerton, T. W., Sheard, S., Pierce, E., Ragsdale, S. W. & Armstrong, F. A. CO2 photoreduction at enzyme-modified metal oxide nanoparticles. Energy Environ. Sci. 4, 2393–2399 (2011).

    Article  Google Scholar 

  87. Liu, X. et al. A genetically encoded photosensitizer protein facilitates the rational design of a miniature photocatalytic CO2-reducing enzyme. Nat. Chem. 10, 1201–1206 (2018).

    Article  ADS  Google Scholar 

  88. Kang, F. et al. Rational design of a miniature photocatalytic CO2-reducing enzyme. ACS Catal. 11, 5628–5635 (2021).

    Article  Google Scholar 

  89. Wang, X. et al. Photocatalyst-mineralized biofilms as living bio-abiotic interfaces for single enzyme to whole-cell photocatalytic applications. Sci. Adv. 8, eabm7665 (2022).

    Article  Google Scholar 

  90. Ye, J. et al. Solar-driven methanogenesis with ultrahigh selectivity by turning down H2 production at biotic–abiotic interface. Nat. Commun. 13, 6612 (2022).

    Article  ADS  Google Scholar 

  91. Wang, Q., Kalathil, S., Pornrungroj, C., Sahm, C. D. & Reisner, E. Bacteria–photocatalyst sheet for sustainable carbon dioxide utilization. Nat. Catal. 5, 633–641 (2022).

    Article  Google Scholar 

  92. Sakimoto, K. K., Wong, A. B. & Yang, P. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 351, 74–77 (2016). This work develops a biologicalinorganic hybrid with non-photosynthetic bacteria and light-absorbing CdS nanoparticles.

    Article  ADS  Google Scholar 

  93. Lam, E. & Reisner, E. A TiO2-co(terpyridine)2 photocatalyst for the selective oxidation of cellulose to formate coupled to the reduction of CO2 to syngas. Angew. Chem. Int. Ed. 60, 23306–23312 (2021).

    Article  Google Scholar 

  94. Bi, Q.-Q. et al. Selective photocatalytic CO2 reduction in water by electrostatic assembly of CdS nanocrystals with a dinuclear cobalt catalyst. ACS Catal. 8, 11815–11821 (2018).

    Article  Google Scholar 

  95. Liu, L., Zhao, H., Andino, J. M. & Li, Y. Photocatalytic CO2 reduction with H2O on TiO2 nanocrystals: comparison of anatase, rutile, and brookite polymorphs and exploration of surface chemistry. ACS Catal. 2, 1817–1828 (2012).

    Article  Google Scholar 

  96. Wang, K. et al. Unravelling the C–C coupling in CO2 photocatalytic reduction with H2O on Au/TiO2−x: combination of plasmonic excitation and oxygen vacancy. Appl. Catal. B 292, 120147 (2021).

    Article  Google Scholar 

  97. Kornienko, N., Zhang, J. Z., Sakimoto, K. K., Yang, P. & Reisner, E. Interfacing nature’s catalytic machinery with synthetic materials for semi-artificial photosynthesis. Nat. Nanotechnol. 13, 890–899 (2018).

    Article  ADS  Google Scholar 

  98. Fang, X., Kalathil, S. & Reisner, E. Semi-biological approaches to solar-to-chemical conversion. Chem. Soc. Rev. 49, 4926–4952 (2020).

    Article  Google Scholar 

  99. Zhang, H. et al. Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production. Nat. Nanotechnol. 13, 900–905 (2018).

    Article  ADS  Google Scholar 

  100. Dalle, K. E. et al. Electro- and solar-driven fuel synthesis with first row transition metal complexes. Chem. Rev. 119, 2752–2875 (2019).

    Article  Google Scholar 

  101. Guo, Z. et al. Highly efficient and selective photocatalytic CO2 reduction by iron and cobalt quaterpyridine complexes. J. Am. Chem. Soc. 138, 9413–9416 (2016).

    Article  Google Scholar 

  102. Bonin, J., Robert, M. & Routier, M. Selective and efficient photocatalytic CO2 reduction to CO using visible light and an iron-based homogeneous catalyst. J. Am. Chem. Soc. 136, 16768–16771 (2014).

    Article  Google Scholar 

  103. Cometto, C. et al. A carbon nitride/Fe quaterpyridine catalytic system for photostimulated CO2-to-CO conversion with visible light. J. Am. Chem. Soc. 140, 7437–7440 (2018).

    Article  Google Scholar 

  104. Ran, J., Jaroniec, M. & Qiao, S.-Z. Cocatalysts in semiconductor-based photocatalytic CO2 reduction: achievements, challenges, and opportunities. Adv. Mater. 30, 1704649 (2018).

    Article  Google Scholar 

  105. Han, B., Wei, W., Chang, L., Cheng, P. & Hu, Y. H. Efficient visible light photocatalytic CO2 reforming of CH4. ACS Catal. 6, 494–497 (2016). To our knowledge, this is the first known report on photocatalytic CO2 reduction by CH4 owing to the synergetic effects of photo and thermal energies.

    Article  Google Scholar 

  106. Cancelliere, A. M. et al. Efficient trinuclear Ru(II)–Re(I) supramolecular photocatalysts for CO2 reduction based on a new tris-chelating bridging ligand built around a central aromatic ring. Chem. Sci. 11, 1556–1563 (2020).

    Article  Google Scholar 

  107. Hargreaves, J. S. J. Some considerations related to the use of the Scherrer equation in powder X-ray diffraction as applied to heterogeneous catalysts. Catal. Struct. React. 2, 33–37 (2016).

    Google Scholar 

  108. Inkson, B. J. in Materials Characterization Using Nondestructive Evaluation (NDE) Methods (eds Hübschen, G., Altpeter, I., Tschuncky, R., & Herrmann, H.-G.) 17–43 (Woodhead Publishing, 2016).

  109. Carter, C. B. & Williams, D. B. Transmission Electron Microscopy: Diffraction, Imaging, and Spectrometry (Springer, 2016).

  110. Fang, S. & Hu, Y. H. Open the door to the atomic world by single-molecule atomic force microscopy. Matter 4, 1189–1223 (2021).

    Article  Google Scholar 

  111. Zhang, L., Ran, J., Qiao, S.-Z. & Jaroniec, M. Characterization of semiconductor photocatalysts. Chem. Soc. Rev. 48, 5184–5206 (2019).

    Article  Google Scholar 

  112. Zhang, Y., Xia, B., Ran, J., Davey, K. & Qiao, S. Z. Atomic-level reactive sites for semiconductor-based photocatalytic CO2 reduction. Adv. Energy Mater. 10, 1903879 (2020).

    Article  Google Scholar 

  113. Wertz, J. Electron Spin Resonance: Elementary Theory and Practical Applications (Springer Science & Business Media, 2012).

  114. Van der Heide, P. X-ray Photoelectron Spectroscopy: An Introduction to Principles and Practices (John Wiley & Sons, 2011).

  115. de Groot, F. High-resolution X-ray emission and X-ray absorption spectroscopy. Chem. Rev. 101, 1779–1808 (2001).

    Article  Google Scholar 

  116. Lambert, J. B., Mazzola, E. P. & Ridge, C. D. Nuclear Magnetic Resonance Spectroscopy: An Introduction to Principles, Applications, and Experimental Methods (John Wiley & Sons, 2019).

  117. Larkin, P. Infrared and Raman Spectroscopy: Principles and Spectral Interpretation (Elsevier, 2017).

  118. Makuła, P., Pacia, M. & Macyk, W. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. J. Phys. Chem. Lett. 9, 6814–6817 (2018).

    Article  Google Scholar 

  119. Miao, T. J. & Tang, J. Characterization of charge carrier behavior in photocatalysis using transient absorption spectroscopy. J. Chem. Phys. 152, 194201 (2020).

    Article  ADS  Google Scholar 

  120. Wang, S. et al. Electrochemical impedance spectroscopy. Nat. Rev. Methods Primers 1, 41 (2021).

    Article  Google Scholar 

  121. Jones, W. E. Jr. & Fox, M. A. Determination of excited-state redox potentials by phase-modulated voltammetry. J. Phys. Chem. 98, 5095–5099 (1994).

    Article  Google Scholar 

  122. Zhang, Y., Petersen, J. L. & Milsmann, C. A luminescent zirconium(IV) complex as a molecular photosensitizer for visible light photoredox catalysis. J. Am. Chem. Soc. 138, 13115–13118 (2016).

    Article  Google Scholar 

  123. Kahn, A. Fermi level, work function and vacuum level. Mater. Horiz. 3, 7–10 (2016).

    Article  Google Scholar 

  124. Mohan, A. et al. Hybrid photo- and thermal catalyst system for continuous CO2 reduction. ACS Appl. Mater. Interfaces 12, 33613–33620 (2020).

    Article  Google Scholar 

  125. Hurtado, L. et al. Solar CO2 hydrogenation by photocatalytic foams. Chem. Eng. J. 435, 134864 (2022).

    Article  Google Scholar 

  126. Han, B. & Hu, Y. H. Highly efficient temperature-induced visible light photocatalytic hydrogen production from water. J. Phys. Chem. C 119, 18927–18934 (2015).

    Article  Google Scholar 

  127. Chen, S. et al. Thin-water-film-enhanced TiO2-based catalyst for CO2 hydrogenation to formic acid. Chem. Commun. 58, 787–790 (2022).

    Article  Google Scholar 

  128. Ola, O. & Maroto-Valer, M. M. Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. J. Photochem. Photobiol. C 24, 16–42 (2015).

    Article  Google Scholar 

  129. Gong, E. et al. Solar fuels: research and development strategies to accelerate photocatalytic CO2 conversion into hydrocarbon fuels. Energy Environ. Sci. 15, 880–937 (2022).

    Article  Google Scholar 

  130. Tahir, M. & Amin, N. S. Photocatalytic CO2 reduction with H2O vapors using montmorillonite/TiO2 supported microchannel monolith photoreactor. Chem. Eng. J. 230, 314–327 (2013).

    Article  Google Scholar 

  131. Wu, J. C. S., Lin, H.-M. & Lai, C.-L. Photo reduction of CO2 to methanol using optical-fiber photoreactor. Appl. Catal. A 296, 194–200 (2005).

    Article  Google Scholar 

  132. Nguyen, T.-V. & Wu, J. C. S. Photoreduction of CO2 in an optical-fiber photoreactor: effects of metals addition and catalyst carrier. Appl. Catal. A 335, 112–120 (2008).

    Article  Google Scholar 

  133. Liou, P.-Y. et al. Photocatalytic CO2 reduction using an internally illuminated monolith photoreactor. Energy Environ. Sci. 4, 1487–1494 (2011).

    Article  Google Scholar 

  134. Xiong, Z. et al. Photocatalytic CO2 reduction over V and W codoped TiO2 catalyst in an internal-illuminated honeycomb photoreactor under simulated sunlight irradiation. Appl. Catal. B 219, 412–424 (2017).

    Article  Google Scholar 

  135. Chatterjee, T., Boutin, E. & Robert, M. Manifesto for the routine use of NMR for the liquid product analysis of aqueous CO2 reduction: from comprehensive chemical shift data to formaldehyde quantification in water. Dalton Trans. 49, 4257–4265 (2020).

    Article  Google Scholar 

  136. Wang, L., Cheng, B., Zhang, L. & Yu, J. In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction. Small 17, 2103447 (2021).

    Article  Google Scholar 

  137. Collado, L. et al. Unravelling the effect of charge dynamics at the plasmonic metal/semiconductor interface for CO2 photoreduction. Nat. Commun. 9, 4986 (2018).

    Article  ADS  Google Scholar 

  138. Wu, Y. A. et al. Facet-dependent active sites of a single Cu2O particle photocatalyst for CO2 reduction to methanol. Nat. Energy 4, 957–968 (2019). This article offers atomic-level understanding of active sites and chemical reaction mechanisms via in situ scanning fluorescence X-ray microscopy–environmental transmission electron microscopy technique.

    Article  ADS  Google Scholar 

  139. Yan, Z.-H. et al. Photo-generated dinuclear {Eu(II)}2 active sites for selective CO2 reduction in a photosensitizing metal-organic framework. Nat. Commun. 9, 3353 (2018).

    Article  ADS  Google Scholar 

  140. Wang, M. et al. CO2 electrochemical catalytic reduction with a highly active cobalt phthalocyanine. Nat. Commun. 10, 3602 (2019).

    Article  ADS  Google Scholar 

  141. Abdellah, M. et al. Time-resolved IR spectroscopy reveals a mechanism with TiO2 as a reversible electron acceptor in a TiO2–Re catalyst system for CO2 photoreduction. J. Am. Chem. Soc. 139, 1226–1232 (2017).

    Article  Google Scholar 

  142. Hu, Y. et al. Tracking mechanistic pathway of photocatalytic CO2 reaction at Ni sites using operando, time-resolved spectroscopy. J. Am. Chem. Soc. 142, 5618–5626 (2020).

    Article  Google Scholar 

  143. Tan, T. H. et al. Unlocking the potential of the formate pathway in the photo-assisted Sabatier reaction. Nat. Catal. 3, 1034–1043 (2020). This article provides a mechanistic understanding on photo-activation of adsorbed formate intermediate in photocatalytic CO2 hydrogenation.

    Article  Google Scholar 

  144. Dimitrijevic, N. M., Shkrob, I. A., Gosztola, D. J. & Rajh, T. Dynamics of interfacial charge transfer to formic acid, formaldehyde, and methanol on the surface of TiO2 nanoparticles and its role in methane production. J. Phys. Chem. C. 116, 878–885 (2012).

    Article  Google Scholar 

  145. Lee, J., Sorescu, D. C. & Deng, X. Electron-induced dissociation of CO2 on TiO2(110). J. Am. Chem. Soc. 133, 10066–10069 (2011).

    Article  Google Scholar 

  146. Verma, R. et al. Nickel-laden dendritic plasmonic colloidosomes of black gold: forced plasmon mediated photocatalytic CO2 hydrogenation. ACS Nano 17, 4526–4538 (2023).

    Article  Google Scholar 

  147. Dhiman, M. et al. Plasmonic colloidosomes of black gold for solar energy harvesting and hotspots directed catalysis for CO2 to fuel conversion. Chem. Sci. 10, 6594–6603 (2019).

    Article  Google Scholar 

  148. Qin, D. et al. Recent advances in two-dimensional nanomaterials for photocatalytic reduction of CO2: insights into performance, theories and perspective. J. Mater. Chem. A 8, 19156–19195 (2020).

    Article  Google Scholar 

  149. Hussain, S., Wang, Y., Guo, L. & He, T. Theoretical insights into the mechanism of photocatalytic reduction of CO2 over semiconductor catalysts. J. Photochem. Photobiol. C 52, 100538 (2022).

    Article  Google Scholar 

  150. Li, J. et al. Self-adaptive dual-metal-site pairs in metal–organic frameworks for selective CO2 photoreduction to CH4. Nat. Catal. 4, 719–729 (2021). This report presents the selective photocatalytic CO2 reduction to CH4 over the MOF incorporated with self-adaptive dual-metal-site pairs.

    Article  Google Scholar 

  151. Kovačič, Ž., Likozar, B. & Huš, M. Photocatalytic CO2 reduction: a review of ab initio mechanism, kinetics, and multiscale modeling simulations. ACS Catal. 10, 14984–15007 (2020).

    Article  Google Scholar 

  152. Chu, W., Zheng, Q., Prezhdo, O. V. & Zhao, J. CO2 photoreduction on metal oxide surface is driven by transient capture of hot electrons: ab initio quantum dynamics simulation. J. Am. Chem. Soc. 142, 3214–3221 (2020).

    Article  Google Scholar 

  153. Mai, H., Le, T. C., Chen, D., Winkler, D. A. & Caruso, R. A. Machine learning for electrocatalyst and photocatalyst design and discovery. Chem. Rev. 122, 13478–13515 (2022).

    Article  Google Scholar 

  154. Cheng, S. et al. Emerging strategies for CO2 photoreduction to CH4: from experimental to data-driven design. Adv. Energy Mater. 12, 2200389 (2022).

    Article  Google Scholar 

  155. Zhu, Q., Gu, Y., Liang, X., Wang, X. & Ma, J. A machine learning model to predict CO2 reduction reactivity and products transferred from metal-zeolites. ACS Catal. 12, 12336–12348 (2022).

    Article  Google Scholar 

  156. Gao, W. et al. Vacancy-defect modulated pathway of photoreduction of CO2 on single atomically thin AgInP2S6 sheets into olefiant gas. Nat. Commun. 12, 4747 (2021).

    Article  ADS  Google Scholar 

  157. Andrei, V., Wang, Q., Uekert, T., Bhattacharjee, S. & Reisner, E. Solar panel technologies for light-to-chemical conversion. Acc. Chem. Res. 55, 3376–3386 (2022).

    Article  Google Scholar 

  158. Wang, L. et al. Black indium oxide a photothermal CO2 hydrogenation catalyst. Nat. Commun. 11, 2432 (2020).

    Article  ADS  Google Scholar 

  159. Yu, H. et al. Synergy of ferroelectric polarization and oxygen vacancy to promote CO2 photoreduction. Nat. Commun. 12, 4594 (2021).

    Article  ADS  Google Scholar 

  160. Wang, J.-W., Jiang, L., Huang, H.-H., Han, Z. & Ouyang, G. Rapid electron transfer via dynamic coordinative interaction boosts quantum efficiency for photocatalytic CO2 reduction. Nat. Commun. 12, 4276 (2021).

    Article  ADS  Google Scholar 

  161. Scott, S. L. A matter of life(time) and death. ACS Catal. 8, 8597–8599 (2018).

    Article  Google Scholar 

  162. Masel, R. I. et al. An industrial perspective on catalysts for low-temperature CO2 electrolysis. Nat. Nanotechnol. 16, 118–128 (2021).

    Article  ADS  Google Scholar 

  163. Baruch, M. F., Pander, J. E. III, White, J. L. & Bocarsly, A. B. Mechanistic insights into the reduction of CO2 on tin electrodes using in situ ATR-IR spectroscopy. ACS Catal. 5, 3148–3156 (2015).

    Article  Google Scholar 

  164. Kortlever, R., Shen, J., Schouten, K. J. P., Calle-Vallejo, F. & Koper, M. T. M. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 6, 4073–4082 (2015).

    Article  Google Scholar 

  165. Wang, Y., Chen, E. & Tang, J. Insight on reaction pathways of photocatalytic CO2 conversion. ACS Catal. 12, 7300–7316 (2022).

    Article  Google Scholar 

  166. Yamazaki, Y., Miyaji, M. & Ishitani, O. Utilization of low-concentration CO2 with molecular catalysts assisted by CO2-capturing ability of catalysts, additives, or reaction media. J. Am. Chem. Soc. 144, 6640–6660 (2022).

    Article  Google Scholar 

  167. Dong, Y. et al. Shining light on CO2: from materials discovery to photocatalyst, photoreactor and process engineering. Chem. Soc. Rev. 49, 5648–5663 (2020).

    Article  Google Scholar 

  168. Schroeder, E. & Christopher, P. Chemical production using light: are sustainable photons cheap enough? ACS Energy Lett. 7, 880–884 (2022).

    Article  Google Scholar 

  169. Loh, J. Y. Y., Kherani, N. P. & Ozin, G. A. Persistent CO2 photocatalysis for solar fuels in the dark. Nat. Sustain. 4, 466–473 (2021).

    Article  Google Scholar 

  170. Van Gerven, T., Mul, G., Moulijn, J. & Stankiewicz, A. A review of intensification of photocatalytic processes. Chem. Eng. Process. 46, 781–789 (2007).

    Article  Google Scholar 

  171. Herron, J. A. & Maravelias, C. T. Assessment of solar-to-fuels strategies: photocatalysis and electrocatalytic reduction. Energy Technol. 4, 1369–1391 (2016).

    Article  Google Scholar 

  172. Xia, Y.-S. et al. Tandem utilization of CO2 photoreduction products for the carbonylation of aryl iodides. Nat. Commun. 13, 2964 (2022).

    Article  ADS  Google Scholar 

  173. Song, L. et al. Visible-light photocatalytic di- and hydro-carboxylation of unactivated alkenes with CO2. Nat. Catal. 5, 832–838 (2022).

    Article  Google Scholar 

  174. Ulmer, U. et al. Fundamentals and applications of photocatalytic CO2 methanation. Nat. Commun. 10, 3169 (2019).

    Article  ADS  Google Scholar 

  175. Tavasoli, A. V., Preston, M. & Ozin, G. Photocatalytic dry reforming: what is it good for? Energy Environ. Sci. 14, 3098–3109 (2021).

    Article  Google Scholar 

  176. von der Assen, N., Voll, P., Peters, M. & Bardow, A. Life cycle assessment of CO2 capture and utilization: a tutorial review. Chem. Soc. Rev. 43, 7982–7994 (2014).

    Article  Google Scholar 

  177. Trudewind, C. A., Schreiber, A. & Haumann, D. Photocatalytic methanol and methane production using captured CO2 from coal-fired power plants. Part I — a life cycle assessment. J. Clean. Prod. 70, 27–37 (2014).

    Article  Google Scholar 

  178. Lewis, N. S. Developing a scalable artificial photosynthesis technology through nanomaterials by design. Nat. Nanotechnol. 11, 1010–1019 (2016).

    Article  ADS  Google Scholar 

  179. Faunce, T. et al. Artificial photosynthesis as a frontier technology for energy sustainability. Energy Environ. Sci. 6, 1074–1076 (2013).

    Article  Google Scholar 

  180. Li, M., Sun, Z. & Hu, Y. H. Thermo-photo coupled catalytic CO2 reforming of methane: a review. Chem. Eng. J. 428, 131222 (2022).

    Article  Google Scholar 

  181. Shoji, S. et al. Photocatalytic uphill conversion of natural gas beyond the limitation of thermal reaction systems. Nat. Catal. 3, 148–153 (2020).

    Article  Google Scholar 

  182. Ye, R.-P. et al. CO2 hydrogenation to high-value products via heterogeneous catalysis. Nat. Commun. 10, 5698 (2019).

    Article  ADS  Google Scholar 

  183. Wu, X. et al. Photocatalytic CO2 conversion of M0.33WO3 directly from the air with high selectivity: insight into full spectrum-induced reaction mechanism. J. Am. Chem. Soc. 141, 5267–5274 (2019).

    Article  Google Scholar 

  184. Wang, L. et al. Bismuth vacancy-induced efficient CO2 photoreduction in BiOCl directly from natural air: a progressive step toward photosynthesis in nature. Nano Lett. 21, 10260–10266 (2021). This work uses natural air as CO2 feedstock, which is an important practice towards applications.

    Article  ADS  Google Scholar 

  185. Schäppi, R. et al. Drop-in fuels from sunlight and air. Nature 601, 63–68 (2022).

    Article  ADS  Google Scholar 

  186. Li, Z. et al. Engineered disorder in CO2 photocatalysis. Nat. Commun. 13, 7205 (2022).

    Article  ADS  Google Scholar 

  187. Zhang, Y. et al. Photocatalytic CO2 reduction: identification and elimination of false-positive results. ACS Energy Lett. 7, 1611–1617 (2022).

    Article  Google Scholar 

  188. Kant, P., Liang, S., Rubin, M., Ozin, G. A. & Dittmeyer, R. Low-cost photoreactors for highly photon/energy-efficient solar-driven synthesis. Joule 7, 1347–1362 (2023).

    Article  Google Scholar 

  189. Zhao, Y. et al. Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets for efficient photoreduction of CO2 to CO with water. Adv. Mater. 27, 7824–7831 (2015).

    Article  Google Scholar 

  190. Yan, T. et al. Bismuth atom tailoring of indium oxide surface frustrated Lewis pairs boosts heterogeneous CO2 photocatalytic hydrogenation. Nat. Commun. 11, 6095 (2020).

    Article  ADS  Google Scholar 

  191. Cai, M. et al. Greenhouse-inspired supra-photothermal CO2 catalysis. Nat. Energy 6, 807–814 (2021). This work develops a coreshell structured photocatalyst with strong photo-thermal effect for CO2 hydrogenation.

    Article  ADS  Google Scholar 

  192. Xie, S. et al. Photocatalytic reduction of CO2 with H2O: significant enhancement of the activity of Pt–TiO2 in CH4 formation by addition of MgO. Chem. Commun. 49, 2451–2453 (2013).

    Article  Google Scholar 

  193. Wang, T. et al. In situ synthesis of ordered mesoporous co-doped TiO2 and its enhanced photocatalytic activity and selectivity for the reduction of CO2. J. Mater. Chem. A 3, 9491–9501 (2015).

    Article  Google Scholar 

  194. Xing, M. et al. Modulation of the reduction potential of TiO2–x by fluorination for efficient and selective CH4 generation from CO2 photoreduction. Nano Lett. 18, 3384–3390 (2018).

    Article  ADS  Google Scholar 

  195. Niu, P., Yang, Y., Yu, J. C., Liu, G. & Cheng, H.-M. Switching the selectivity of the photoreduction reaction of carbon dioxide by controlling the band structure of a g-C3N4 photocatalyst. Chem. Commun. 50, 10837–10840 (2014).

    Article  Google Scholar 

  196. Fu, J., Jiang, K., Qiu, X., Yu, J. & Liu, M. Product selectivity of photocatalytic CO2 reduction reactions. Mater. Today 32, 222–243 (2020).

    Article  Google Scholar 

  197. Bai, S. et al. Two-dimensional g-C3N4: an ideal platform for examining facet selectivity of metal co-catalysts in photocatalysis. Chem. Commun. 50, 6094–6097 (2014).

    Article  Google Scholar 

  198. Zhang, H. et al. Surface-plasmon-enhanced photodriven CO2 reduction catalyzed by metal–organic-framework-derived iron nanoparticles encapsulated by ultrathin carbon layers. Adv. Mater. 28, 3703–3710 (2016).

    Article  Google Scholar 

  199. Singh, A. K., Montoya, J. H., Gregoire, J. M. & Persson, K. A. Robust and synthesizable photocatalysts for CO2 reduction: a data-driven materials discovery. Nat. Commun. 10, 443 (2019). To our knowledge, this is the first report on applying first-principles computation to screen the robust and synthesizable photocatalysts for CO2 reduction.

    Article  ADS  Google Scholar 

  200. Stach, E. et al. Autonomous experimentation systems for materials development: a community perspective. Matter 4, 2702–2726 (2021).

    Article  Google Scholar 

  201. Wang, A., Bozal-Ginesta, C., Hari Kumar, S. G., Aspuru-Guzik, A. & Ozin, G. A. Designing materials acceleration platforms for heterogeneous CO2 photo(thermal)catalysis. Matter 6, 1334–1347 (2023).

    Article  Google Scholar 

  202. Rao, H., Lim, C.-H., Bonin, J., Miyake, G. M. & Robert, M. Visible-light-driven conversion of CO2 to CH4 with an organic sensitizer and an iron porphyrin catalyst. J. Am. Chem. Soc. 140, 17830–17834 (2018).

    Article  Google Scholar 

  203. Andrei, V. et al. Long-term solar water and CO2 splitting with photoelectrochemical BiOI–BiVO4 tandems. Nat. Mater. 21, 864–868 (2022).

    Article  ADS  Google Scholar 

  204. Bhattacharjee, S. et al. Photoelectrochemical CO2-to-fuel conversion with simultaneous plastic reforming. Nat. Synth. 2, 182–192 (2023).

    Article  ADS  Google Scholar 

  205. Pati, P. B. et al. Photocathode functionalized with a molecular cobalt catalyst for selective carbon dioxide reduction in water. Nat. Commun. 11, 3499 (2020).

    Article  ADS  Google Scholar 

  206. Wang, S. et al. Grave-to-cradle upcycling of Ni from electroplating wastewater to photothermal CO2 catalysis. Nat. Commun. 13, 5305 (2022).

    Article  ADS  Google Scholar 

  207. Xu, Y.-F. et al. High-performance light-driven heterogeneous CO2 catalysis with near-unity selectivity on metal phosphides. Nat. Commun. 11, 5149 (2020).

    Article  ADS  Google Scholar 

  208. Yu, S., Wilson, A. J., Heo, J. & Jain, P. K. Plasmonic control of multi-electron transfer and C–C coupling in visible-light-driven CO2 reduction on Au nanoparticles. Nano Lett. 18, 2189–2194 (2018).

    Article  ADS  Google Scholar 

  209. Sun, Z., Ma, T., Tao, H., Fan, Q. & Han, B. Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials. Chem 3, 560–587 (2017).

    Article  Google Scholar 

  210. Fang, S. & Hu, Y. H. Temperature, pressure, and adsorption-dependent redox potentials: I. Processes of CO2 reduction to value-added compounds. Energy Sci. Eng. 10, 4520–4543 (2022).

    Article  Google Scholar 

  211. Xu, F. et al. Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction. Nat. Commun. 11, 4613 (2020).

    Article  ADS  Google Scholar 

  212. Bae, K.-L., Kim, J., Lim, C. K., Nam, K. M. & Song, H. Colloidal zinc oxide-copper(I) oxide nanocatalysts for selective aqueous photocatalytic carbon dioxide conversion into methane. Nat. Commun. 8, 1156 (2017).

    Article  ADS  Google Scholar 

  213. Liu, Y. et al. Phase-enabled metal–organic framework homojunction for highly selective CO2 photoreduction. Nat. Commun. 12, 1231 (2021).

    Article  ADS  Google Scholar 

  214. Chen, X. et al. Bromo- and iodo-bridged building units in metal–organic frameworks for enhanced carrier transport and CO2 photoreduction by water vapor. Nat. Commun. 13, 4592 (2022).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Y.H.H. and S.F. acknowledge the support from the National Science Foundation (CMMI-1661699). M. Rahaman acknowledges the support from the European Commission with a Horizon 2020 Marie Skłodowska-Curie Individual European Fellowship (SolarFUEL, GAN 839763). E.R. acknowledges the support for a European Research Council (ERC) Consolidator Grant (MatEnSAP, no. 682833). M. Robert acknowledges the Institut Universitaire de France (IUF) for partial financial support.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (S.F., J.B., E.R., M. Robert, G.A.O. and Y.H.H.); Experimentation (S.F., M. Rahaman, J.B., E.R., M. Robert, G.A.O. and Y.H.H.); Results (S.F., M. Rahaman, E.R., M. Robert, G.A.O. and Y.H.H.); Applications (S.F., E.R., M. Robert, G.A.O. and Y.H.H.); Reproducibility and data deposition (S.F., J.B., E.R., M. Robert, G.A.O. and Y.H.H.); Limitations and optimizations (S.F., E.R., M. Robert, G.A.O. and Y.H.H.); Outlook (S.F., E.R., M. Robert, G.A.O. and Y.H.H.); overview of the Primer (S.F., M. Rahaman, J.B., E.R., M. Robert, G.A.O. and Y.H.H.).

Corresponding author

Correspondence to Yun Hang Hu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Vivek Polshettiwar and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ChemAnalyst: http://www.chemanalyst.com

US Energy Information Administration: http://www.eia.gov/

Glossary

Conduction band minimum

(CBM). The bottom of the lowest range of vacant electronic states.

de Broglie wavelengths

The wavelength manifested in all objects in quantum mechanics that determines the probability density of finding the object at a given point of the configuration space.

Heterogeneous process

The process in which the components are in multiple phases.

Homogeneous process

The process in which all components are in the same phase.

Hot charge carriers

The high-energy non-equilibrium electrons and holes resulting from the decay of plasmonic excitation.

Localized surface plasmon resonance effect

The coherent collective oscillation of conduction band electrons in metal nanoparticles excited by the electromagnetic radiation of incident light.

Scherrer equation

The formula that relates the size of sub-micrometre crystallites in a solid to the broadening of a peak in an X-ray diffraction pattern.

Semiconductor energy band gap

The energy difference between the valence band maximum and the conduction band minimum of a semiconductor.

Thermal catalysis

The process of accelerating a chemical reaction with a catalyst and driven by thermal energy.

Turnover frequency

(TOF). The turnover number per unit time.

Turnover number

(TON). The number of catalytic cycles (here, CO2 molecules converted) per active site in a certain time.

Valence band maximum

(VBM). The top of the highest range of electronic states that are occupied by electrons at absolute zero temperature.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, S., Rahaman, M., Bharti, J. et al. Photocatalytic CO2 reduction. Nat Rev Methods Primers 3, 61 (2023). https://doi.org/10.1038/s43586-023-00243-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-023-00243-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing