Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Analysis of metal–organic framework-based photosynthetic CO2 reduction

Abstract

Solar-driven synthetic fuel production couples solar energy conversion and storage in the form of chemical bonds and therefore has potential as a clean technology. The past decade has witnessed the continuous development of metal–organic framework (MOF) materials with considerable interest towards combining light harvesting with catalytic CO2 conversion in one system. Built on a literature survey and data macroanalysis, this Perspective examines the development of this field by showcasing synthetic design approaches and highlighting attained milestones, while critically assessing pitfalls and opportunities. Five MOF-based material classifications for visible light-driven CO2 reduction are determined and discussed through key photocatalysis figures of merits and metrics. Analysis reveals MOFs as a favourable platform to achieve high product-selectivity CO2 photocatalysis. Non-standardized testing and reporting is found throughout this field and non-comparable product evolution rates, unverified carbon and electron source(s), and incomplete reporting checklists are identified as the main roadblocks towards accurate cross-laboratory benchmarking and breakthroughs. This Perspective additionally provides a balanced discussion and best practice recommendations to guide researchers investigating MOF-based materials for photocatalytic CO2 reduction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The development of MOF-based photosynthetic CO2 reduction and contents of this Perspective.
Fig. 2: Synthetic research strategies and classifications.
Fig. 3: Quantitative analysis of literature-reported performance for MOF CO2 photoreduction.
Fig. 4: Overview of literature-applied irradiation conditions, photocatalytic media and assessment of the field.
Fig. 5: Overview highlighting the key accomplishments and remaining challenges discussed within this Perspective.

Similar content being viewed by others

Data availability

Source data of literature reports and contained performance metrics (DOI, publication year, main evolved product, selectivity, main product evolution rate, Cx product, irradiation wavelength, lamp power, irradiation power, main solvent, sacrificial electron donor, operation hours, 13C labelling, AQY, TONs and oxidation product) are available as Supplementary information.

References

  1. World Energy Outlook 2022 (International Energy Agency, 2022).

  2. Fu, Y. et al. An amine-functionalized titanium metal–organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew. Chem. Int. Ed. 51, 3364–3367 (2012).

    Article  CAS  Google Scholar 

  3. Sun, D. et al. Studies on photocatalytic CO2 reduction over NH2-UiO-66(Zr) and its derivatives: towards a better understanding of photocatalysis on metal–organic frameworks. Chem. Eur. J. 19, 14279–14285 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Fabian, D. M. et al. Particle suspension reactors and materials for solar-driven water splitting. Energy Environ. Sci. 8, 2825–2850 (2015).

    Article  CAS  Google Scholar 

  5. Wang, Q. & Domen, K. Particulate photocatalysts for light-driven water splitting. Mechanisms, challenges, and design strategies. Chem. Rev. 120, 919–985 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Warnan, J. & Reisner, E. Synthetic organic design for solar fuel systems. Angew. Chem. Int. Ed. 59, 17344–17354 (2020).

    Article  CAS  Google Scholar 

  7. Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).

    Article  PubMed  Google Scholar 

  8. Dalle, K. E. et al. Electro- and solar-driven fuel synthesis with first row transition metal complexes. Chem. Rev. 119, 2752–2875 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stanley, P. M., Haimerl, J., Shustova, N. B., Fischer, R. A. & Warnan, J. Merging molecular catalysts and metal–organic frameworks for photocatalytic fuel production. Nat. Chem. 14, 1342–1356 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Salionov, D. et al. Unraveling the molecular mechanism of MIL-53(Al) crystallization. Nat. Commun. 13, 3762 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Qian, Z. et al. Trace to the source: self‐tuning of MOF photocatalysts. Adv. Energy Mater. 13, 2300086 (2023).

    Article  CAS  Google Scholar 

  12. Sun, K., Qian, Y. & Jiang, H.-L. Metal–organic frameworks for photocatalytic water splitting and CO2 reduction. Angew. Chem. Int. Ed. 62, e202217565 (2023).

    Article  CAS  Google Scholar 

  13. Alvaro, M., Carbonell, E., Ferrer, B., Llabrés i Xamena, F. X. & Garcia, H. Semiconductor behavior of a metal–organic framework (MOF). Chem. Eur. J. 13, 5106–5112 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Tachikawa, T., Choi, J. R., Fujitsuka, M. & Majima, T. Photoinduced charge-transfer processes on MOF-5 nanoparticles: elucidating differences between metal–organic frameworks and semiconductor metal oxides. J. Phys. Chem. C 112, 14090–14101 (2008).

    Article  CAS  Google Scholar 

  15. Wang, S., Yao, W., Lin, J., Ding, Z. & Wang, X. Cobalt imidazolate metal–organic frameworks photosplit CO2 under mild reaction conditions. Angew. Chem. Int. Ed. 53, 1034–1038 (2014).

    Article  CAS  Google Scholar 

  16. Zeng, J.-Y., Wang, X.-S., Xie, B.-R., Li, Q.-R. & Zhang, X.-Z. Large π-conjugated metal–organic frameworks for infrared-light-driven CO2 reduction. J. Am. Chem. Soc. 144, 1218–1231 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Yan, Z.-H. et al. Photo-generated dinuclear {Eu(II)}2 active sites for selective CO2 reduction in a photosensitizing metal–organic framework. Nat. Commun. 9, 3353 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Xu, H.-Q. et al. Visible-light photoreduction of CO2 in a metal–organic framework. boosting electron-hole separation via electron trap states. J. Am. Chem. Soc. 137, 13440–13443 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Fang, Z.-B. et al. Boosting interfacial charge-transfer kinetics for efficient overall CO2 photoreduction via rational design of coordination spheres on metal–organic frameworks. J. Am. Chem. Soc. 142, 12515–12523 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Chen, S. et al. Fine-tuning the metal oxo cluster composition and phase structure of Ni/Ti bimetallic MOFs for efficient CO2 reduction. J. Phys. Chem. C 125, 9200–9209 (2021).

    Article  CAS  Google Scholar 

  21. Dong, H. et al. Regulation of metal ions in smart metal-cluster nodes of metal–organic frameworks with open metal sites for improved photocatalytic CO2 reduction reaction. Appl. Catal. B 276, 119173 (2020).

    Article  CAS  Google Scholar 

  22. Lee, Y., Kim, S., Kang, J. K. & Cohen, S. M. Photocatalytic CO2 reduction by a mixed metal (Zr/Ti), mixed ligand metal–organic framework under visible light irradiation. Chem. Commun. 51, 5735–5738 (2015).

    Article  CAS  Google Scholar 

  23. Fu, Y. et al. Enhanced photocatalytic CO2 reduction over Co-doped NH2-MIL-125(Ti) under visible light. RSC Adv. 7, 42819–42825 (2017).

    Article  CAS  Google Scholar 

  24. Ren, S. et al. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell. Science 365, 367–369 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Rao, H., Schmidt, L. C., Bonin, J. & Robert, M. Visible-light-driven methane formation from CO2 with a molecular iron catalyst. Nature 548, 74–77 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, B. & Sun, L. Artificial photosynthesis: opportunities and challenges of molecular catalysts. Chem. Soc. Rev. 48, 2216–2264 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Chambers, M. B. et al. Photocatalytic carbon dioxide reduction with rhodium-based catalysts in solution and heterogenized within metal–organic frameworks. Chem. Sus. Chem. 8, 603–608 (2015).

    Article  CAS  Google Scholar 

  28. Stanley, P. M. et al. Host–guest interactions in metal–organic framework isoreticular series for molecular photocatalytic CO2 reduction. Angew. Chem. Int. Ed. 60, 17854–17860 (2021).

    Article  CAS  Google Scholar 

  29. Wang, X., Wisser, F. M., Canivet, J., Fontecave, M. & Mellot-Draznieks, C. Immobilization of a full photosystem in the large-pore MIL-101 metal–organic framework for CO2 reduction. Chem. Sus. Chem. 11, 3315–3322 (2018).

    Article  CAS  Google Scholar 

  30. Zhuo, T.-C. et al. H-bond-mediated selectivity control of formate versus CO during CO2 photoreduction with two cooperative Cu/X sites. J. Am. Chem. Soc. 143, 6114–6122 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Stanley, P. M. et al. Topology- and wavelength-governed CO2 reduction photocatalysis in molecular catalyst-metal–organic framework assemblies. Chem. Sci. 13, 12164–12174 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stanley, P. M., Sixt, F. & Warnan, J. Decoupled solar energy storage and dark photocatalysis in a 3D metal‐organic framework. Adv. Mater. 35, 2207280 (2023).

    Article  CAS  Google Scholar 

  33. Choi, K. M. et al. Plasmon-enhanced photocatalytic CO2 conversion within metal–organic frameworks under visible light. J. Am. Chem. Soc. 139, 356–362 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Fei, H., Sampson, M. D., Lee, Y., Kubiak, C. P. & Cohen, S. M. Photocatalytic CO2 reduction to formate using a Mn(I) molecular catalyst in a robust metal–organic framework. Inorg. Chem. 54, 6821–6828 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Stanley, P. M. et al. Entrapped molecular photocatalyst and photosensitizer in metal–organic framework nanoreactors for enhanced solar CO2 reduction. ACS Catal. 11, 871–882 (2021).

    Article  CAS  Google Scholar 

  36. Stanley, P. M. et al. Photocatalytic CO2‐to‐syngas evolution with molecular catalyst metal‐organic framework nanozymes. Adv. Mater. 35, 2207380 (2023).

    Article  CAS  Google Scholar 

  37. Benseghir, Y. et al. Co-immobilization of a Rh catalyst and a Keggin polyoxometalate in the UiO-67 Zr-based metal–organic framework. In depth structural characterization and photocatalytic properties for CO2 reduction. J. Am. Chem. Soc. 142, 9428–9438 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Stanley, P. M., Parkulab, M., Rieger, B., Warnan, J. & Fischer, R. A. Understanding entrapped molecular photosystem and metal–organic framework synergy for improved solar fuel production. Faraday Discuss. 231, 281–297 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Chen, L., Wang, Y., Yu, F., Shen, X. & Duan, C. A simple strategy for engineering heterostructures of Au nanoparticle-loaded metal–organic framework nanosheets to achieve plasmon-enhanced photocatalytic CO2 conversion under visible light. J. Mater. Chem. A 7, 11355–11361 (2019).

    Article  CAS  Google Scholar 

  40. Becerra, J., Nguyen, D.-T., Gopalakrishnan, V.-N. & Do, T.-O. Plasmonic Au nanoparticles incorporated in the zeolitic imidazolate framework (ZIF-67) for the efficient sunlight-driven photoreduction of CO2. ACS Appl. Energy Mater. 3, 7659–7665 (2020).

    Article  CAS  Google Scholar 

  41. Kratzl, K. et al. Generation and stabilization of small platinum clusters Pt12±x inside a metal–organic framework. J. Am. Chem. Soc. 141, 13962–13969 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Guo, F. et al. Pt nanoparticles embedded in flowerlike NH2-UiO-68 for enhanced photocatalytic carbon dioxide reduction. J. Mater. Chem. A 7, 26490–26495 (2019).

    Article  CAS  Google Scholar 

  43. Habisreutinger, S. N., Schmidt-Mende, L. & Stolarczyk, J. K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem. Int. Ed. 52, 7372–7408 (2013).

    Article  CAS  Google Scholar 

  44. Jiang, Z. et al. Filling metal–organic framework mesopores with TiO2 for CO2 photoreduction. Nature 586, 549–554 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Wu, L.-Y. et al. Encapsulating perovskite quantum dots in iron-based metal–organic frameworks (MOFs) for efficient photocatalytic CO2 reduction. Angew. Chem. Int. Ed. 58, 9491–9495 (2019).

    Article  CAS  Google Scholar 

  46. Liu, S.-M. et al. Ti-substituted Keggin-type polyoxotungstate as proton and electron reservoir encaged into metal–organic framework for carbon dioxide photoreduction. Adv. Mater. Interfaces 5, 1801062 (2018).

    Article  Google Scholar 

  47. Chen, L., Yu, F., Shen, X. & Duan, C. N-CND modified NH2-UiO-66 for photocatalytic CO2 conversion under visible light by a photo-induced electron transfer process. Chem. Commun. 55, 4845–4848 (2019).

    Article  CAS  Google Scholar 

  48. Wang, X., Zhao, X., Zhang, D., Li, G. & Li, H. Microwave irradiation induced UIO-66-NH2 anchored on graphene with high activity for photocatalytic reduction of CO2. Appl. Catal. B 228, 47–53 (2018).

    Article  CAS  Google Scholar 

  49. Dao, X.-Y. et al. Boosting photocatalytic CO2 reduction efficiency by heterostructures of NH2-MIL-101(Fe)/g-C3N4. ACS Appl. Energy Mater. 3, 3946–3954 (2020).

    Article  CAS  Google Scholar 

  50. Shi, L., Wang, T., Zhang, H., Chang, K. & Ye, J. Electrostatic self-assembly of nanosized carbon nitride nanosheet onto a zirconium metal–organic framework for enhanced photocatalytic CO2 reduction. Adv. Funct. Mater. 25, 5360–5367 (2015).

    Article  CAS  Google Scholar 

  51. Chen, Y. et al. Stabilization of formate dehydrogenase in a metal–organic framework for bioelectrocatalytic reduction of CO2. Angew. Chem. Int. Ed. 58, 7682–7686 (2019).

    Article  CAS  Google Scholar 

  52. Li, N. et al. Adenine components in biomimetic metal–organic frameworks for efficient CO2 photoconversion. Angew. Chem. Int. Ed. 58, 5226–5231 (2019).

    Article  CAS  Google Scholar 

  53. Niu, Q. et al. Rational design of novel COF/MOF S-scheme heterojunction photocatalyst for boosting CO2 reduction at gas–solid interface. ACS Appl. Mater. Interfaces 14, 24299–24308 (2022).

    Article  CAS  PubMed  Google Scholar 

  54. Wu, H. et al. Metal–organic framework decorated cuprous oxide nanowires for long-lived charges applied in selective photocatalytic CO2 reduction to CH4. Angew. Chem. Int. Ed. 60, 8455–8459 (2021).

    Article  CAS  Google Scholar 

  55. Yu, F., Jing, X., Wang, Y., Sun, M. & Duan, C. Hierarchically porous metal–organic framework/MoS2 interface for selective photocatalytic conversion of CO2 with H2O into CH3COOH. Angew. Chem. Int. Ed. 60, 24849–24853 (2021).

    Article  CAS  Google Scholar 

  56. Deng, X. et al. Metal–organic framework coating enhances the performance of Cu2O in photoelectrochemical CO2 reduction. J. Am. Chem. Soc. 141, 10924–10929 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Nelson, A. P., Farha, O. K., Mulfort, K. L. & Hupp, J. T. Supercritical processing as a route to high internal surface areas and permanent microporosity in metal–organic framework materials. J. Am. Chem. Soc. 131, 458–460 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Gibbons, B., Cai, M. & Morris, A. J. A potential roadmap to integrated metal organic framework artificial photosynthetic arrays. J. Am. Chem. Soc. 144, 17723–17736 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang, C. & Lin, W. Diffusion-controlled luminescence quenching in metal–organic frameworks. J. Am. Chem. Soc. 133, 4232–4235 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Sharp, C. H. et al. Nanoconfinement and mass transport in metal–organic frameworks. Chem. Soc. Rev. 50, 11530–11558 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Xie, L. S., Skorupskii, G. & Dincă, M. Electrically conductive metal–organic frameworks. Chem. Rev. 120, 8536–8580 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lan, G. et al. Photosensitizing metal–organic layers for efficient sunlight-driven carbon dioxide reduction. J. Am. Chem. Soc. 140, 12369–12373 (2018).

    Article  CAS  PubMed  Google Scholar 

  63. Eddaoudi, M. et al. Porous metal–organic polyhedra: 25 Å cuboctahedron constructed from 12 Cu2(CO2)4 paddle-wheel building blocks. J. Am. Chem. Soc. 123, 4368–4369 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Pullen, S. & Clever, G. H. Mixed-ligand metal–organic frameworks and heteroleptic coordination cages as multifunctional scaffolds-a comparison. Acc. Chem. Res. 51, 3052–3064 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lee, H. S. et al. A highly active, robust photocatalyst heterogenized in discrete cages of metal–organic polyhedra for CO2 reduction. Energy Environ. Sci. 13, 519–526 (2020).

    Article  CAS  Google Scholar 

  66. Zhao, Y., Cai, W., Chen, J., Miao, Y. & Bu, Y. A highly efficient composite catalyst constructed from NH2-MIL-125(Ti) and reduced graphene oxide for CO2 photoreduction. Front. Chem. 7, 789 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hu, M. et al. Ultra-thin two-dimensional trimetallic metal–organic framework for photocatalytic reduction of CO2. ACS Catal. 12, 3238–3248 (2022).

    Article  CAS  Google Scholar 

  68. Guo, S.-H. et al. A bimetallic-MOF catalyst for efficient CO2 photoreduction from simulated flue gas to value-added formate. J. Mater. Chem. A 8, 11712–11718 (2020).

    Article  CAS  Google Scholar 

  69. Al‐Tamreh, S. A. et al. Electroreduction of carbon dioxide into formate: a comprehensive review. ChemElectroChem 8, 3207–3220 (2021).

    Article  Google Scholar 

  70. Chernyshova, I. V., Somasundaran, P. & Ponnurangam, S. On the origin of the elusive first intermediate of CO2 electroreduction. Proc. Natl Acad. Sci. USA 115, E9261–E9270 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Li, F. et al. Molecular tuning of CO2-to-ethylene conversion. Nature 577, 509–513 (2020).

    Article  CAS  PubMed  Google Scholar 

  72. He, J. & Janáky, C. Recent advances in solar-driven carbon dioxide conversion: expectations versus reality. ACS Energy Lett. 5, 1996–2014 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Matsubara, Y. Standard electrode potentials for the reduction of CO2 to CO in acetonitrile–water mixtures determined using a generalized method for proton-coupled electron-transfer reactions. ACS Energy Lett. 2, 1886–1891 (2017).

    Article  CAS  Google Scholar 

  74. Wiedner, E. S. & Linehan, J. C. Making a splash in homogeneous CO2 hydrogenation: elucidating the impact of solvent on catalytic mechanisms. Chem. Eur. J. 24, 16964–16971 (2018).

    Article  CAS  PubMed  Google Scholar 

  75. Qin, J., Wang, S. & Wang, X. Visible-light reduction CO2 with dodecahedral zeolitic imidazolate framework ZIF-67 as an efficient co-catalyst. Appl. Catal. B 209, 476–482 (2017).

    Article  CAS  Google Scholar 

  76. Amombo Noa, F. M. et al. A unified topology approach to dot-, rod-, and sheet-MOFs. Chem 7, 2491–2512 (2021).

    Article  CAS  Google Scholar 

  77. Cheetham, A. K., Rao, C. N. R. & Feller, R. K. Structural diversity and chemical trends in hybrid inorganic–organic framework materials. Chem. Commun. 216, 4780–4795 (2006).

    Article  Google Scholar 

  78. Zhao, R. et al. Partially nitrided Ni nanoclusters achieve energy-efficient electrocatalytic CO2 reduction to CO at ultralow overpotential. Adv. Mater. 35, e2205262 (2023).

    Article  PubMed  Google Scholar 

  79. Liu, Y. et al. Metal or metal-containing nanoparticle@MOF nanocomposites as a promising type of photocatalyst. Coord. Chem. Rev. 388, 63–78 (2019).

    Article  CAS  Google Scholar 

  80. Kornienko, N. Operando spectroscopy of nanoscopic metal/covalent organic framework electrocatalysts. Nanoscale 13, 1507–1514 (2021).

    Article  CAS  PubMed  Google Scholar 

  81. Zhang, K. et al. An iron-porphyrin grafted metal–organic framework as a heterogeneous catalyst for the photochemical reduction of CO2. J. Photochem. Photobiol. 10, 100111 (2022).

    Article  CAS  Google Scholar 

  82. Reguero, M., Claver, C., Carrilho, R. M. B. & Masdeu‐Bultó, A. M. Immobilized molecular catalysts for CO2 photoreduction. Adv. Sustain. Syst. 6, 2100493 (2022).

    Article  CAS  Google Scholar 

  83. Wang, J.-W. et al. Facile electron delivery from graphene template to ultrathin metal–organic layers for boosting CO2 photoreduction. Nat. Commun. 12, 813 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lan, G. et al. Biomimetic active sites on monolayered metal–organic frameworks for artificial photosynthesis. Nat. Catal. 5, 1006–1018 (2022).

    Article  CAS  Google Scholar 

  85. Segev, G. et al. The 2022 solar fuels roadmap. J. Phys. D 55, 323003 (2022).

    Article  CAS  Google Scholar 

  86. Ojha, N. & Kumar, S. Tri-phase photocatalysis for CO2 reduction and N2 fixation with efficient electron transfer on a hydrophilic surface of transition-metal-doped MIL-88A(Fe). Appl. Catal. B 292, 120166 (2021).

    Article  CAS  Google Scholar 

  87. Hao, Y.-C. et al. Metal–organic framework membranes with single-atomic centers for photocatalytic CO2 and O2 reduction. Nat. Commun. 12, 2682 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Haussener, S. Solar fuel processing: comparative mini-review on research, technology development, and scaling. Sol. Energy 246, 294–300 (2022).

    Article  CAS  Google Scholar 

  89. Qureshi, M. & Takanabe, K. Insights on measuring and reporting heterogeneous photocatalysis: efficiency definitions and setup examples. Chem. Mater. 29, 158–167 (2017).

    Article  CAS  Google Scholar 

  90. Liu, B., Vikrant, K., Kim, K.-H., Kumar, V. & Kailasa, S. K. Critical role of water stability in metal–organic frameworks and advanced modification strategies for the extension of their applicability. Environ. Sci. Nano 7, 1319–1347 (2020).

    Article  CAS  Google Scholar 

  91. Burtch, N. C., Jasuja, H. & Walton, K. S. Water stability and adsorption in metal–organic frameworks. Chem. Rev. 114, 10575–10612 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Taylor, J. M., Vaidhyanathan, R., Iremonger, S. S. & Shimizu, G. K. H. Enhancing water stability of metal–organic frameworks via phosphonate monoester linkers. J. Am. Chem. Soc. 134, 14338–14340 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Benson, E. E., Kubiak, C. P., Sathrum, A. J. & Smieja, J. M. Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem. Soc. Rev. 38, 89–99 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Pellegrin, Y. & Odobel, F. Sacrificial electron donor reagents for solar fuel production. C. R. Chim. 20, 283–295 (2017).

    Article  CAS  Google Scholar 

  95. Schneider, J. & Bahnemann, D. W. Undesired role of sacrificial reagents in photocatalysis. J. Phys. Chem. Lett. 4, 3479–3483 (2013).

    Article  CAS  Google Scholar 

  96. Benseghir, Y. et al. Unveiling the mechanism of the photocatalytic reduction of CO2 to formate promoted by porphyrinic Zr-based metal–organic frameworks. J. Mater. Chem. A 10, 18103–18115 (2022).

    Article  CAS  Google Scholar 

  97. Gao, W.-Y. et al. A mixed-metal porphyrinic framework promoting gas-phase CO2 photoreduction without organic sacrificial agents. ChemSusChem 13, 6273–6277 (2020).

    Article  CAS  PubMed  Google Scholar 

  98. Sadeghi, N., Sharifnia, S. & Sheikh Arabi, M. A porphyrin-based metal organic framework for high rate photoreduction of CO2 to CH4 in gas phase. J. CO2 Util. 16, 450–457 (2016).

    Article  CAS  Google Scholar 

  99. Das, R., Chakraborty, S. & Peter, S. C. Systematic assessment of solvent selection in photocatalytic CO2 reduction. ACS Energy Lett. 6, 3270–3274 (2021).

    Article  CAS  Google Scholar 

  100. Bhattacharya, M., Chandler, K. J., Geary, J. & Saouma, C. T. The role of leached Zr in the photocatalytic reduction of CO2 to formate by derivatives of UiO-66 metal organic frameworks. Dalton Trans. 49, 4751–4757 (2020).

    Article  CAS  PubMed  Google Scholar 

  101. He, Y., Li, C., Chen, X.-B., Shi, Z. & Feng, S. Visible-light-responsive UiO-66(Zr) with defects efficiently promoting photocatalytic CO2 reduction. ACS Appl. Mater. Interfaces 14, 28977–28984 (2022).

    Article  CAS  PubMed  Google Scholar 

  102. Artero, V. & Fontecave, M. Solar fuels generation and molecular systems. Is it homogeneous or heterogeneous catalysis? Chem. Soc. Rev. 42, 2338–2356 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Kolthoff, I. M. & Miller, I. K. The chemistry of persulfate. I. The kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium. J. Am. Chem. Soc. 73, 3055–3059 (1951).

    Article  CAS  Google Scholar 

  104. Yoshino, S., Takayama, T., Yamaguchi, Y., Iwase, A. & Kudo, A. CO2 reduction using water as an electron donor over heterogeneous photocatalysts aiming at artificial photosynthesis. Acc. Chem. Res. 55, 966–977 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Welter, E. S. et al. Figures of merit for photocatalysis: comparison of NiO/La-NaTaO3 and Synechocystis sp. PCC 6803 as a semiconductor and a bio-photocatalyst for water splitting. Catalysts 11, 1415 (2021).

    Article  CAS  Google Scholar 

  106. Kisch, H. & Bahnemann, D. Best practice in photocatalysis: comparing rates or apparent quantum yields? J. Phys. Chem. Lett. 6, 1907–1910 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. Kozuch, S. & Martin, J. M. L. ‘Turning over’ definitions in catalytic cycles. ACS Catal. 2, 2787–2794 (2012).

    Article  CAS  Google Scholar 

  108. Calza, P., Minella, M., Demarchis, L., Sordello, F. & Minero, C. Photocatalytic rate dependence on light absorption properties of different TiO2 specimens. Catal. Today 340, 12–18 (2020).

    Article  CAS  Google Scholar 

  109. Cernuto, G., Masciocchi, N., Cervellino, A., Colonna, G. M. & Guagliardi, A. Size and shape dependence of the photocatalytic activity of TiO2 nanocrystals: a total scattering Debye function study. J. Am. Chem. Soc. 133, 3114–3119 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Kolobov, N., Goesten, M. G. & Gascon, J. Metal–organic frameworks: molecules or semiconductors in photocatalysis? Angew. Chem. Int. Ed. 60, 26038–26052 (2021).

    Article  CAS  Google Scholar 

  111. Wu, X.-P., Choudhuri, I. & Truhlar, D. G. Computational studies of photocatalysis with metal–organic frameworks. Energy Environ. Mater. 2, 251–263 (2019).

    Article  CAS  Google Scholar 

  112. Jablonka, K. M., Ongari, D., Moosavi, S. M. & Smit, B. Big-data science in porous materials: materials genomics and machine learning. Chem. Rev. 120, 8066–8129 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bennett, T. D., Coudert, F.-X., James, S. L. & Cooper, A. I. The changing state of porous materials. Nat. Mater. 20, 1179–1187 (2021).

    Article  CAS  PubMed  Google Scholar 

  114. Hu, H. et al. Metal–organic frameworks embedded in a liposome facilitate overall photocatalytic water splitting. Nat. Chem. 13, 358–366 (2021).

    Article  CAS  PubMed  Google Scholar 

  115. Vandenhaute, S., Cools-Ceuppens, M., DeKeyser, S., Verstraelen, T. & van Speybroeck, V. Machine learning potentials for metal–organic frameworks using an incremental learning approach. NPJ Comput. Mater. 9, 19 (2023).

  116. Burger, B. et al. A mobile robotic chemist. Nature 583, 237–241 (2020).

    Article  CAS  PubMed  Google Scholar 

  117. Montoya, J. H. et al. Materials for solar fuels and chemicals. Nat. Mater. 16, 70–81 (2016).

    Article  PubMed  Google Scholar 

  118. Tran, P. D., Wong, L. H., Barber, J. & Loo, J. S. C. Recent advances in hybrid photocatalysts for solar fuel production. Energy Environ. Sci. 5, 5902–5918 (2012).

  119. Kanan, M. W. & Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072–1075 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

P.M.S. and V.R. thank the Chemical Industry Fonds (FCI) for a PhD fellowship. This work was supported by the German Research Foundation (DFG) Priority Program 1928 ‘Coordination Networks: Building Blocks for Functional Systems’, the research project MOFMOX (grant number FI 502/43-1) and by the Excellence Cluster 2089 ‘e-conversion’ (Fundamentals of Energy Conversion Processes).

Author information

Authors and Affiliations

Authors

Contributions

P.M.S. and J.W. conceived the idea and outline for this work. P.M.S. performed the literature overview and metrics analysis. P.M.S. and J.W. wrote the paper with contributions from V.R. and R.A.F. All authors have approved the final version of this paper.

Corresponding author

Correspondence to J. Warnan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Alina Kampouri, Caroline T. Saouma and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Methods for literature search, definition of figures of merit and references.

Source data

Source Data Figs.1–4 Literature analysis.

Full list and description of literature publications on which our analysis is built.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stanley, P.M., Ramm, V., Fischer, R.A. et al. Analysis of metal–organic framework-based photosynthetic CO2 reduction. Nat. Synth 3, 307–318 (2024). https://doi.org/10.1038/s44160-024-00490-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-024-00490-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing