Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ancient DNA analysis

Abstract

Although the first ancient DNA molecules were extracted more than three decades ago, the first ancient nuclear genomes could only be characterized after high-throughput sequencing was invented. Genome-scale data have now been gathered from thousands of ancient archaeological specimens, and the number of ancient biological tissues amenable to genome sequencing is growing steadily. Ancient DNA fragments are typically ultrashort molecules and carry extensive amounts of chemical damage accumulated after death. Their extraction, manipulation and authentication require specific experimental wet-laboratory and dry-laboratory procedures before patterns of genetic variation from past individuals, populations and species can be interpreted. Ancient DNA data help to address an entire array of questions in anthropology, evolutionary biology and the environmental and archaeological sciences. The data have revealed a considerably more dynamic past than previously appreciated and have revolutionized our understanding of many major prehistoric and historic events. This Primer provides an overview of concepts and state-of-the-art methods underlying ancient DNA analysis and illustrates the diversity of resulting applications. The article also addresses some of the ethical challenges associated with the destructive analysis of irreplaceable material, emphasizes the need to fully involve archaeologists and stakeholders as part of the research design and analytical process, and discusses future perspectives.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Analytical milestones in aDNA research.
Fig. 2: Experimental workflow.
Fig. 3: Post-mortem DNA damage and data authentication.
Fig. 4: Examples of standard aDNA statistical analyses applied to human and microbiome data.
Fig. 5: Geographical and temporal distribution of ancient specimens analysed at the genome scale.

References

  1. Higuchi, R., Bowman, B., Freiberger, M., Ryder, O. A. & Wilson, A. C. DNA sequences from the quagga, an extinct member of the horse family. Nature 312, 282–284 (1984).

    ADS  Google Scholar 

  2. Orlando, L. et al. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature 499, 74–78 (2013). This article presents the oldest sequenced genome to date, from one horse metapodial preserved in permafrost for 560,000–780,000 years.

    ADS  Google Scholar 

  3. Palkopoulou, E. et al. Complete genomes reveal signatures of demographic and genetic declines in the woolly mammoth. Curr. Biol. 25, 1395–1400 (2015).

    Google Scholar 

  4. Barlow, A. et al. Partial genomic survival of cave bears in living brown bears. Nat. Ecol. Evol. 2, 1563–1570 (2018).

    Google Scholar 

  5. Margaryan, A. et al. Population genomics of the Viking world. Nature 585, 390–396 (2020).

    ADS  Google Scholar 

  6. Rasmussen, M. et al. Ancient human genome sequence of an extinct Palaeo-Eskimo. Nature 463, 757–762 (2010). This article reports the first ancient human genome sequenced from the hair shaft of a 4,000-year-old Paleo-Inuit. The authors find evidence for genetic discontinuity with modern Greenlanders, supporting multiple migration waves into Arctic Greenland.

    ADS  Google Scholar 

  7. Green, R. E. et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010). This article reports the first Neanderthal genome obtained from the DNA extracts of three paleontological bones, establishing the Neanderthal genetic legacy within modern human genomes and describing important wet-laboratory and dry-laboratory methodologies that have shaped the following decade of aDNA research.

    ADS  Google Scholar 

  8. Prüfer, K. et al. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505, 43–49 (2014).

    ADS  Google Scholar 

  9. Prüfer, K. et al. A high-coverage Neandertal genome from Vindija cave in Croatia. Science 358, 655–658 (2017).

    ADS  Google Scholar 

  10. Mafessoni, F. et al. A high-coverage Neandertal genome from Chagyrskaya cave. Proc. Natl Acad. Sci. USA 117, 15132–15136 (2020).

    Google Scholar 

  11. Nielsen, R. et al. Tracing the peopling of the world through genomics. Nature 541, 302–310 (2017).

    ADS  Google Scholar 

  12. Frantz, L. A. F., Bradley, D. G., Larson, G. & Orlando, L. Animal domestication in the era of ancient genomics. Nat. Rev. Genet. 21, 449–460 (2020).

    Google Scholar 

  13. Spyrou, M. A., Bos, K. I., Herbig, A. & Krause, J. Ancient pathogen genomics as an emerging tool for infectious disease research. Nat. Rev. Genet. 20, 323–340 (2019).

    Google Scholar 

  14. Krause, J. et al. The complete mitochondrial DNA genome of an unknown hominin from southern Siberia. Nature 464, 894–897 (2010).

    ADS  Google Scholar 

  15. Reich, D. et al. Genetic history of an archaic hominin group from Denisova cave in Siberia. Nature 468, 1053–1060 (2010). This article reports the discovery of Denisovans, a previously unknown lineage of archaic hominins that lived in southern Siberia at least 50,000 years ago. This was the first time that a representative of the Homo evolutionary tree was described from molecular data and in the absence of key macrofossil remains showing clear morphological characteristics.

    ADS  Google Scholar 

  16. Meyer, M. et al. A high-coverage genome sequence from an archaic Denisovan individual. Science 338, 222–226 (2012). This article presents the first high-quality genome from an archaic hominin and describes the first experimental procedure for DNA library preparation from single-stranded DNA templates. The approach outperforms competing technologies in sensitivity and complexity, and minimizes loss of authentic DNA molecules.

    ADS  Google Scholar 

  17. Rogers, R. L. & Slatkin, M. Excess of genomic defects in a woolly mammoth on Wrangel island. PLoS Genet. 13, e1006601 (2017).

    Google Scholar 

  18. Lynch, V. J. et al. Elephantid genomes reveal the molecular bases of woolly mammoth adaptations to the Arctic. Cell Rep. 12, 217–228 (2015).

    Google Scholar 

  19. Fry, E. et al. Functional architecture of deleterious genetic variants in the genome of a Wrangel island mammoth. Genome Biol. Evol. 12, 48–58 (2020).

    Google Scholar 

  20. Lorenzen, E. D. et al. Species-specific responses of late quaternary megafauna to climate and humans. Nature 479, 359–364 (2011).

    ADS  Google Scholar 

  21. Orlando, L. & Cooper, A. Using ancient DNA to understand evolutionary and ecological processes. Annu. Rev. Ecol. Evol. Syst. 45, 573–598 (2014).

    Google Scholar 

  22. Willerslev, E. et al. Fifty thousand years of Arctic vegetation and megafaunal diet. Nature 506, 47–51 (2014).

    ADS  Google Scholar 

  23. Fortes, G. G. et al. Ancient DNA reveals differences in behaviour and sociality between brown bears and extinct cave bears. Mol. Ecol. 25, 4907–4918 (2016).

    ADS  Google Scholar 

  24. Gretzinger, J. et al. Large-scale mitogenomic analysis of the phylogeography of the Late Pleistocene cave bear. Sci. Rep. 9, 10700 (2019).

    ADS  Google Scholar 

  25. Key, F. M. et al. Emergence of human-adapted Salmonella enterica is linked to the Neolithization process. Nat. Ecol. Evol. 4, 324–333 (2020).

    Google Scholar 

  26. Warinner, C. et al. Pathogens and host immunity in the ancient human oral cavity. Nat. Genet. 46, 336–344 (2014). This article reports the first metagenomic and paleoproteomic analysis of ancient dental plaque and demonstrates the preservation of oral microbial signatures, diet content and inflammation markers.

    Google Scholar 

  27. Warinner, C. et al. A robust framework for microbial archaeology. Annu. Rev. Genomics Hum. Genet. 18, 321–356 (2017).

    Google Scholar 

  28. Gokhman, D. et al. Reconstructing the DNA methylation maps of the Neandertal and the Denisovan. Science 344, 523–527 (2014).

    ADS  Google Scholar 

  29. Pedersen, J. S. et al. Genome-wide nucleosome map and cytosine methylation levels of an ancient human genome. Genome Res. 24, 454–466 (2014). This article is the first report of ancient epigenomes, leveraging post-mortem DNA degradation signatures to statistically infer DNA methylation and nucleosome positioning.

    Google Scholar 

  30. Goodwin, S., McPherson, J. D. & McCombie, W. R. Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet. 17, 333–351 (2016).

    Google Scholar 

  31. Poinar, H. N. et al. Metagenomics to paleogenomics: large-scale sequencing of mammoth DNA. Science 311, 392–394 (2006).

    ADS  Google Scholar 

  32. Green, R. E. et al. Analysis of one million base pairs of Neanderthal DNA. Nature 444, 330–336 (2006).

    ADS  Google Scholar 

  33. Orlando, L., Gilbert, M. T. P. & Willerslev, E. Reconstructing ancient genomes and epigenomes. Nat. Rev. Genet. 16, 395–408 (2015).

    Google Scholar 

  34. Giguet-Covex, C. et al. Long livestock farming history and human landscape shaping revealed by lake sediment DNA. Nat. Commun. 5, 3211 (2014).

    ADS  Google Scholar 

  35. Avila-Arcos, M. C. et al. Application and comparison of large-scale solution-based DNA capture-enrichment methods on ancient DNA. Sci. Rep. 1, 74 (2011).

    Google Scholar 

  36. Maricic, T., Whitten, M. & Pääbo, S. Multiplexed DNA sequence capture of mitochondrial genomes using PCR products. PLoS ONE 5, e14004 (2010).

    ADS  Google Scholar 

  37. Fu, Q. et al. DNA analysis of an early modern human from Tianyuan cave, China. Proc. Natl Acad. Sci. USA 110, 2223–2227 (2013). This study presents the first application of in-solution target enrichment at the genome scale and describes sequence for a full chromosome of an approximately 40,000-year-old anatomically modern human from China.

    ADS  Google Scholar 

  38. Carpenter, M. L. et al. Pulling out the 1%: whole-genome capture for the targeted enrichment of ancient DNA sequencing libraries. Am. J. Hum. Genet. 93, 852–864 (2013).

    Google Scholar 

  39. Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15758–15763 (2013). This study reports a new DNA extraction method from ancient osseous remains that is tailored to the ultrashort and extensively damaged nature of aDNA molecules. This methodology allowed the retrieval of full mitochondrial genome sequences from 300,000-year-old cave bear specimens preserved in Atapuerca, Spain.

    ADS  Google Scholar 

  40. Korlević, P. et al. Reducing microbial and human contamination in DNA extractions from ancient bones and teeth. BioTechniques 59, 87–93 (2015).

    Google Scholar 

  41. Gamba, C. et al. Comparing the performance of three ancient DNA extraction methods for high-throughput sequencing. Mol. Ecol. Resour. 16, 459–469 (2016).

    Google Scholar 

  42. Boessenkool, S. et al. Combining bleach and mild predigestion improves ancient DNA recovery from bones. Mol. Ecol. Resour. 17, 742–751 (2017).

    Google Scholar 

  43. Gansauge, M.-T. & Meyer, M. Selective enrichment of damaged DNA molecules for ancient genome sequencing. Genome Res. 24, 1543–1549 (2014).

    Google Scholar 

  44. Adler, C. J. et al. Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and industrial revolutions. Nat. Genet. 45, 450–455, 455e1 (2013).

    Google Scholar 

  45. Wagner, S. et al. High-throughput DNA sequencing of ancient wood. Mol. Ecol. 27, 1138–1154 (2018).

    Google Scholar 

  46. Lendvay, B. et al. Improved recovery of ancient DNA from subfossil wood—application to the world’s oldest Late Glacial pine forest. New Phytol. 217, 1737–1748 (2018).

    Google Scholar 

  47. Der Sarkissian, C. et al. Ancient DNA analysis identifies marine mollusc shells as new metagenomic archives of the past. Mol. Ecol. Resour. 17, 835–853 (2017).

    Google Scholar 

  48. Pedersen, M. W. et al. Postglacial viability and colonization in North America’s ice-free corridor. Nature 537, 45–49 (2016).

    ADS  Google Scholar 

  49. Slon, V. et al. Neandertal and Denisovan DNA from Pleistocene sediments. Science 356, 605–608 (2017).

    ADS  Google Scholar 

  50. Teasdale, M. D. et al. Paging through history: parchment as a reservoir of ancient DNA for next generation sequencing. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20130379 (2015).

    Google Scholar 

  51. O’Sullivan, N. J. et al. A whole mitochondria analysis of the Tyrolean Iceman’s leather provides insights into the animal sources of Copper Age clothing. Sci. Rep. 6, 31279 (2016).

    ADS  Google Scholar 

  52. Gamba, C. et al. Genome flux and stasis in a five millennium transect of European prehistory. Nat. Commun. 5, 5257 (2014). This study reports the first matched empirical evidence establishing better DNA preservation rates in petrosal bones, which paved the way for future studies at the population scale, and also presents complete genomes of Mesolithic hunter–gatherers and Neolithic farmers in the Caucasus, supporting direct early contact between both groups.

    ADS  Google Scholar 

  53. Damgaard, P. B. et al. Improving access to endogenous DNA in ancient bones and teeth. Sci. Rep. 5, 11184 (2015).

    ADS  Google Scholar 

  54. Krause, J. et al. A complete mtDNA genome of an early modern human from Kostenki, Russia. Curr. Biol. 20, 231–236 (2010). This article establishes important criteria for aDNA data authentication, including the presence of post-mortem cytosine deamination signatures and DNA fragmentation through depurination, and reports a complete mitochondrial genome from an approximately 32,000-year-old anatomically modern human from Kostenki, Russia.

    Google Scholar 

  55. Skoglund, P. et al. Separating endogenous ancient DNA from modern day contamination in a Siberian Neandertal. Proc. Natl Acad. Sci. USA 111, 2229–2234 (2014).

    ADS  Google Scholar 

  56. Renaud, G., Schubert, M., Sawyer, S. & Orlando, L. Authentication and assessment of contamination in ancient DNA. Methods Mol. Biol. 1963, 163–194 (2019).

    Google Scholar 

  57. Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F. & Orlando, L. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29, 1682–1684 (2013).

    Google Scholar 

  58. Leonardi, M. et al. Evolutionary patterns and processes: lessons from ancient DNA. Syst. Biol. 66, e1–e29 (2017).

    Google Scholar 

  59. Pääbo, S., Gifford, J. A. & Wilson, A. C. Mitochondrial DNA sequences from a 7000-year old brain. Nucleic Acids Res. 16, 9775–9787 (1988).

    Google Scholar 

  60. Miller, W. et al. Sequencing the nuclear genome of the extinct woolly mammoth. Nature 456, 387–390 (2008).

    ADS  Google Scholar 

  61. Gilbert, M. T. P. et al. Resistance of degraded hair shafts to contaminant DNA. Forensic Sci. Int. 156, 208–212 (2006).

    Google Scholar 

  62. Seguin-Orlando, A. et al. Pros and cons of methylation-based enrichment methods for ancient DNA. Sci. Rep. 5, 11826 (2015).

    ADS  Google Scholar 

  63. Hagelberg, E., Sykes, B. & Hedges, R. Ancient bone DNA amplified. Nature 342, 485 (1989).

    ADS  Google Scholar 

  64. Sirak, K. et al. Human auditory ossicles as an alternative optimal source of ancient DNA. Genome Res. 30, 427–436 (2020).

    Google Scholar 

  65. Bos, K. I. et al. A draft genome of Yersinia pestis from victims of the Black Death. Nature 478, 506–510 (2011). This article reports the first complete genome of an ancient bacterial pathogen, Y. pestis, from osseous human remains of individuals who died from the Black Death in 1347–1348.

    ADS  Google Scholar 

  66. Margaryan, A. et al. Ancient pathogen DNA in human teeth and petrous bones. Ecol. Evol. 8, 3534–3542 (2018).

    Google Scholar 

  67. Brown, T. A., Allaby, R. G., Brown, K. A., O’Donoghue, K. & Sallares, R. DNA in wheat seeds from European archaeological sites. Experientia 50, 571–575 (1994).

    Google Scholar 

  68. Suyama, Y. et al. DNA sequence from a fossil pollen of Abies spp. from Pleistocene peat. Genes. Genet. Syst. 71, 145–149 (1996).

    Google Scholar 

  69. Jaenicke-Després, V. et al. Early allelic selection in maize as revealed by ancient DNA. Science 302, 1206–1208 (2003).

    ADS  Google Scholar 

  70. Vallebueno-Estrada, M. et al. The earliest maize from San Marcos Tehuacán is a partial domesticate with genomic evidence of inbreeding. Proc. Natl Acad. Sci. USA 113, 14151–14156 (2016).

    Google Scholar 

  71. Ramos-Madrigal, J. et al. Genome sequence of a 5,310-year-old maize cob provides insights into the early stages of maize domestication. Curr. Biol. 26, 3195–3201 (2016).

    Google Scholar 

  72. Ramos-Madrigal, J. et al. Palaeogenomic insights into the origins of French grapevine diversity. Nat. Plants 5, 595–603 (2019).

    Google Scholar 

  73. Weiß, C. L. et al. Temporal patterns of damage and decay kinetics of DNA retrieved from plant herbarium specimens. R. Soc. Open Sci. 3, 160239 (2016).

    ADS  Google Scholar 

  74. Goloubinoff, P., Pääbo, S. & Wilson, A. C. Evolution of maize inferred from sequence diversity of an Adh2 gene segment from archaeological specimens. Proc. Natl Acad. Sci. USA 90, 1997–2001 (1993).

    ADS  Google Scholar 

  75. Mascher, M. et al. Genebank genomics bridges the gap between the conservation of crop diversity and plant breeding. Nat. Genet. 51, 1076–1081 (2019).

    Google Scholar 

  76. Fordyce, S. L. et al. Deep sequencing of RNA from ancient maize kernels. PLoS ONE 8, e50961 (2013).

    ADS  Google Scholar 

  77. Smith, O. et al. Small RNA activity in archeological barley shows novel germination inhibition in response to environment. Mol. Biol. Evol. 34, 2555–2562 (2017).

    Google Scholar 

  78. Goldstein, P. Z. & Desalle, R. Calibrating phyfDabnlogenetic species formation in a threatened insect using DNA from historical specimens. Mol. Ecol. 12, 1993–1998 (2003).

    Google Scholar 

  79. Rawlence, N. J., Wood, J. R., Armstrong, K. N. & Cooper, A. DNA content and distribution in ancient feathers and potential to reconstruct the plumage of extinct avian taxa. Proc. Biol. Sci. 276, 3395–3402 (2009).

    Google Scholar 

  80. Oskam, C. L. et al. Fossil avian eggshell preserves ancient DNA. Proc. Biol. Sci. 277, 1991–2000 (2010).

    Google Scholar 

  81. Bro-Jørgensen, M. H. et al. Ancient DNA analysis of Scandinavian medieval drinking horns and the horn of the last aurochs bull. J. Archaeol. Sci. 99, 47–54 (2018).

    Google Scholar 

  82. Foley, B. P., Hansson, M. C., Kourkoumelis, D. P. & Theodoulou, T. A. Aspects of ancient Greek trade re-evaluated with amphora DNA evidence. J. Archaeol. Sci. 39, 389–398 (2012).

    Google Scholar 

  83. Kashuba, N. et al. Ancient DNA from mastics solidifies connection between material culture and genetics of mesolithic hunter-gatherers in Scandinavia. Commun. Biol. 2, 185 (2019).

    Google Scholar 

  84. Jensen, T. Z. T. et al. A 5700 year-old human genome and oral microbiome from chewed birch pitch. Nat. Commun. 10, 5520 (2019).

    ADS  Google Scholar 

  85. Tito, R. Y. et al. Phylotyping and functional analysis of two ancient human microbiomes. PLoS ONE 3, e3703 (2008).

    ADS  Google Scholar 

  86. Hagan, R. W. et al. Comparison of extraction methods for recovering ancient microbial DNA from paleofeces. Am. J. Phys. Anthropol. 171, 275–284 (2020).

    Google Scholar 

  87. Søe, M. J. et al. Ancient DNA from latrines in Northern Europe and the Middle East (500 BC–1700 AD) reveals past parasites and diet. PLoS ONE 13, e0195481 (2018).

    Google Scholar 

  88. Poinar, H. N. et al. Molecular coproscopy: dung and diet of the extinct ground sloth Nothrotheriops shastensis. Science 281, 402–406 (1998). This article reports the first application of next-generation DNA sequencing to ancient specimens and describes the metagenomic nature of paleontological remains together with megabase-scale data from the woolly mammoth genome.

    ADS  Google Scholar 

  89. Bon, C. et al. Coprolites as a source of information on the genome and diet of the cave hyena. Proc. Biol. Sci. 279, 2825–2830 (2012).

    Google Scholar 

  90. Willerslev, E. et al. Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science 300, 791–795 (2003). This article reports the first analysis of environmental DNA prior to the advent of next-generation DNA sequencing and establishes the long-term DNA persistence of paleocommunities within sediments.

    ADS  Google Scholar 

  91. Willerslev, E. et al. Ancient biomolecules from deep ice cores reveal a forested southern Greenland. Science 317, 111–114 (2007).

    ADS  Google Scholar 

  92. Coolen, M. J. & Overmann, J. Analysis of subfossil molecular remains of purple sulfur bacteria in a lake sediment. Appl. Environ. Microbiol. 64, 4513–4521 (1998).

    Google Scholar 

  93. Bardill, J. et al. Advancing the ethics of paleogenomics. Science 360, 384–385 (2018).

    ADS  Google Scholar 

  94. Prendergast, M. E. & Sawchuk, E. Boots on the ground in Africa’s ancient DNA ‘revolution’: archaeological perspectives on ethics and best practices. Antiquity 92, 803–815 (2018).

    Google Scholar 

  95. Alberti, F. et al. Optimized DNA sampling of ancient bones using computed tomography scans. Mol. Ecol. Resour. 18, 1196–1208 (2018).

    Google Scholar 

  96. Sirak, K. A. et al. A minimally-invasive method for sampling human petrous bones from the cranial base for ancient DNA analysis. BioTechniques 62, 283–289 (2017).

    Google Scholar 

  97. Harney, É. et al. A minimally destructive protocol for DNA extraction from ancient teeth. Preprint at bioRxiv https://doi.org/10.1101/2020.08.19.256412(2020).

  98. Patzold, F., Zilli, A. & Hundsdoerfer, A. K. Advantages of an easy-to-use DNA extraction method for minimal-destructive analysis of collection specimens. PLoS ONE 15, e0235222 (2020).

    Google Scholar 

  99. Sugita, N. et al. Non-destructive DNA extraction from herbarium specimens: a method particularly suitable for plants with small and fragile leaves. J. Plant Res. 133, 133–141 (2020).

    Google Scholar 

  100. Austin, R. M., Sholts, S. B., Williams, L., Kistler, L. & Hofman, C. A. Opinion: to curate the molecular past, museums need a carefully considered set of best practices. Proc. Natl Acad. Sci. USA 116, 1471–1474 (2019).

    Google Scholar 

  101. Pálsdóttir, A. H., Bläuer, A., Rannamäe, E., Boessenkool, S. & Hallsson, J. H. Not a limitless resource: ethics and guidelines for destructive sampling of archaeofaunal remains. R. Soc. Open Sci. 6, 191059 (2019).

    ADS  Google Scholar 

  102. Claw, K. G. et al. A framework for enhancing ethical genomic research with Indigenous communities. Nat. Commun. 9, 2957 (2018).

    ADS  Google Scholar 

  103. Wagner, J. K. et al. Fostering responsible research on ancient DNA. Am. J. Hum. Genet. 107, 183–195 (2020).

    Google Scholar 

  104. Eisenmann, S. et al. Reconciling material cultures in archaeology with genetic data: the nomenclature of clusters emerging from archaeogenomic analysis. Sci. Rep. 8, 13003 (2018).

    ADS  Google Scholar 

  105. Frieman, C. J. & Hofmann, D. Present pasts in the archaeology of genetics, identity, and migration in Europe: a critical essay. World Archaeol. 51, 528–545 (2019).

    Google Scholar 

  106. Furholt, M. De-contaminating the aDNA — archaeology dialogue on mobility and migration: discussing the culture-historical legacy. CSA 27, 53–68 (2019).

    Google Scholar 

  107. Hakenbeck, S. E. Genetics, archaeology and the far right: an unholy Trinity. World Archaeol. 51, 517–527 (2019).

    Google Scholar 

  108. Fulton, T. L. & Shapiro, B. Setting up an ancient DNA laboratory. Methods Mol. Biol. 1963, 1–13 (2019).

    Google Scholar 

  109. Dabney, J., Meyer, M. & Pääbo, S. Ancient DNA damage. Cold Spring Harb. Perspect. Biol. 5, a012567 (2013).

    Google Scholar 

  110. Höss, M. & Pääbo, S. DNA extraction from Pleistocene bones by a silica-based purification method. Nucleic Acids Res. 21, 3913–3914 (1993).

    Google Scholar 

  111. Green, R. E. et al. The Neandertal genome and ancient DNA authenticity. EMBO J. 28, 2494–2502 (2009).

    Google Scholar 

  112. Korlević, P., Talamo, S. & Meyer, M. A combined method for DNA analysis and radiocarbon dating from a single sample. Sci. Rep. 8, 4127 (2018).

    ADS  Google Scholar 

  113. Fagernäs, Z. et al. A unified protocol for simultaneous extraction of DNA and proteins from archaeological dental calculus. J. Archaeol. Sci. 118, 105135 (2020).

    Google Scholar 

  114. Rohland, N. & Hofreiter, M. Ancient DNA extraction from bones and teeth. Nat. Protoc. 2, 1756–1762 (2007).

    Google Scholar 

  115. Rohland, N., Glocke, I., Aximu-Petri, A. & Meyer, M. Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing. Nat. Protoc. 13, 2447–2461 (2018).

    Google Scholar 

  116. Glocke, I. & Meyer, M. Extending the spectrum of DNA sequences retrieved from ancient bones and teeth. Genome Res. 27, 1230–1237 (2017).

    Google Scholar 

  117. Wales, N., Andersen, K., Cappellini, E., Ávila-Arcos, M. C. & Gilbert, M. T. P. Optimization of DNA recovery and amplification from non-carbonized archaeobotanical remains. PLoS ONE 9, e86827 (2014).

    ADS  Google Scholar 

  118. Wales, N. et al. in Ancient DNA: Methods and Protocols (eds. Shapiro, B. et al.) 45–55 (Springer, 2019).

  119. Meyer, M. et al. A mitochondrial genome sequence of a hominin from Sima de los Huesos. Nature 505, 403–406 (2014).

    ADS  Google Scholar 

  120. Höss, M., Jaruga, P., Zastawny, T. H., Dizdaroglu, M. & Pääbo, S. DNA damage and DNA sequence retrieval from ancient tissues. Nucleic Acids Res. 24, 1304–1307 (1996).

    Google Scholar 

  121. Briggs, A. W. et al. Patterns of damage in genomic DNA sequences from a Neandertal. Proc. Natl Acad. Sci. USA 104, 14616–14621 (2007). This article presents the first statistical model of post-mortem DNA degradation and its impact on nucleotide misincorporation patterns, which provides the basis of important criteria for data authentication.

    ADS  Google Scholar 

  122. Sawyer, S., Krause, J., Guschanski, K., Savolainen, V. & Pääbo, S. Temporal patterns of nucleotide misincorporations and DNA fragmentation in ancient DNA. PLoS ONE 7, e34131 (2012).

    ADS  Google Scholar 

  123. Ho, S. Y. W., Heupink, T. H., Rambaut, A. & Shapiro, B. Bayesian estimation of sequence damage in ancient DNA. Mol. Biol. Evol. 24, 1416–1422 (2007).

    Google Scholar 

  124. Axelsson, E., Willerslev, E., Gilbert, M. T. P. & Nielsen, R. The effect of ancient DNA damage on inferences of demographic histories. Mol. Biol. Evol. 25, 2181–2187 (2008).

    Google Scholar 

  125. Briggs, A. W. et al. Removal of deaminated cytosines and detection of in vivo methylation in ancient DNA. Nucleic Acids Res. 38, e87 (2010). This article presents an experimental procedure based on enzymatic digestion that eliminates nucleotide misincorporations from ancient sequence data, which provided the basis for robust statistical inference, minimally impacted by spurious allelic variation, and has paved the way to aDNA methylation maps.

    Google Scholar 

  126. Rohland, N., Harney, E., Mallick, S., Nordenfelt, S. & Reich, D. Partial uracil–DNA–glycosylase treatment for screening of ancient DNA. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20130624 (2015). This study reports the first method for DNA library preparation that is compatible with full automation and also describes various approaches aimed at authenticating data while minimizing the impact of post-mortem DNA misincorporation on downstream analyses.

    Google Scholar 

  127. Hebert, P. D. N., Cywinska, A., Ball, S. L. & deWaard, J. R. Biological identifications through DNA barcodes. Proc. Biol. Sci. 270, 313–321 (2003).

    Google Scholar 

  128. Taberlet, P. et al. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Res. 35, e14 (2007).

    Google Scholar 

  129. Hofreiter, M., Mead, J. I., Martin, P. & Poinar, H. N. Molecular caving. Curr. Biol. 13, R693–R695 (2003).

    Google Scholar 

  130. Parducci, L. et al. Glacial survival of boreal trees in northern Scandinavia. Science 335, 1083–1086 (2012).

    ADS  Google Scholar 

  131. Alsos, I. G. et al. The role of sea ice for vascular plant dispersal in the Arctic. Biol. Lett. 12, 20160264 (2016).

    Google Scholar 

  132. Crump, S. E. et al. Arctic shrub colonization lagged peak postglacial warmth: molecular evidence in lake sediment from Arctic Canada. Glob. Chang. Biol. 25, 4244–4256 (2019).

    ADS  Google Scholar 

  133. Ziesemer, K. A. et al. Intrinsic challenges in ancient microbiome reconstruction using 16S rRNA gene amplification. Sci. Rep. 5, 16498 (2015).

    ADS  Google Scholar 

  134. Smith, O. et al. Archaeology. Sedimentary DNA from a submerged site reveals wheat in the British Isles 8000 years ago. Science 347, 998–1001 (2015).

    ADS  Google Scholar 

  135. Parducci, L. et al. Shotgun environmental DNA, pollen, and macrofossil analysis of lateglacial lake sediments from southern Sweden. Front. Ecol. Evol. 7, 189 (2019).

    Google Scholar 

  136. Gaffney, V. et al. Multi-proxy characterisation of the Storegga tsunami and its impact on the early holocene landscapes of the southern North Sea. Geosciences 10, 270 (2020).

    ADS  Google Scholar 

  137. Cribdon, B., Ware, R., Smith, O., Gaffney, V. & Allaby, R. G. PIA: more accurate taxonomic assignment of metagenomic data demonstrated on sedaDNA from the North Sea. Front. Ecol. Evol. 8, 84 (2020).

    Google Scholar 

  138. Noonan, J. P. et al. Genomic sequencing of Pleistocene cave bears. Science 309, 597–599 (2005).

    ADS  Google Scholar 

  139. Noonan, J. P. et al. Sequencing and analysis of Neanderthal genomic DNA. Science 314, 1113–1118 (2006).

    ADS  Google Scholar 

  140. Bentley, D. R. et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53–59 (2008).

    ADS  Google Scholar 

  141. Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb Protoc 2010, pdb.prot5448 (2010).

    Google Scholar 

  142. Kircher, M., Sawyer, S. & Meyer, M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res. 40, e3 (2012).

    Google Scholar 

  143. Gansauge, M.-T. & Meyer, M. Single-stranded DNA library preparation for the sequencing of ancient or damaged DNA. Nat. Protoc. 8, 737–748 (2013).

    Google Scholar 

  144. Gansauge, M.-T., Aximu-Petri, A., Nagel, S. & Meyer, M. Manual and automated preparation of single-stranded DNA libraries for the sequencing of DNA from ancient biological remains and other sources of highly degraded DNA. Nat. Protoc. 15, 2279–2300 (2020).

    Google Scholar 

  145. Gansauge, M.-T. et al. Single-stranded DNA library preparation from highly degraded DNA using T4 DNA ligase. Nucleic Acids Res. 45, e79 (2017).

    Google Scholar 

  146. Harkins, K. M. et al. A novel NGS library preparation method to characterize native termini of fragmented DNA. Nucleic Acids Res. 48, e47 (2020).

    Google Scholar 

  147. Carøe, C. et al. Single-tube library preparation for degraded DNA. Methods Ecol. Evol. 9, 410–419 (2018).

    Google Scholar 

  148. Fages, A. et al. Tracking five millennia of horse management with extensive ancient genome time series. Cell 177, 1419–1435.e31 (2019).

    Google Scholar 

  149. van der Valk, T., Vezzi, F., Ormestad, M., Dalén, L. & Guschanski, K. Index hopping on the Illumina HiseqX platform and its consequences for ancient DNA studies. Mol. Ecol. Resour. 20, 1171–1181 (2019).

    Google Scholar 

  150. Dabney, J. & Meyer, M. Length and GC-biases during sequencing library amplification: a comparison of various polymerase-buffer systems with ancient and modern DNA sequencing libraries. BioTechniques 52, 87–94 (2012).

    Google Scholar 

  151. Seguin-Orlando, A. et al. Amplification of TruSeq ancient DNA libraries with AccuPrime Pfx: consequences on nucleotide misincorporation and methylation patterns. STAR: Sci. Technol. Archaeol. Res. 1, 1–9 (2015).

    Google Scholar 

  152. Meyer, M. et al. From micrograms to picograms: quantitative PCR reduces the material demands of high-throughput sequencing. Nucleic Acids Res. 36, e5 (2008).

    Google Scholar 

  153. Thompson, J. R., Marcelino, L. A. & Polz, M. F. Heteroduplexes in mixed-template amplifications: formation, consequence and elimination by ‘reconditioning PCR’. Nucleic Acids Res. 30, 2083–2088 (2002).

    Google Scholar 

  154. Max Planck Institute for the Science of Human History. MPI-SHH archaeogenetics. protocols.io https://www.protocols.io/workspaces/mpishh-archaeogenetics (2020).

  155. Burbano, H. A. et al. Targeted investigation of the Neandertal genome by array-based sequence capture. Science 328, 723–725 (2010).

    ADS  Google Scholar 

  156. Devault, A. M. et al. Second-pandemic strain of Vibrio cholerae from the Philadelphia cholera outbreak of 1849. N. Engl. J. Med. 370, 334–340 (2014).

    Google Scholar 

  157. Enk, J. M. et al. Ancient whole genome enrichment using baits built from modern DNA. Mol. Biol. Evol. 31, 1292–1294 (2014).

    Google Scholar 

  158. Haak, W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522, 207–211 (2015).

    ADS  Google Scholar 

  159. Cruz-Dávalos, D. I. et al. Experimental conditions improving in-solution target enrichment for ancient DNA. Mol. Ecol. Resour. 17, 508–522 (2017).

    Google Scholar 

  160. Mathieson, I. et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528, 499–503 (2015).

    ADS  Google Scholar 

  161. Cruz-Dávalos, D. I. et al. In-solution Y-chromosome capture-enrichment on ancient DNA libraries. BMC Genomics 19, 608 (2018).

    Google Scholar 

  162. Günther, T. & Nettelblad, C. The presence and impact of reference bias on population genomic studies of prehistoric human populations. PLoS Genet. 15, e1008302 (2019).

    Google Scholar 

  163. Lachance, J. & Tishkoff, S. A. SNP ascertainment bias in population genetic analyses: why it is important, and how to correct it. Bioessays 35, 780–786 (2013).

    Google Scholar 

  164. Lang, P. L. M. et al. Hybridization ddRAD-sequencing for population genomics of nonmodel plants using highly degraded historical specimen DNA. Mol. Ecol. Resour. 20, 1228–1247 (2020).

    Google Scholar 

  165. Suchan, T. et al. Hybridization capture using RAD probes (hyRAD), a new tool for performing genomic analyses on collection specimens. PLoS ONE 11, e0151651 (2016).

    Google Scholar 

  166. Hernandez-Rodriguez, J. et al. The impact of endogenous content, replicates and pooling on genome capture from faecal samples. Mol. Ecol. Resour. 18, 319–333 (2018).

    Google Scholar 

  167. Smith, O. et al. Genomic methylation patterns in archaeological barley show de-methylation as a time-dependent diagenetic process. Sci. Rep. 4, 5559 (2014).

    Google Scholar 

  168. Keller, A. et al. New insights into the Tyrolean Iceman’s origin and phenotype as inferred by whole-genome sequencing. Nat. Commun. 3, 698 (2012).

    ADS  Google Scholar 

  169. Mak, S. S. T. et al. Comparative performance of the BGISEQ-500 vs Illumina HiSeq2500 sequencing platforms for palaeogenomic sequencing. Gigascience 6, 1–13 (2017).

    ADS  Google Scholar 

  170. Martins, R. F., Kampmann, M.-L. & Förster, D. W. Sequencing library preparation from degraded samples for non-illumina sequencing platforms. Methods Mol. Biol. 1963, 85–92 (2019).

    Google Scholar 

  171. Kircher, M., Stenzel, U. & Kelso, J. Improved base calling for the Illumina Genome Analyzer using machine learning strategies. Genome Biol. 10, R83 (2009).

    Google Scholar 

  172. Renaud, G., Kircher, M., Stenzel, U. & Kelso, J. freeIbis: an efficient basecaller with calibrated quality scores for Illumina sequencers. Bioinformatics 29, 1208–1209 (2013).

    Google Scholar 

  173. Costello, M. et al. Characterization and remediation of sample index swaps by non-redundant dual indexing on massively parallel sequencing platforms. BMC Genomics 19, 332 (2018).

    Google Scholar 

  174. Dolle, D. et al. CASCADE: a custom-made archiving system for the conservation of ancient DNA experimental data. Front. Ecol. Evol. 8, 185 (2020).

    ADS  Google Scholar 

  175. Renaud, G., Stenzel, U. & Kelso, J. leeHom: adaptor trimming and merging for Illumina sequencing reads. Nucleic Acids Res. 42, e141 (2014).

    Google Scholar 

  176. Schubert, M., Lindgreen, S. & Orlando, L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res. Notes 9, 88 (2016).

    Google Scholar 

  177. Schuenemann, V. J. et al. Genome-wide comparison of medieval and modern Mycobacterium leprae. Science 341, 179–183 (2013).

    ADS  Google Scholar 

  178. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26, 589–595 (2010).

    Google Scholar 

  179. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Google Scholar 

  180. Renaud, G., Hanghøj, K., Willerslev, E. & Orlando, L. gargammel: a sequence simulator for ancient DNA. Bioinformatics 33, 577–579 (2017).

    Google Scholar 

  181. Schubert, M. et al. Improving ancient DNA read mapping against modern reference genomes. BMC Genomics 13, 178 (2012).

    Google Scholar 

  182. Shapiro, B. & Hofreiter, M. A paleogenomic perspective on evolution and gene function: new insights from ancient DNA. Science 343, 1236573 (2014).

    Google Scholar 

  183. Cahill, J. A. et al. Genomic evidence of widespread admixture from polar bears into brown bears during the last ice age. Mol. Biol. Evol. 35, 1120–1129 (2018).

    Google Scholar 

  184. Poullet, M. & Orlando, L. Assessing DNA sequence alignment methods for characterizing ancient genomes and methylomes. Front. Ecol. Evolut. 8, 105 (2020).

    Google Scholar 

  185. Seguin-Orlando, A. et al. Ligation bias in Illumina next-generation DNA libraries: implications for sequencing ancient genomes. PLoS ONE 8, e78575 (2013).

    ADS  Google Scholar 

  186. Garrison, E. et al. Variation graph toolkit improves read mapping by representing genetic variation in the reference. Nat. Biotechnol. 36, 875–879 (2018).

    Google Scholar 

  187. Schubert, M. et al. Characterization of ancient and modern genomes by SNP detection and phylogenomic and metagenomic analysis using PALEOMIX. Nat. Protoc. 9, 1056–1082 (2014).

    Google Scholar 

  188. Peltzer, A. et al. EAGER: efficient ancient genome reconstruction. Genome Biol. 17, 60 (2016).

    Google Scholar 

  189. Renaud, G., Slon, V., Duggan, A. T. & Kelso, J. Schmutzi: estimation of contamination and endogenous mitochondrial consensus calling for ancient DNA. Genome Biol. 16, 224 (2015).

    Google Scholar 

  190. Rasmussen, M. et al. An aboriginal Australian genome reveals separate human dispersals into Asia. Science 334, 94–98 (2011).

    ADS  Google Scholar 

  191. Korneliussen, T. S., Moltke, I., Albrechtsen, A. & Nielsen, R. Calculation of Tajima’s D and other neutrality test statistics from low depth next-generation sequencing data. BMC Bioinforma. 14, 289 (2013).

    Google Scholar 

  192. Peyrègne, S. & Peter, B. M. AuthentiCT: a model of ancient DNA damage to estimate the proportion of present-day DNA contamination. Genome Biol. 21, 246 (2020).

    Google Scholar 

  193. Meyer, M. et al. Nuclear DNA sequences from the Middle Pleistocene Sima de los Huesos hominins. Nature 531, 504–507 (2016).

    ADS  Google Scholar 

  194. Skoglund, P. et al. Origins and genetic legacy of Neolithic farmers and hunter-gatherers in Europe. Science 336, 466–469 (2012).

    ADS  Google Scholar 

  195. Nakatsuka, N. et al. A Paleogenomic reconstruction of the deep population history of the Andes. Cell 181, 1131–1145.e21 (2020).

    Google Scholar 

  196. Skoglund, P., Ersmark, E., Palkopoulou, E. & Dalén, L. Ancient wolf genome reveals an early divergence of domestic dog ancestors and admixture into high-latitude breeds. Curr. Biol. 25, 1515–1519 (2015).

    Google Scholar 

  197. Soraggi, S., Wiuf, C. & Albrechtsen, A. Powerful inference with the D-statistic on low-coverage whole-genome data. G3 8, 551–566 (2018).

    Google Scholar 

  198. Skoglund, P., Storå, J., Götherström, A. & Jakobsson, M. Accurate sex identification of ancient human remains using DNA shotgun sequencing. J. Archaeol. Sci. 40, 4477–4482 (2013).

    Google Scholar 

  199. Mittnik, A., Wang, C.-C., Svoboda, J. & Krause, J. A molecular approach to the sexing of the triple burial at the upper Paleolithic site of Dolní Věstonice. PLoS ONE 11, e0163019 (2016).

    Google Scholar 

  200. Schubert, M. et al. Zonkey: a simple, accurate and sensitive pipeline to genetically identify equine F1-hybrids in archaeological assemblages. J. Archaeol. Sci. 78, 147–157 (2017).

    Google Scholar 

  201. Lipatov, M., Sanjeev, K., Patro, R. & Veeramah, K. Maximum likelihood estimation of biological relatedness from low coverage sequencing data. Preprint at bioRxiv https://doi.org/10.1101/023374 (2015).

    Article  Google Scholar 

  202. Kennett, D. J. et al. Archaeogenomic evidence reveals prehistoric matrilineal dynasty. Nat. Commun. 8, 14115 (2017).

    ADS  Google Scholar 

  203. Monroy Kuhn, J. M., Jakobsson, M. & Günther, T. Estimating genetic kin relationships in prehistoric populations. PLoS ONE 13, e0195491 (2018).

    Google Scholar 

  204. Ziesemer, K. A. et al. The efficacy of whole human genome capture on ancient dental calculus and dentin. Am. J. Phys. Anthropol. 168, 496–509 (2019).

    Google Scholar 

  205. Mittnik, A. et al. Kinship-based social inequality in Bronze Age Europe. Science 366, 731–734 (2019).

    ADS  Google Scholar 

  206. Olalde, I. et al. The Beaker phenomenon and the genomic transformation of northwest Europe. Nature 555, 190–196 (2018); erratum 555, 543 (2018).

    ADS  Google Scholar 

  207. Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).

    Google Scholar 

  208. McVean, G. A genealogical interpretation of principal components analysis. PLoS Genet. 5, e1000686 (2009).

    Google Scholar 

  209. Meisner, J. & Albrechtsen, A. Inferring population structure and admixture proportions in low-depth NGS data. Genetics 210, 719–731 (2018).

    Google Scholar 

  210. Lazaridis, I. et al. Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature 513, 409–413 (2014).

    ADS  Google Scholar 

  211. Engelhardt, B. E. & Stephens, M. Analysis of population structure: a unifying framework and novel methods based on sparse factor analysis. PLoS Genet. 6, e1001117 (2010).

    Google Scholar 

  212. Skoglund, P., Sjödin, P., Skoglund, T., Lascoux, M. & Jakobsson, M. Investigating population history using temporal genetic differentiation. Mol. Biol. Evol. 31, 2516–2527 (2014).

    Google Scholar 

  213. Malaspinas, A.-S. et al. bammds: a tool for assessing the ancestry of low-depth whole-genome data using multidimensional scaling (MDS). Bioinformatics 30, 2962–2964 (2014).

    Google Scholar 

  214. Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).

    Google Scholar 

  215. Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    Google Scholar 

  216. Skotte, L., Korneliussen, T. S. & Albrechtsen, A. Estimating individual admixture proportions from next generation sequencing data. Genetics 195, 693–702 (2013).

    Google Scholar 

  217. Joseph, T. A. & Pe’er, I. Inference of population structure from time-series genotype data. Am. J. Hum. Genet. 105, 317–333 (2019).

    Google Scholar 

  218. Reich, D., Thangaraj, K., Patterson, N., Price, A. L. & Singh, L. Reconstructing Indian population history. Nature 461, 489–494 (2009).

    ADS  Google Scholar 

  219. Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012). This article describes the statistical methodology forming the core of most subsequent aDNA studies and aims at investigating population structure and admixture patterns.

    Google Scholar 

  220. Raghavan, M. et al. Upper Palaeolithic Siberian genome reveals dual ancestry of native Americans. Nature 505, 87–91 (2014).

    ADS  Google Scholar 

  221. Reich, D. et al. Denisova admixture and the first modern human dispersals into Southeast Asia and Oceania. Am. J. Hum. Genet. 89, 516–528 (2011).

    Google Scholar 

  222. Cassidy, L. M. et al. A dynastic elite in monumental Neolithic society. Nature 582, 384–388 (2020).

    ADS  Google Scholar 

  223. McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48, 1279–1283 (2016).

    Google Scholar 

  224. Antonio, M. L. et al. Ancient Rome: a genetic crossroads of Europe and the Mediterranean. Science 366, 708–714 (2019).

    ADS  Google Scholar 

  225. Sirugo, G., Williams, S. M. & Tishkoff, S. A. The missing diversity in human genetic studies. Cell 177, 26–31 (2019).

    Google Scholar 

  226. Allentoft, M. E. et al. Population genomics of Bronze Age Eurasia. Nature 522, 167–172 (2015).

    ADS  Google Scholar 

  227. Scheib, C. L. et al. East Anglian early Neolithic monument burial linked to contemporary Megaliths. Ann. Hum. Biol. 46, 145–149 (2019).

    Google Scholar 

  228. Ringbauer, H., Novembre, J. & Steinrücken, M. Detecting runs of homozygosity from low-coverage ancient DNA. Preprint at bioRxiv https://doi.org/10.1101/2020.05.31.126912 (2020).

    Article  Google Scholar 

  229. Lawson, D. J., Hellenthal, G., Myers, S. & Falush, D. Inference of population structure using dense haplotype data. PLoS Genet. 8, e1002453 (2012).

    Google Scholar 

  230. Burger, J. et al. Low prevalence of lactase persistence in Bronze Age Europe indicates ongoing strong selection over the last 3,000 years. Curr. Biol. 30, 1–9 (2020).

    Google Scholar 

  231. Maixner, F. et al. The 5,300-year-old Helicobacter pylori genome of the Iceman. Science 351, 162–165 (2016).

    ADS  Google Scholar 

  232. Lugli, G. A. et al. Ancient bacteria of the Ötzi’s microbiome: a genomic tale from the Copper Age. Microbiome 5, 5 (2017).

    Google Scholar 

  233. Borry, M. et al. CoproID predicts the source of coprolites and paleofeces using microbiome composition and host DNA content. PeerJ 8, e9001 (2020).

    Google Scholar 

  234. Rifkin, R. F. et al. Multi-proxy analyses of a mid-15th century Middle Iron Age Bantu-speaker palaeo-faecal specimen elucidates the configuration of the ‘ancestral’ sub-Saharan African intestinal microbiome. Microbiome 8, 62 (2020).

    Google Scholar 

  235. Tett, A. et al. The Prevotella copri complex comprises four distinct clades underrepresented in westernized populations. Cell Host Microbe 26, 666–679.e7 (2019).

    Google Scholar 

  236. Vågene, Å. J. et al. Salmonella enterica genomes from victims of a major sixteenth-century epidemic in Mexico. Nat. Ecol. Evol. 2, 520–528 (2018).

    Google Scholar 

  237. Wood, D. E. & Salzberg, S. L. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 15, R46 (2014).

    Google Scholar 

  238. Velsko, I. M., Frantz, L. A. F., Herbig, A., Larson, G. & Warinner, C. Selection of appropriate metagenome taxonomic classifiers for ancient microbiome research. mSystems 3, e00080-18 (2018).

    Google Scholar 

  239. Eisenhofer, R. & Weyrich, L. S. Assessing alignment-based taxonomic classification of ancient microbial DNA. PeerJ 7, e6594 (2019).

    Google Scholar 

  240. Segata, N. et al. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat. Methods 9, 811–814 (2012).

    Google Scholar 

  241. Hübler, R. et al. HOPS: automated detection and authentication of pathogen DNA in archaeological remains. Genome Biol. 20, 280 (2019).

    Google Scholar 

  242. Louvel, G., Der Sarkissian, C., Hanghøj, K. & Orlando, L. metaBIT, an integrative and automated metagenomic pipeline for analysing microbial profiles from high-throughput sequencing shotgun data. Mol. Ecol. Resour. 16, 1415–1427 (2016).

    Google Scholar 

  243. Knights, D. et al. Bayesian community-wide culture-independent microbial source tracking. Nat. Methods 8, 761–763 (2011).

    Google Scholar 

  244. Llamas, B. et al. High-resolution analysis of cytosine methylation in ancient DNA. PLoS ONE 7, e30226 (2012).

    ADS  Google Scholar 

  245. Smith, R. W. A., Monroe, C. & Bolnick, D. A. Detection of cytosine methylation in ancient DNA from five Native American populations using bisulfite sequencing. PLoS ONE 10, e0125344 (2015).

    Google Scholar 

  246. Wagner, S., Plomion, C. & Orlando, L. Uncovering signatures of DNA methylation in ancient plant remains from patterns of post-mortem DNA damage. Front. Ecol. Evol. 8, 11 (2020).

    Google Scholar 

  247. Hanghøj, K. et al. Fast, accurate and automatic ancient nucleosome and methylation maps with epiPALEOMIX. Mol. Biol. Evol. 33, 3284–3298 (2016).

    Google Scholar 

  248. Hanghøj, K., Renaud, G., Albrechtsen, A. & Orlando, L. DamMet: ancient methylome mapping accounting for errors, true variants, and post-mortem DNA damage. Gigascience 8, giz025 (2019).

    Google Scholar 

  249. Pääbo, S. et al. Genetic analyses from ancient DNA. Annu. Rev. Genet. 38, 645–679 (2004).

    Google Scholar 

  250. Racimo, F., Marnetto, D. & Huerta-Sánchez, E. Signatures of archaic adaptive introgression in present-day human populations. Mol. Biol. Evol. 34, 296–317 (2017).

    Google Scholar 

  251. de Barros Damgaard, P. et al. The first horse herders and the impact of early Bronze Age steppe expansions into Asia. Science 360, eaar7711 (2018).

    Google Scholar 

  252. Damgaard, PdeB. et al. 137 ancient human genomes from across the Eurasian steppes. Nature 557, 369–374 (2018); author correction 563, E16 (2018).

    ADS  Google Scholar 

  253. Narasimhan, V. M. et al. The formation of human populations in South and Central Asia. Science 365, eaat7487 (2019).

    Google Scholar 

  254. Seguin-Orlando, A. et al. Paleogenomics. Genomic structure in Europeans dating back at least 36,200 years. Science 346, 1113–1118 (2014).

    ADS  Google Scholar 

  255. Sikora, M. et al. Ancient genomes show social and reproductive behavior of early Upper Paleolithic foragers. Science 358, 659–662 (2017).

    ADS  Google Scholar 

  256. Fu, Q. et al. Genome sequence of a 45,000-year-old modern human from western Siberia. Nature 514, 445–449 (2014).

    ADS  Google Scholar 

  257. Yang, M. A. et al. 40,000-year-old individual from Asia provides insight into early population structure in Eurasia. Curr. Biol. 27, 3202–3208.e9 (2017).

    Google Scholar 

  258. Olalde, I. & Posth, C. Latest trends in archaeogenetic research of west Eurasians. Curr. Opin. Genet. Dev. 62, 36–43 (2020).

    Google Scholar 

  259. Yang, M. A. et al. Ancient DNA indicates human population shifts and admixture in northern and southern China. Science 369, 282–288 (2020).

    ADS  Google Scholar 

  260. Lipson, M. et al. Population turnover in remote Oceania shortly after initial settlement. Curr. Biol. 28, 1157–1165.e7 (2018).

    Google Scholar 

  261. Lipson, M. et al. Ancient genomes document multiple waves of migration in Southeast Asian prehistory. Science 361, 92–95 (2018).

    ADS  Google Scholar 

  262. McColl, H. et al. The prehistoric peopling of Southeast Asia. Science 361, 88–92 (2018).

    ADS  Google Scholar 

  263. Lazaridis, I. et al. Genetic origins of the Minoans and Mycenaeans. Nature 548, 214–218 (2017).

    ADS  Google Scholar 

  264. Wang, K. et al. Ancient genomes reveal complex patterns of population movement, interaction, and replacement in sub-Saharan Africa. Sci. Adv. 6, eaaz0183 (2020).

    ADS  Google Scholar 

  265. Sánchez-Quinto, F. et al. Genomic affinities of two 7,000-year-old Iberian hunter-gatherers. Curr. Biol. 22, 1494–1499 (2012).

    Google Scholar 

  266. Lipson, M. et al. Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature 551, 368–372 (2017).

    ADS  Google Scholar 

  267. Jeong, C. et al. The genetic history of admixture across inner Eurasia. Nat. Ecol. Evol. 3, 966–976 (2019).

    Google Scholar 

  268. Moreno-Mayar, J. V. et al. Terminal Pleistocene Alaskan genome reveals first founding population of Native Americans. Nature 553, 203–207 (2018).

    ADS  Google Scholar 

  269. Moreno-Mayar, J. V. et al. Early human dispersals within the Americas. Science 362, eaav2621 (2018).

    ADS  Google Scholar 

  270. Flegontov, P. et al. Palaeo-Eskimo genetic ancestry and the peopling of Chukotka and North America. Nature 570, 236–240 (2019).

    ADS  Google Scholar 

  271. Nieves-Colón, M. A. et al. Ancient DNA reconstructs the genetic legacies of precontact Puerto Rico communities. Mol. Biol. Evol. 37, 611–626 (2020).

    Google Scholar 

  272. Nägele, K. et al. Genomic insights into the early peopling of the Caribbean. Science 369, 456–460 (2020).

    ADS  Google Scholar 

  273. Schroeder, H. et al. Genome-wide ancestry of 17th-century enslaved Africans from the Caribbean. Proc. Natl Acad. Sci. USA 112, 3669–3673 (2015).

    ADS  Google Scholar 

  274. Barquera, R. et al. Origin and health status of first-generation Africans from early Colonial Mexico. Curr. Biol. 30, 2078–2091.e11 (2020).

    Google Scholar 

  275. Larson, G. et al. Current perspectives and the future of domestication studies. Proc. Natl Acad. Sci. USA 111, 6139–6146 (2014).

    ADS  Google Scholar 

  276. Larson, G. et al. Phylogeny and ancient DNA of Sus provides insights into neolithic expansion in island Southeast Asia and Oceania. Proc. Natl Acad. Sci. USA 104, 4834–4839 (2007).

    ADS  Google Scholar 

  277. Kistler, L. et al. Ancient plant genomics in archaeology, herbaria, and the environment. Annu. Rev. Plant. Biol. 71, 605–629 (2020).

    Google Scholar 

  278. Ní Leathlobhair, M. et al. The evolutionary history of dogs in the Americas. Science 361, 81–85 (2018).

    ADS  Google Scholar 

  279. Frantz, L. A. F. et al. Genomic and archaeological evidence suggest a dual origin of domestic dogs. Science 352, 1228–1231 (2016).

    ADS  Google Scholar 

  280. Sinding, M.-H. S. et al. Arctic-adapted dogs emerged at the Pleistocene–Holocene transition. Science 368, 1495–1499 (2020).

    ADS  Google Scholar 

  281. Gaunitz, C. et al. Ancient genomes revisit the ancestry of domestic and Przewalski’s horses. Science 360, 111–114 (2018).

    ADS  Google Scholar 

  282. Frantz, L. A. F. et al. Ancient pigs reveal a near-complete genomic turnover following their introduction to Europe. Proc. Natl Acad. Sci. USA 116, 17231–17238 (2019).

    Google Scholar 

  283. Gutaker, R. M. et al. The origins and adaptation of European potatoes reconstructed from historical genomes. Nat. Ecol. Evol. 3, 1093–1101 (2019).

    Google Scholar 

  284. Ameen, C. et al. Specialized sledge dogs accompanied Inuit dispersal across the North American Arctic. Proc. R. Soc. Lond. B Biol. Sci. 286, 20191929 (2019).

    Google Scholar 

  285. da Fonseca, R. R. et al. The origin and evolution of maize in the Southwestern United States. Nat. Plants 1, 14003 (2015).

    MathSciNet  Google Scholar 

  286. Gutaker, R. M. et al. Flax latitudinal adaptation at LuTFL1 altered architecture and promoted fiber production. Sci. Rep. 9, 976 (2019).

    ADS  Google Scholar 

  287. Park, S. D. E. et al. Genome sequencing of the extinct Eurasian wild aurochs, Bos primigenius, illuminates the phylogeography and evolution of cattle. Genome Biol. 16, 234 (2015).

    Google Scholar 

  288. Verdugo, M. P. et al. Ancient cattle genomics, origins, and rapid turnover in the Fertile Crescent. Science 365, 173–176 (2019).

    ADS  Google Scholar 

  289. Daly, K. G. et al. Ancient goat genomes reveal mosaic domestication in the Fertile Crescent. Science 361, 85–88 (2018).

    ADS  Google Scholar 

  290. Kistler, L. et al. Multiproxy evidence highlights a complex evolutionary legacy of maize in South America. Science 362, 1309–1313 (2018).

    ADS  Google Scholar 

  291. Allaby, R. G., Ware, R. L. & Kistler, L. A re-evaluation of the domestication bottleneck from archaeogenomic evidence. Evol. Appl. 12, 29–37 (2019).

    Google Scholar 

  292. Scott, M. F. et al. A 3,000-year-old Egyptian emmer wheat genome reveals dispersal and domestication history. Nat. Plants 5, 1120–1128 (2019).

    Google Scholar 

  293. Wales, N. et al. Ancient DNA reveals the timing and persistence of organellar genetic bottlenecks over 3,000 years of sunflower domestication and improvement. Evol. Appl. 12, 38–53 (2018).

    Google Scholar 

  294. Smith, O. et al. A domestication history of dynamic adaptation and genomic deterioration in sorghum. Nat. Plants 5, 369–379 (2019).

    Google Scholar 

  295. Swarts, K. et al. Genomic estimation of complex traits reveals ancient maize adaptation to temperate North America. Science 357, 512–515 (2017).

    ADS  Google Scholar 

  296. Girdland Flink, L. et al. Establishing the validity of domestication genes using DNA from ancient chickens. Proc. Natl Acad. Sci. USA 111, 6184–6189 (2014).

    ADS  Google Scholar 

  297. Loog, L. et al. Inferring allele frequency trajectories from ancient DNA indicates that selection on a chicken gene coincided with changes in medieval husbandry practices. Mol. Biol. Evol. 34, 1981–1990 (2017).

    Google Scholar 

  298. Librado, P. et al. Ancient genomic changes associated with domestication of the horse. Science 356, 442–445 (2017).

    ADS  Google Scholar 

  299. Salo, W. L., Aufderheide, A. C., Buikstra, J. & Holcomb, T. A. Identification of Mycobacterium tuberculosis DNA in a pre-Columbian Peruvian mummy. Proc. Natl Acad. Sci. USA 91, 2091–2094 (1994).

    ADS  Google Scholar 

  300. Taubenberger, J. K. et al. Characterization of the 1918 influenza virus polymerase genes. Nature 437, 889–893 (2005).

    ADS  Google Scholar 

  301. Wilbur, A. K. et al. Deficiencies and challenges in the study of ancient tuberculosis DNA. J. Archaeol. Sci. 36, 1990–1997 (2009).

    Google Scholar 

  302. Wagner, D. M. et al. Yersinia pestis and the plague of Justinian 541–543 AD: a genomic analysis. Lancet Infect. Dis. 14, 319–326 (2014).

    Google Scholar 

  303. Spyrou, M. A. et al. Phylogeography of the second plague pandemic revealed through analysis of historical Yersinia pestis genomes. Nat. Commun. 10, 4470 (2019).

    ADS  Google Scholar 

  304. Keller, M. et al. Ancient Yersinia pestis genomes from across Western Europe reveal early diversification during the first Pandemic (541–750). Proc. Natl Acad. Sci. USA 116, 12363–12372 (2019).

    Google Scholar 

  305. Susat, J. et al. Yersinia pestis strains from Latvia show depletion of the pla virulence gene at the end of the second plague pandemic. Sci. Rep. 10, 14628 (2020).

    ADS  Google Scholar 

  306. Bos, K. I. et al. Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature 514, 494–497 (2014).

    ADS  Google Scholar 

  307. Sabin, S. et al. A seventeenth-century Mycobacterium tuberculosis genome supports a Neolithic emergence of the Mycobacterium tuberculosis complex. Genome Biol. 21, 201 (2020).

    Google Scholar 

  308. Shillito, L.-M., Blong, J. C., Green, E. J. & van Asperen, E. N. The what, how and why of archaeological coprolite analysis. Earth Sci. Rev. 207, 103196 (2020).

    Google Scholar 

  309. Warinner, C., Speller, C. & Collins, M. J. A new era in palaeomicrobiology: prospects for ancient dental calculus as a long-term record of the human oral microbiome. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20130376 (2015).

    Google Scholar 

  310. Velsko, I. M. et al. Microbial differences between dental plaque and historic dental calculus are related to oral biofilm maturation stage. Microbiome 7, 102 (2019).

    Google Scholar 

  311. Farrer, A. G. et al. Biological and cultural drivers of oral microbiota in Medieval and Post-Medieval London, UK. Preprint at bioRxiv https://doi.org/10.1101/343889 (2018).

    Article  Google Scholar 

  312. Ho, S. Y. W. & Shapiro, B. Skyline-plot methods for estimating demographic history from nucleotide sequences. Mol. Ecol. Resour. 11, 423–434 (2011).

    Google Scholar 

  313. Allentoft, M. E. et al. Extinct New Zealand megafauna were not in decline before human colonization. Proc. Natl Acad. Sci. USA 111, 4922–4927 (2014).

    ADS  Google Scholar 

  314. Thomas, J. E. et al. Demographic reconstruction from ancient DNA supports rapid extinction of the great auk. eLife 8, e47509 (2019).

    Google Scholar 

  315. Dussex, N. et al. Complete genomes of two extinct New Zealand passerines show responses to climate fluctuations but no evidence for genomic erosion prior to extinction. Biol. Lett. 15, 20190491 (2019).

    Google Scholar 

  316. Li, H. & Durbin, R. Inference of human population history from whole genome sequence of a single individual. Nature 475, 493–496 (2011).

    Google Scholar 

  317. Schiffels, S. & Durbin, R. Inferring human population size and separation history from multiple genome sequences. Nat. Genet. 46, 919–925 (2014).

    Google Scholar 

  318. Murray, G. G. R. et al. Natural selection shaped the rise and fall of passenger pigeon genomic diversity. Science 358, 951–954 (2017).

    ADS  Google Scholar 

  319. Díez-Del-Molino, D., Sánchez-Barreiro, F., Barnes, I., Gilbert, M. T. P. & Dalén, L. Quantifying temporal genomic erosion in endangered species. Trends Ecol. Evol. 33, 176–185 (2018).

    Google Scholar 

  320. Der Sarkissian, C. et al. Evolutionary genomics and conservation of the endangered Przewalski’s horse. Curr. Biol. 25, 2577–2583 (2015).

    Google Scholar 

  321. Norén, K., Godoy, E., Dalén, L., Meijer, T. & Angerbjörn, A. Inbreeding depression in a critically endangered carnivore. Mol. Ecol. 25, 3309–3318 (2016).

    Google Scholar 

  322. Pedersen, M. W. et al. Ancient and modern environmental DNA. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20130383 (2015).

    Google Scholar 

  323. Haile, J. et al. Ancient DNA chronology within sediment deposits: are paleobiological reconstructions possible and is DNA leaching a factor? Mol. Biol. Evol. 24, 982–989 (2007).

    Google Scholar 

  324. Binladen, J. et al. The use of coded PCR primers enables high-throughput sequencing of multiple homolog amplification products by 454 parallel sequencing. PLoS ONE 2, e197 (2007).

    ADS  Google Scholar 

  325. Murchie, T. J. et al. Optimizing extraction and targeted capture of ancient environmental DNA for reconstructing past environments using the PalaeoChip Arctic-1.0 bait-set. Quat. Res. https://doi.org/10.1017/qua.2020.59 (2020).

  326. Haile, J. et al. Ancient DNA reveals late survival of mammoth and horse in interior Alaska. Proc. Natl Acad. Sci. USA 106, 22352–22357 (2009).

    ADS  Google Scholar 

  327. Seersholm, F. V. et al. Rapid range shifts and megafaunal extinctions associated with late Pleistocene climate change. Nat. Commun. 11, 2770 (2020).

    ADS  Google Scholar 

  328. Key, F. M., Posth, C., Krause, J., Herbig, A. & Bos, K. I. Mining metagenomic data sets for ancient DNA: recommended protocols for authentication. Trends Genet. 33, 508–520 (2017).

    Google Scholar 

  329. Günther, T. & Jakobsson, M. in Handbook of Statistical Genomics (eds Balding, D., Moltke, I. & Marioni, J.) 295–340 (Wiley, 2019).

  330. Skourtanioti, E. et al. Genomic history of Neolithic to bronze age Anatolia, Northern Levant, and Southern Caucasus. Cell 181, 1158–1175.e28 (2020).

    Google Scholar 

  331. Burmeister, S. Archaeological research on migration as a multidisciplinary challenge. medieval worlds 4, 42–64 (2016).

    Google Scholar 

  332. Knipper, C. et al. Female exogamy and gene pool diversification at the transition from the final Neolithic to the early bronze age in central Europe. Proc. Natl Acad. Sci. USA 114, 10083–10088 (2017).

    Google Scholar 

  333. Zarrillo, S. et al. The use and domestication of Theobroma cacao during the mid-Holocene in the upper Amazon. Nat. Ecol. Evol. 2, 1879–1888 (2018).

    Google Scholar 

  334. Hendy, J. et al. Proteomic evidence of dietary sources in ancient dental calculus. Proc. Biol. Sci. 285, 20180977 (2018).

    Google Scholar 

  335. Roberts, P. et al. Calling all archaeologists: guidelines for terminology, methodology, data handling, and reporting when undertaking and reviewing stable isotope applications in archaeology. Rapid Commun. Mass. Spectrom. 32, 361–372 (2018).

    ADS  Google Scholar 

  336. Radini, A. et al. Medieval women’s early involvement in manuscript production suggested by lapis lazuli identification in dental calculus. Sci. Adv. 5, eaau7126 (2019).

    ADS  Google Scholar 

  337. Ren, M. et al. The origins of cannabis smoking: chemical residue evidence from the first millennium BCE in the Pamirs. Sci. Adv. 5, eaaw1391 (2019).

    ADS  Google Scholar 

  338. Reitsema, L. J. & Holder, S. Stable isotope analysis and the study of human stress, disease, and nutrition. Bioarc. Int. 2, 63–74 (2018).

    Google Scholar 

  339. Maixner, F. et al. The Iceman’s last meal consisted of fat, wild meat, and cereals. Curr. Biol. 28, 2348–2355.e9 (2018).

    Google Scholar 

  340. Lejzerowicz, F. et al. Ancient DNA complements microfossil record in deep-sea subsurface sediments. Biol. Lett. 9, 20130283 (2013).

    Google Scholar 

  341. van Dijk, E. L., Jaszczyszyn, Y., Naquin, D. & Thermes, C. The third revolution in sequencing technology. Trends Genet. 34, 666–681 (2018).

    Google Scholar 

  342. Komor, A. C., Badran, A. H. & Liu, D. R. CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell 168, 20–36 (2017).

    Google Scholar 

  343. Li, H. L., Gee, P., Ishida, K. & Hotta, A. Efficient genomic correction methods in human iPS cells using CRISPR–Cas9 system. Methods 101, 27–35 (2016).

    Google Scholar 

  344. Muchnik, S. K., Lorente-Galdos, B., Santpere, G. & Sestan, N. Modeling the evolution of human brain development using organoids. Cell 179, 1250–1253 (2019).

    Google Scholar 

  345. Kanton, S. et al. Organoid single-cell genomic atlas uncovers human-specific features of brain development. Nature 574, 418–422 (2019).

    ADS  Google Scholar 

  346. Racimo, F., Renaud, G. & Slatkin, M. Joint estimation of contamination, error and demography for nuclear DNA from ancient humans. PLoS Genet. 12, e1005972 (2016).

    Google Scholar 

  347. Jun, G. et al. Detecting and estimating contamination of human DNA samples in sequencing and array-based genotype data. Am. J. Hum. Genet. 91, 839–848 (2012).

    Google Scholar 

  348. Link, V. et al. ATLAS: analysis tools for low-depth and ancient samples. Preprint at bioRxiv https://doi.org/10.1101/105346 (2017).

    Article  Google Scholar 

  349. Librado, P. & Orlando, L. Detecting signatures of positive selection along defined branches of a population tree using LSD. Mol. Biol. Evol. 35, 1520–1535 (2018).

    Google Scholar 

  350. Refoyo-Martínez, A. et al. Identifying loci under positive selection in complex population histories. Genome Res. 29, 1506–1520 (2019).

    Google Scholar 

  351. Renaud, G., Hanghøj, K., Korneliussen, T. S., Willerslev, E. & Orlando, L. Joint estimates of heterozygosity and runs of homozygosity for modern and ancient samples. Genetics 212, 587–614 (2019).

    Google Scholar 

  352. Brace, S. et al. Ancient genomes indicate population replacement in early neolithic britain. Nat. Ecol. Evol. 3, 765–771 (2019).

    Google Scholar 

  353. Yates, J. A. F. et al. Community-curated and standardised metadata of published ancient metagenomic samples with AncientMetagenomeDir. Preprint at bioRxiv https://doi.org/10.1101/2020.09.02.279570 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank A. Hübner for assistance with figure 4c. L.O., P.S., P.W.S. and C.W. received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreements ERC-2015-CoG 681605-PEGASUS, ERC-2018-StG 852558-AGRICON, ERC-2015-StG 678901-FoodTransforms and ERC-2017-StG 804844-DAIRYCULTURES, respectively). L.O. was also supported by ANR (LifeChange) and the Simone et Cino Del Duca Foundation (HealthTimeTravel). P.S. was also supported by the Francis Crick Institute core funding (FC001595) from Cancer Research UK, the UK Medical Research Council and the Wellcome Trust, a Wellcome Trust Investigator award (217223/Z/19/Z) and the Vallee Foundation. C.W. also received funding from the Max Planck Society, the Deutsche Forschungsgemeinschaft (EXC 2051 #390713860) and the Siemens Foundation (Paleobiochemistry).

Author information

Authors and Affiliations

Authors

Contributions

Introduction (L.O., A.C.S. and C.W.); Experimentation (L.O., R.A., C.D.S., P.W.S., A.C.S. and C.W.); Results (L.O., P.S., R.A., P.W.S., M.C.A.-A. and C.W.); Applications (L.O., R.A., P.W.S., C.D.S., M.C.A.-A., Q.F., J.K., E.W., A.C.S. and C.W.); Reproducibility and data deposition (L.O. and M.C.A.-A.); Limitations and optimizations (L.O.); Outlook (L.O., P.W.S., A.C.S. and C.W.); Overview of the Primer (L.O. and C.W.).

Corresponding author

Correspondence to Ludovic Orlando.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Methods Primers thanks T. Günther, L. Matisoo-Smith, R. Pinhasi, N. Rawlence, A. Zink and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Ancient Human DNA uMap: https://umap.openstreetmap.fr/en/map/ancient-human-dna_41837#6/51.000/2.000

Bitbucket: https://bitbucket.org/product

European Nucleotide Archive (ENA): https://www.ebi.ac.uk/ena

GitHub: https://github.com

International Symposium for Biomolecular Archaeology (ISBA): https://isba9.sciencesconf.org

Max Planck Harvard Research Center for the Archaeoscience of the Ancient Mediterranean: https://www.archaeoscience.org/

Protocols.io: https://www.protocols.io

Reich laboratory: https://reich.hms.harvard.edu/datasets

Sequence Read Archive (SRA): https://www.ncbi.nlm.nih.gov/sra

Standards and Precautions and Advances in Ancient Metagenomics (SPAAM):https://github.com/SPAAM-workshop

Glossary

Ancient DNA

(aDNA). Ultrashort and degraded DNA fragments that are preserved in subfossil material, including hard tissues, such as bones, teeth and shells, and soft tissues, such as mummified skin and hair, as well as sediments.

Holobiomes

The total sum of the DNA fragments making up the genome of a host organism and all of its microbiota.

DNA library

A molecular construction in which DNA fragments are ligated to DNA adapters of known sequences in order to be amplified and optionally captured prior to sequencing; different sequencing platforms require different library constructs.

DNA barcoding

The taxonomic assignment of metagenomic DNA content on the basis of DNA fragments that show limited intra-specific sequence diversity but large inter-specific sequence diversity.

Shotgun sequencing

Non-targeted sequencing of DNA library content.

DNA ligases

A class of enzymes that are capable of stitching together different DNA fragments.

Ascertainment bias

Statistical bias resulting from the collection of genetic data at a subset of loci that do not reflect the overall genetic diversity present at the whole-genome scale.

Demultiplexing

A process by which pools of sequences originating from different DNA libraries are assigned back to their original samples on the basis of short synthetic sequences added during library indexing.

Outgroup

An individual, a population or a group of populations and/or species that are genetically close but different from those under study.

Identity by descent

DNA segments between two or more individuals are identical by descent when they are inherited from a common ancestor in the absence of recombination.

Procrustes analysis

Also known as Procrustes superimposition. A statistical method allowing the translation, rotation and scaling of multidimensional objects within a single analytical space where they can be compared.

16S meta-barcodes

Selected variable regions of the 16S ribosomal RNA gene whose sequence provides taxonomic resolution amongst bacteria and archaea.

DNA methylation

A biological process by which the activity of a DNA segment is modified without changing the underlying sequence but by adding methyl groups to the DNA molecule.

Bisulfite conversion

A chemical reaction using sodium bisulfite that converts unmethylated CpG dinucleotides into UpGs but leaves methylated CpGs intact, thereby allowing the detection of DNA methylation by sequencing.

Immunoprecipitation

A molecular laboratory technique by which specific molecules are purified on the basis of their chemical affinities for particular protein groups, such as antibodies.

Population replacement

A population process by which the gene pool of one local population is at least partially replaced by that coming from another, genetically distinct, population.

Environmental DNA

(eDNA). Fragments of DNA that are preserved within sediments and water that can be used for a fast, cost-effective monitoring of the ecology of a given region.

Stratigraphic leaching

The migration of DNA across strata in sediments caused by water movement, microorganism growth or bioturbation and compromising the reliability of the stratigraphy, that is, the order, position and age of the geological layers formed by the different piles of sediments.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlando, L., Allaby, R., Skoglund, P. et al. Ancient DNA analysis. Nat Rev Methods Primers 1, 14 (2021). https://doi.org/10.1038/s43586-020-00011-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-020-00011-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing