Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Climate change impacts and adaptations of wine production

Abstract

Climate change is affecting grape yield, composition and wine quality. As a result, the geography of wine production is changing. In this Review, we discuss the consequences of changing temperature, precipitation, humidity, radiation and CO2 on global wine production and explore adaptation strategies. Current winegrowing regions are primarily located at mid-latitudes (California, USA; southern France; northern Spain and Italy; Barossa, Australia; Stellenbosch, South Africa; and Mendoza, Argentina, among others), where the climate is warm enough to allow grape ripening, but without excessive heat, and relatively dry to avoid strong disease pressure. About 90% of traditional wine regions in coastal and lowland regions of Spain, Italy, Greece and southern California could be at risk of disappearing by the end of the century because of excessive drought and more frequent heatwaves with climate change. Warmer temperatures might increase suitability for other regions (Washington State, Oregon, Tasmania, northern France) and are driving the emergence of new wine regions, like the southern United Kingdom. The degree of these changes in suitability strongly depends on the level of temperature rise. Existing producers can adapt to a certain level of warming by changing plant material (varieties and rootstocks), training systems and vineyard management. However, these adaptations might not be enough to maintain economically viable wine production in all areas. Future research should aim to assess the economic impact of climate change adaptation strategies applied at large scale.

Key points

  • Climate change modifies wine production conditions and requires adaptation from growers.

  • The suitability of current winegrowing areas is changing, and there will be winners and losers. New winegrowing regions will appear in previously unsuitable areas, including expanding into upslope regions and natural areas, raising issues for environmental preservation.

  • Higher temperatures advance phenology (major stages in the growing cycle), shifting grape ripening to a warmer part of the summer. In most winegrowing regions around the globe, grape harvests have advanced by 2–3 weeks over the past 40 years. The resulting modifications in grape composition at harvest change wine quality and style.

  • Changing plant material and cultivation techniques that retard maturity are effective adaptation strategies to higher temperatures until a certain level of warming.

  • Increased drought reduces yield and can result in sustainability losses. The use of drought-resistant plant material and the adoption of different training systems are effective adaptation strategies to deal with declining water availability. Supplementary irrigation is also an option when sustainable freshwater resources are available.

  • The emergence of new pests and diseases and the increasing occurrence of extreme weather events, such as heatwaves, heavy rainfall and possibly hail, also challenge wine production in some regions. In contrast, other areas might benefit from reduced pest and disease pressure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global changes in winegrowing suitability at temperature increases of 2 °C and 4 °C.
Fig. 2: Expected changes in phenology, yield and wine quality in response to increased temperatures and potential adaptations.
Fig. 3: Wine quality impairment under climate change.
Fig. 4: Drought projections for winegrowing regions under warming of 2 °C and 4 °C.
Fig. 5: Drought-tolerance adaptation mechanisms in vines.
Fig. 6: Potential positive and negative impacts of climate change on major pests and diseases in vines.

Similar content being viewed by others

Data availability

The suitability assessment compiled in Fig. 1 can be obtained by applying, for each region identified in Supplementary Table 1, the methodology explained in the Supplementary note and in Supplementary Tables 3, 4 and 5, for each specific reference selected in Supplementary Table 2.

The data underlying Fig. 3 are freely available, for the observed precipitations at http://gpcp.umd.edu/ and for drought projections at https://catalogue.ceda.ac.uk/uuid/1b91153925dd474387bb696d59adbd15.

References

  1. Alston, J. M. & Sambucci, O. in The Grape Genome (eds Cantu, D. & Walker, M. A.) 1–24 (Springer, 2019).

  2. OIV. State of the World Vine and Wine Sector in 2022, 18. www.oiv.int/sites/default/files/documents/2023_SWVWS_report_EN.pdf (2023).

  3. van Leeuwen, C. & Seguin, G. The concept of terroir in viticulture. J. Wine Res. 17, 1–10 (2006).

    Article  Google Scholar 

  4. Easingwood, C., Lockshin, L. & Spawton, A. The drivers of wine regionality. J. Wine Res. 22, 19–33 (2011).

    Article  Google Scholar 

  5. van Leeuwen, C. et al. Influence of climate, soil, and cultivar on terroir. Am. J. Enol. Vitic. 55, 207–217 (2004).

    Article  Google Scholar 

  6. Mira de Orduña, R. Climate change associated effects on grape and wine quality and production. Food Res. Int. 43, 1844–1855 (2010).

    Article  Google Scholar 

  7. Duchêne, E. & Schneider, C. Grapevine and climatic changes: a glance at the situation in Alsace. Agron. Sustain. Dev. 25, 93–99 (2005).

    Article  Google Scholar 

  8. García de Cortázar-Atauri, I. et al. Grapevine phenology in France: from past observations to future evolutions in the context of climate change. OENO One 51, 115–126 (2017).

    Article  Google Scholar 

  9. Drappier, J., Thibon, C., Rabot, A. & Geny-Denis, L. Relationship between wine composition and temperature: impact on Bordeaux wine typicity in the context of global warming. Crit. Rev. Food Sci. Nutr. 59, 14–30 (2019).

    Article  CAS  Google Scholar 

  10. Hannah, L. et al. Climate change, wine, and conservation. Proc. Natl Acad. Sci. USA 110, 6907–6912 (2013).

    Article  CAS  Google Scholar 

  11. Moriondo, M. et al. Projected shifts of wine regions in response to climate change. Clim. Change 119, 825–839 (2013).

    Article  Google Scholar 

  12. Morales-Castilla, I. et al. Diversity buffers winegrowing regions from climate change losses. Proc. Natl Acad. Sci. USA 117, 2864–2869 (2020).

    Article  CAS  Google Scholar 

  13. Sgubin, G. et al. Non-linear loss of suitable wine regions over Europe in response to increasing global warming. Glob. Change Biol. 29, 808–826 (2023).

    Article  CAS  Google Scholar 

  14. Sgubin, G. et al. The risk of tardive frost damage in French vineyards in a changing climate. Agric. For. Meteorol. 250–251, 226–242 (2018).

    Article  Google Scholar 

  15. Leolini, L. et al. Late spring frost impacts on future grapevine distribution in Europe. Field Crop. Res. 222, 197–208 (2018).

    Article  Google Scholar 

  16. Raupach, T. H. et al. The effects of climate change on hailstorms. Nat. Rev. Earth Environ. 2, 213–226 (2021).

    Article  Google Scholar 

  17. van Leeuwen, C. et al. Why climate change will not dramatically decrease viticultural suitability in main wine-producing areas by 2050. Proc. Natl Acad. Sci. USA 110, E3051–E3052 (2013).

    Google Scholar 

  18. Mosedale, J. R., Abernethy, K. E., Smart, R. E., Wilson, R. J. & Maclean, I. M. D. Climate change impacts and adaptive strategies: lessons from the grapevine. Glob. Change Biol. 22, 3814–3828 (2016).

    Article  Google Scholar 

  19. van Leeuwen, C. et al. An update on the impact of climate change in viticulture and potential adaptations. Agronomy 9, 514 (2019).

    Article  Google Scholar 

  20. Gutiérrez-Gamboa, G., Zheng, W. & Martínez de Toda, F. Current viticultural techniques to mitigate the effects of global warming on grape and wine quality: a comprehensive review. Food Res. Int. 139, 109946 (2021).

    Article  Google Scholar 

  21. Pérard, J. & Bois, B. L’odyssée des vignobles tropicaux: quelques exemples. Acta Hortic. 910, 35–45 (2011).

  22. Rauhut Kompaniets, O. Sustainable competitive advantages for a nascent wine country: an example from southern Sweden. Compet. Rev. Int. Bus. J. 32, 376–390 (2021).

    Google Scholar 

  23. Rainer, G. The making of the ‘world’s highest wine region’: globalization and viticulture restructuring in Salta (NW Argentina). Erdkunde 70, 255–269 (2016).

    Article  Google Scholar 

  24. van Leeuwen, C. in Managing Wine Quality (ed. Reynolds, A. G.) 273–315 (Woodhead, 2010).

  25. Jones, G. V., White, M. A., Cooper, O. R. & Storchmann, K. Climate change and global wine quality. Clim. Change 73, 319–343 (2005).

    Article  Google Scholar 

  26. White, M. A., Diffenbaugh, N. S., Jones, G. V., Pal, J. S. & Giorgi, F. Extreme heat reduces and shifts United States premium wine production in the 21st century. Proc. Natl Acad. Sci. USA 103, 11217–11222 (2006).

    Article  CAS  Google Scholar 

  27. Fraga, H., Malheiro, A. C., Moutinho-Pereira, J. & Santos, J. A. Future scenarios for viticultural zoning in Europe: ensemble projections and uncertainties. Int. J. Biometeorol. 57, 909–925 (2013).

    Article  CAS  Google Scholar 

  28. Robinson, J. & Johnson, H. The World Atlas of Wine 8th edn (Octopus, 2019).

  29. Diffenbaugh, N. S., White, M. A., Jones, G. V. & Ashfaq, M. Climate adaptation wedges: a case study of premium wine in the western United States. Environ. Res. Lett. 6, 024024 (2011).

    Article  Google Scholar 

  30. Monteverde, C. & De Sales, F. Impacts of global warming on southern California’s winegrape climate suitability. Adv. Clim. Change Res. 11, 279–293 (2020).

    Article  Google Scholar 

  31. Jones, G. V. Climate change: observations, projections, and general implications for viticulture and wine production. Economics Department Working Paper 7, 14 (2007).

  32. Roy, P. et al. Probabilistic climate change scenarios for viticultural potential in Québec. Clim. Change 143, 43–58 (2017).

    Article  CAS  Google Scholar 

  33. Hewer, M. J. & Gough, W. A. Climate change impact assessment on grape growth and wine production in the Okanagan Valley (Canada). Clim. Risk Manag. 33, 100343 (2021).

    Article  Google Scholar 

  34. Cabré, F. & Nuñez, M. Impacts of climate change on viticulture in Argentina. Reg. Environ. Change 20, 12 (2020).

    Article  Google Scholar 

  35. Gomez, M. L., Hoke, G., D’Ambrosio, S., Moreiras, S. & Castro, A. Review: Hydrogeology of Northern Mendoza (Argentina), from the Andes to the eastern plains, in the context of climate change. Hydrogeol. J. 30, 725–750 (2022).

    Article  Google Scholar 

  36. Cabré, M. F., Quénol, H. & Nuñez, M. Regional climate change scenarios applied to viticultural zoning in Mendoza, Argentina. Int. J. Biometeorol. https://doi.org/10.1007/s00484-015-1126-3 (2016).

  37. Fraga, H., Garcia de Cortázar Atauri, I., Malheiro, A. C. & Santos, J. A. Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe. Glob. Change Biol. 22, 3774–3788 (2016).

    Article  Google Scholar 

  38. Moral, F. J. et al. Future scenarios for viticultural suitability under conditions of global climate change in Extremadura, Southwestern Spain. Agriculture 12, 1865 (2022).

    Article  Google Scholar 

  39. Malheiro, A. C., Santos, J. A., Fraga, H. & Pinto, J. G. Climate change scenarios applied to viticultural zoning in Europe. Clim. Res. 43, 163–177 (2010).

    Article  Google Scholar 

  40. Koufos, G. C., Mavromatis, T., Koundouras, S. & Jones, G. V. Response of viticulture-related climatic indices and zoning to historical and future climate conditions in Greece. Int. J. Climatol. 38, 2097–2111 (2018).

    Article  Google Scholar 

  41. Tóth, J. P. & Végvári, Z. Future of winegrape growing regions in Europe. Aust. J. Grape Wine Res. 22, 64–72 (2016).

    Article  Google Scholar 

  42. Lazoglou, G., Anagnostopoulou, C. & Koundouras, S. Climate change projections for Greek viticulture as simulated by a regional climate model. Theor. Appl. Climatol. 133, 551–567 (2018).

    Article  Google Scholar 

  43. Gouveia, C., Liberato, M. L. R., DaCamara, C. C., Trigo, R. M. & Ramos, A. M. Modelling past and future wine production in the Portuguese Douro Valley. Clim. Res. 48, 349–362 (2011).

    Article  Google Scholar 

  44. Santos, J. A., Malheiro, A. C., Karremann, M. K. & Pinto, J. G. Statistical modelling of grapevine yield in the Port Wine region under present and future climate conditions. Int. J. Biometeorol. 55, 119–131 (2011).

    Article  Google Scholar 

  45. Zito, S. et al. Projected impacts of climate change on viticulture over French wine regions using downscaled CMIP6 multi-model data. OENO One 57, 431–446 (2023).

    Article  Google Scholar 

  46. Pieri, P., Lebon, E. & Brisson, N. Climate change impact on French vineyards as predicted by models. Acta Hortic. https://doi.org/10.17660/ActaHortic.2012.931.2 (2012).

  47. Kartschall, T. et al. Changes in phenology and frost risks of Vitis vinifera (cv Riesling). Meteorol. Z. 24, 189–200 (2015).

    Article  Google Scholar 

  48. Cardell, M. F., Amengual, A. & Romero, R. Future effects of climate change on the suitability of wine grape production across Europe. Reg. Environ. Change 19, 2299–2310 (2019).

    Article  Google Scholar 

  49. Bai, H. et al. Viticultural suitability analysis based on multi-source data highlights climate-change-induced decrease in potential suitable areas: a case analysis in Ningxia, China. Remote. Sens. 14, 3717 (2022).

    Article  Google Scholar 

  50. Webb, L. B., Whetton, P. H. & Barlow, E. W. R. Modelled impact of future climate change on the phenology of winegrapes in Australia. Aust. J. Grape Wine Res. 13, 165–175 (2007).

    Article  Google Scholar 

  51. Remenyi, T. A. et al. Australia’s Wine FutureA Climate Atlas (Univ. Tasmania, 2019).

  52. Hall, A. & Jones, G. V. Effect of potential atmospheric warming on temperature-based indices describing Australian winegrape growing conditions. Aust. J. Grape Wine Res. 15, 97–119 (2009).

    Article  Google Scholar 

  53. Ausseil, A.-G. E., Law, R. M., Parker, A. K., Teixeira, E. I. & Sood, A. Projected wine grape cultivar shifts due to climate change in New Zealand. Front. Plant Sci. 12, 618039 (2021).

    Article  Google Scholar 

  54. Zandalinas, S. I., Fritschi, F. B. & Mittler, R. Global warming, climate change, and environmental pollution: recipe for a multifactorial stress combination disaster. Trends Plant. Sci. 26, 588–599 (2021).

    Article  CAS  Google Scholar 

  55. Tan, J. W. et al. Global transcriptome and gene co-expression network analyses reveal regulatory and non-additive effects of drought and heat stress in grapevine. Front. Plant Sci. 14, 1096225 (2023).

    Article  Google Scholar 

  56. Jackson, D. I. & Lombard, P. B. Environmental and management practices affecting grape composition and wine quality — a review. Am. J. Enol. Vitic. 44, 409–430 (1993).

    Article  CAS  Google Scholar 

  57. Pons, A. et al. What is the expected impact of climate change on wine aroma compounds and their precursors in grape? OENO One 51, 141–146 (2017).

    Article  CAS  Google Scholar 

  58. Menzel, A. et al. European phenological response to climate change matches the warming pattern. Glob. Change Biol. 12, 1969–1976 (2006).

    Article  Google Scholar 

  59. Tomasi, D., Jones, G. V., Giust, M., Lovat, L. & Gaiotti, F. Grapevine phenology and climate change: relationships and trends in the Veneto region of Italy for 1964–2009. Am. J. Enol. Vitic. 62, 329–339 (2011).

    Article  Google Scholar 

  60. Sadras, V. O. & Moran, M. A. Nonlinear effects of elevated temperature on grapevine phenology. Agric. For. Meteorol. 173, 107–115 (2013).

    Article  Google Scholar 

  61. Chuine, I. et al. Historical phenology: grape ripening as a past climate indicator. Nature 432, 289–290 (2004).

    Article  CAS  Google Scholar 

  62. Daux, V. et al. An open-access database of grape harvest dates for climate research: data description and quality assessment. Clim. Past. 8, 1403–1418 (2012).

    Article  Google Scholar 

  63. Petrie, P. R. & Sadras, V. O. Advancement of grapevine maturity in Australia between 1993 and 2006: putative causes, magnitude of trends and viticultural consequences. Aust. J. Grape Wine Res. 14, 33–45 (2008).

    Article  Google Scholar 

  64. Webb, L. B., Whetton, P. H. & Barlow, E. W. R. Observed trends in winegrape maturity in Australia. Glob. Change Biol. 17, 2707–2719 (2011).

    Article  Google Scholar 

  65. Molitor, D. & Junk, J. Climate change is implicating a two-fold impact on air temperature increase in the ripening period under the conditions of the Luxembourgish grapegrowing region. OENO One https://doi.org/10.20870/oeno-one.2019.53.3.2329 (2019).

  66. Ruffner, H. P. Metabolism of tartaric and malic acids in Vitis: a review — part A. Vitis J. Grapevine Res. 21, 247–247 (1982).

    CAS  Google Scholar 

  67. Coombe, B. G. Influence of temperature on composition and quality of grapes. Acta Hortic. https://doi.org/10.17660/ActaHortic.1987.206.1 (1987).

  68. Zamora, F. in Wine Chemistry and Biochemistry (eds Moreno-Arribas, M. V. & Polo, M. C.) 3–26 (Springer, 2009).

  69. Kliewer, W. M. Effect of high temperatures during the bloom-set period on fruit-set, ovule fertility, and berry growth of several grape cultivars. Am. J. Enol. Vitic. 28, 215–222 (1977).

    Article  Google Scholar 

  70. Spayd, S., Tarara, J., Mee, D. L. & Ferguson, J. C. Separation of sunlight and temperature effects on the composition of Vitis vinifera cv. merlot berries. Am. J. Enol. Vitic. 53, 171–182 (2002).

    Article  CAS  Google Scholar 

  71. Mori, K., Goto-Yamamoto, N., Kitayama, M. & Hashizume, K. Loss of anthocyanins in red-wine grape under high temperature. J. Exp. Bot. 58, 1935–1945 (2007).

    Article  CAS  Google Scholar 

  72. Sadras, V. O. & Moran, M. A. Elevated temperature decouples anthocyanins and sugars in berries of Shiraz and Cabernet Franc. Aust. J. Grape Wine Res. 18, 115–122 (2012).

    Article  CAS  Google Scholar 

  73. Lawrence, M. G. The relationship between relative humidity and the dewpoint temperature in moist air: a simple conversion and applications. Bull. Am. Meteorol. Soc. 86, 225–234 (2005).

    Article  Google Scholar 

  74. Grossiord, C. et al. Plant responses to rising vapor pressure deficit. N. Phytol. 226, 1550–1566 (2020).

    Article  Google Scholar 

  75. Lebon, G. et al. Sugars and flowering in the grapevine (Vitis vinifera L.). J. Exp. Bot. 59, 2565–2578 (2008).

    Article  CAS  Google Scholar 

  76. Ebadi, A., Coombe, B. G. & May, P. Fruit-set on small Chardonnay and Shiraz vines grown under varying temperature regimes between budburst and flowering. Aust. J. Grape Wine Res. 1, 3–10 (1995).

    Article  Google Scholar 

  77. Rajasekaran, K. & Mullins, M. G. Somatic embryo formation by cultured ovules of Cabernet Sauvignon grape: effects of fertilization and of the male gameticide toluidine blue. Vitis J. Grapevine Res. 24, 151–151 (1985).

    Google Scholar 

  78. Greer, D. H. & Weston, C. Heat stress affects flowering, berry growth, sugar accumulation and photosynthesis of Vitis vinifera cv. Semillon grapevines grown in a controlled environment. Funct. Plant. Biol. 37, 206–214 (2010).

    Article  Google Scholar 

  79. Tiffon-Terrade, B. et al. Delayed grape ripening by intermittent shading to counter global warming depends on carry-over effects and water deficit conditions. OENO One 57, 71–90 (2023).

    Article  CAS  Google Scholar 

  80. Sadras, V., Moran, M. & Petrie, P. Resilience of grapevine yield in response to warming. OENO One 51, 381–386 (2017).

    Article  Google Scholar 

  81. Wolkovich, E. M., Burge, D. O., Walker, M. A. & Nicholas, K. A. Phenological diversity provides opportunities for climate change adaptation in winegrapes. J. Ecol. 105, 905–912 (2017).

    Article  Google Scholar 

  82. Lacombe, T. et al. Large-scale parentage analysis in an extended set of grapevine cultivars (Vitis vinifera L.). Theor. Appl. Genet. 126, 401–414 (2013).

    Article  Google Scholar 

  83. Parker, A. et al. Classification of varieties for their timing of flowering and veraison using a modelling approach: a case study for the grapevine species Vitis vinifera L. Agric. For. Meteorol. 180, 249–264 (2013).

    Article  Google Scholar 

  84. Parker, A. K. et al. Temperature-based grapevine sugar ripeness modelling for a wide range of Vitis vinifera L. cultivars. Agric. For. Meteorol. 285–286, 107902 (2020).

    Article  Google Scholar 

  85. van Leeuwen, C., Roby, J.-P., Alonso-Villaverde, V. & Gindro, K. Impact of clonal variability in Vitis vinifera Cabernet franc on grape composition, wine quality, leaf blade stilbene content, and downy mildew resistance. J. Agric. Food Chem. 61, 19–24 (2013).

    Article  Google Scholar 

  86. Garcia-Muñoz, S., Muñoz-Organero, G., de Andrés, M. T. & Cabello, F. Ampelography — an old technique with future uses: the case of minor varieties of Vitis vinifera L. from the Balearic Islands. J. Int. Sci. Vigne Vin. 45, 125–137 (2011).

    Google Scholar 

  87. Duchêne, E., Huard, F., Dumas, V., Schneider, C. & Merdinoglu, D. The challenge of adapting grapevine varieties to climate change. Clim. Res. 41, 193–204 (2010).

    Article  Google Scholar 

  88. Zavlyanova, M., Bonnardot, V., van Leeuwen, C., Quénol, H. & Ollat, N. The use of GFV and GSR temperature-based models in emerging wine regions to help decision-making regarding choices in grape varieties and wine styles. Application to Brittany (France). Vitis J. Grapevine Res. 62, 10–26 (2023).

    Google Scholar 

  89. Bonada, M. & Sadras, V. O. Review: Critical appraisal of methods to investigate the effect of temperature on grapevine berry composition. Aust. J. Grape Wine Res. 21, 1–17 (2015).

    Article  CAS  Google Scholar 

  90. Xyrafis, E. G., Gambetta, G. A. & Biniari, K. A comparative study on training systems and vine density in Santorini Island: physiological, microclimate, yield and quality attributes. OENO One 57, 141–152 (2023).

    Article  CAS  Google Scholar 

  91. Gladstone, E. A. & Dokoozlian, N. K. Influence of leaf area density and trellis/training system on the light microclimate within grapevine canopies. Vitis 42, 123 (2003).

    Google Scholar 

  92. de Rességuier, L. et al. Characterisation of the vertical temperature gradient in the canopy reveals increased trunk height to be a potential adaptation to climate change. OENO One 57, 41–53 (2023).

    Article  Google Scholar 

  93. Clingeleffer, P. R. Plant management research: status and what it can offer to address challenges and limitations. Aust. J. Grape Wine Res. 16, 25–32 (2010).

    Article  CAS  Google Scholar 

  94. Petoumenou, D. G. Enhancing yield and physiological performance by foliar applications of chemically inert mineral particles in a rainfed vineyard under Mediterranean conditions. Plants 12, 1444 (2023).

    Article  CAS  Google Scholar 

  95. Previtali, P. et al. A systematic review and meta-analysis of vineyard techniques used to delay ripening. Hortic. Res. 9, uhac118 (2022).

    Article  Google Scholar 

  96. Parker, A. K., Hofmann, R. W., van Leeuwen, C., McLachlan, A. R. G. & Trought, M. C. T. Leaf area to fruit mass ratio determines the time of veraison in Sauvignon Blanc and Pinot Noir grapevines. Aust. J. Grape Wine Res. 20, 422–431 (2014).

    Article  CAS  Google Scholar 

  97. Parker, A. K., Hofmann, R. W., van Leeuwen, C., McLachlan, A. R. G. & Trought, M. C. T. Manipulating the leaf area to fruit mass ratio alters the synchrony of total soluble solids accumulation and titratable acidity of grape berries. Aust. J. Grape Wine Res. 21, 266–276 (2015).

    Article  CAS  Google Scholar 

  98. Friend, A. P. & Trought, M. C. T. Delayed winter spur-pruning in New Zealand can alter yield components of Merlot grapevines. Aust. J. Grape Wine Res. 13, 157–164 (2007).

    Article  CAS  Google Scholar 

  99. Palliotti, A. et al. Changes in vineyard establishment and canopy management urged by earlier climate-related grape ripening: a review. Sci. Hortic. 178, 43–54 (2014).

    Article  Google Scholar 

  100. Van Leeuwen, C. & Darriet, P. The impact of climate change on viticulture and wine quality. J. Wine Econ. 11, 150–167 (2016).

    Article  Google Scholar 

  101. Smart, R. E. Principles of grapevine canopy microclimate manipulation with implications for yield and quality. A review. Am. J. Enol. Vitic. 36, 230–239 (1985).

    Article  Google Scholar 

  102. Hendrickson, L., Ball, M. C., Wood, J. T., Chow, W. S. & Furbank, R. T. Low temperature effects on photosynthesis and growth of grapevine. Plant. Cell Environ. 27, 795–809 (2004).

    Article  CAS  Google Scholar 

  103. Kriedemann, P. E. Photosynthesis in vine leaves as a function of light intensity, temperature, and leaf age. Vitis 7, 213–220 (1968).

    Google Scholar 

  104. Buttrose, M. S. Vegetative growth of grape-vine varieties under controlled temperature and light intensity. Vitis 8, 280–280 (1969).

    Google Scholar 

  105. Zufferey et al. A model analysis of the photosynthetic response of Vitis vinifera L. csv Riesling and Chasselas leaves in the field: I. Interaction of age, light and temperature. Vitis 39, 19–26 (2000).

    Google Scholar 

  106. Li-Mallet, A., Rabot, A. & Geny-Denis, L. Factors controlling inflorescence primordia formation of grapevine: what role in latent bud fruitfulness? — A review. Can. J. Bot. 94, 147–163 (2015).

    Article  Google Scholar 

  107. Rienth, M. et al. Grape berry secondary metabolites and their modulation by abiotic factors in a climate change scenario — a review. Front. Plant Sci. 12, 643258 (2021).

    Article  Google Scholar 

  108. van Leeuwen, C. et al. Aromatic maturity is a cornerstone of terroir expression in red wine. OENO One 56, 335–351 (2022).

    Article  Google Scholar 

  109. Martínez-Lüscher, J. et al. Climate change conditions (elevated CO2 and temperature) and UV-B radiation affect grapevine (Vitis vinifera cv. Tempranillo) leaf carbon assimilation, altering fruit ripening rates. Plant. Sci. 236, 168–176 (2015).

    Article  Google Scholar 

  110. Arias, L. A., Berli, F., Fontana, A., Bottini, R. & Piccoli, P. Climate change effects on grapevine physiology and biochemistry: benefits and challenges of high altitude as an adaptation strategy. Front. Plant Sci. 13, 835425 (2022).

    Article  Google Scholar 

  111. Iriti, M., Rossoni, M., Borgo, M. & Faoro, F. Benzothiadiazole enhances resveratrol and anthocyanin biosynthesis in grapevine, meanwhile improving resistance to Botrytis cinerea. J. Agric. Food Chem. 52, 4406–4413 (2004).

    Article  CAS  Google Scholar 

  112. Ha, S., Zhou, Z., Im, E.-S. & Lee, Y.-M. Comparative assessment of future solar power potential based on CMIP5 and CMIP6 multi-model ensembles. Renew. Energy 206, 324–335 (2023).

    Article  Google Scholar 

  113. ESMAP. Global Solar Atlas 2.0: Technical Report, 39 (World Bank, 2019).

  114. Dutta, R., Chanda, K. & Maity, R. Future of solar energy potential in a changing climate across the world: a CMIP6 multi-model ensemble analysis. Renew. Energy 188, 819–829 (2022).

    Article  Google Scholar 

  115. Campos, I., Neale, C. M. U. & Calera, A. Is row orientation a determinant factor for radiation interception in row vineyards? Aust. J. Grape Wine Res. 23, 77–86 (2017).

    Article  Google Scholar 

  116. Martínez-Lüscher, J., Chen, C. C. L., Brillante, L. & Kurtural, S. K. Partial solar radiation exclusion with color shade nets reduces the degradation of organic acids and flavonoids of grape berry (Vitis vinifera L.). J. Agric. Food Chem. 65, 10693–10702 (2017).

    Article  Google Scholar 

  117. IPCC, 2021: Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (ed. Masson-Delmotte, V. et al.) 3–32 (Cambridge Univ. Press, 2021).

  118. Galmés, J., Flexas, J., Savé, R. & Medrano, H. Water relations and stomatal characteristics of Mediterranean plants with different growth forms and leaf habits: responses to water stress and recovery. Plant. Soil. 290, 139–155 (2007).

    Article  Google Scholar 

  119. Flexas, J., Escalona, J. M. & Medrano, H. Down-regulation of photosynthesis by drought under field conditions in grapevine leaves. Funct. Plant. Biol. 25, 893–900 (1998).

    Article  Google Scholar 

  120. Medrano, H., Escalona, J. M., Cifre, J., Bota, J. & Flexas, J. A ten year study on the physiology of two Spanish grapevine cultivars under field conditions: effects of water availability from leaf photosynthesis to grape yield and quality. Funct. Plant. Biol. 30, 607–619 (2003).

    Article  CAS  Google Scholar 

  121. Hochberg, U. et al. Stomatal closure, basal leaf embolism, and shedding protect the hydraulic integrity of grape stems. Plant. Physiol. 174, 764–775 (2017).

    Article  CAS  Google Scholar 

  122. Tardieu, F. & Simonneau, T. Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours. J. Exp. Bot. 49, 419–432 (1998).

    Article  Google Scholar 

  123. Coupel-Ledru, A. et al. Abscisic acid down-regulates hydraulic conductance of grapevine leaves in isohydric genotypes only. Plant. Physiol. 175, 1121–1134 (2017).

    Article  CAS  Google Scholar 

  124. Dayer, S. et al. Model-assisted ideotyping reveals trait syndromes to adapt viticulture to a drier climate. Plant. Physiol. 190, 1673–1686 (2022).

    Article  CAS  Google Scholar 

  125. Peccoux, A. et al. Dissecting the rootstock control of scion transpiration using model-assisted analyses in grapevine. Tree Physiol. 38, 1026–1040 (2018).

    Article  CAS  Google Scholar 

  126. Pellegrino, A., Gozé, E., Lebon, E. & Wery, J. A model-based diagnosis tool to evaluate the water stress experienced by grapevine in field sites. Eur. J. Agron. 25, 49–59 (2006).

    Article  Google Scholar 

  127. Muller, B. et al. Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. J. Exp. Bot. 62, 1715–1729 (2011).

    Article  CAS  Google Scholar 

  128. Guilpart, N., Metay, A. & Gary, C. Grapevine bud fertility and number of berries per bunch are determined by water and nitrogen stress around flowering in the previous year. Eur. J. Agron. 54, 9–20 (2014).

    Article  Google Scholar 

  129. Pagay, V. & Collins, C. Effects of timing and intensity of elevated temperatures on reproductive development of field-grown Shiraz grapevines. OENO One 51, 409–421 (2017).

    Article  CAS  Google Scholar 

  130. Triolo, R. et al. Hierarchy of factors impacting grape berry mass: separation of direct and indirect effects on major berry metabolites. Am. J. Enol. Vitic. 69, 103–112 (2018).

    Article  CAS  Google Scholar 

  131. Ojeda, H., Deloire, A. & Carbonneau, A. Influence of water deficits on grape berry growth. Vitis J. Grapevine Res. 40, 141–141 (2001).

    Google Scholar 

  132. Levin, A. D., Matthews, M. A. & Williams, L. E. Effect of preveraison water deficits on the yield components of 15 winegrape cultivars. Am. J. Enol. Vitic. 71, 208–221 (2020).

    Article  CAS  Google Scholar 

  133. Chacón-Vozmediano, J. L., Martínez-Gascueña, J., García-Navarro, F. J. & Jiménez-Ballesta, R. Effects of water stress on vegetative growth and ‘Merlot’ grapevine yield in a semi-arid Mediterranean climate. Horticulturae 6, 95 (2020).

    Article  Google Scholar 

  134. Dai, Z. W. et al. Model-based analysis of sugar accumulation in response to source–sink ratio and water supply in grape (Vitis vinifera) berries. Funct. Plant. Biol. 36, 527–540 (2009).

    Article  CAS  Google Scholar 

  135. Gambetta, G. A. et al. The physiology of drought stress in grapevine: towards an integrative definition of drought tolerance. J. Exp. Bot. https://doi.org/10.1093/jxb/eraa245 (2020).

  136. van Leeuwen, C. et al. An operational model for capturing grape ripening dynamics to support harvest decisions. OENO One 57, 505–522 (2023).

    Article  Google Scholar 

  137. van Leeuwen, C. et al. Vine water status is a key factor in grape ripening and vintage quality for red Bordeaux wine. How can it be assessed for vineyard management purposes? J. Int. Sci. Vigne Vin. 43, 121 (2009).

    Google Scholar 

  138. Ojeda, H., Andary, C., Kraeva, E., Carbonneau, A. & Deloire, A. Influence of pre- and postveraison water deficit on synthesis and concentration of skin phenolic compounds during berry growth of Vitis vinifera cv. Shiraz. Am. J. Enol. Vitic. 53, 261–267 (2002).

    CAS  Google Scholar 

  139. Castellarin, S. D. et al. Transcriptional regulation of anthocyanin biosynthesis in ripening fruits of grapevine under seasonal water deficit. Plant. Cell Environ. 30, 1381–1399 (2007).

    Article  CAS  Google Scholar 

  140. Triolo, R., Roby, J. P., Pisciotta, A., Di Lorenzo, R. & van Leeuwen, C. Impact of vine water status on berry mass and berry tissue development of Cabernet franc (Vitis vinifera L.), assessed at berry level. J. Sci. Food Agric. 99, 5711–5719 (2019).

    Article  CAS  Google Scholar 

  141. Picard, M. et al. Vine water deficit impacts aging bouquet in fine red Bordeaux wine. Front. Chem. 5, 56 (2017).

    Article  Google Scholar 

  142. van Leeuwen, C. et al. Recent advancements in understanding the terroir effect on aromas in grapes and wines. OENO One 54, 985–1006 (2020).

    Google Scholar 

  143. Savoi, S. et al. From grape berries to wines: drought impacts on key secondary metabolites. OENO One 54, 569–582 (2020).

    Article  Google Scholar 

  144. Peyrot des Gachons, C. et al. Influence of water and nitrogen deficit on fruit ripening and aroma potential of Vitis vinifera L cv Sauvignon blanc in field conditions. J. Sci. Food Agric. 85, 73–85 (2005).

    Article  CAS  Google Scholar 

  145. Champagnol, F. Éléments de Physiologie de la Vigne et de Viticulture Générale (Champagnol, 1984).

  146. Plantevin, M. et al. Using δ13C and hydroscapes for discriminating cultivar specific drought responses. OENO One 56, 239–250 (2022).

    Article  CAS  Google Scholar 

  147. Tortosa, I., Escalona, J. M., Toro, G., Douthe, C. & Medrano, H. Clonal behavior in response to soil water availability in tempranillo grapevine cv: from plant growth to water use efficiency. Agronomy 10, 862 (2020).

    Article  Google Scholar 

  148. Marguerit, E., Brendel, O., Lebon, E., van Leeuwen, C. & Ollat, N. Rootstock control of scion transpiration and its acclimation to water deficit are controlled by different genes. N. Phytol. 194, 416–29 (2012).

    Article  CAS  Google Scholar 

  149. Ollat, N. et al. in Grapevine in a Changing Environment: A Molecular and Ecophysiological Perspective (eds Gerós, H. et al.) 68–108 (Wiley, 2016).

  150. Santesteban, L. G., Miranda, C., Urrestarazu, J., Loidi, M. & Royo, J. B. Severe trimming and enhanced competition of laterals as a tool to delay ripening in Tempranillo vineyards under semiarid conditions. OENO One 51, 191 (2017).

    Article  CAS  Google Scholar 

  151. Bernardo, S. et al. Optimising grapevine summer stress responses and hormonal balance by applying kaolin in two Portuguese Demarcated Regions. OENO One 55, 207–222 (2021).

    Article  CAS  Google Scholar 

  152. Naulleau, A., Gary, C., Prévot, L. & Hossard, L. Evaluating strategies for adaptation to climate change in grapevine production — a systematic review. Front. Plant Sci. 11, 607859 (2021).

    Article  Google Scholar 

  153. Lebon, E., Dumas, V., Pieri, P. & Schultz, H. R. Modelling the seasonal dynamics of the soil water balance of vineyards. Funct. Plant. Biol. 30, 699 (2003).

    Article  Google Scholar 

  154. White, R. E. Understanding Vineyard Soils (Oxford Univ. Press, 2015).

  155. Van Zyl, J. & Hoffman, E. Root development and the performance of grapevines in response to natural as well as man-made soil impediments. In IVES Conf. Series GiESCO 2019 ives-openscience.eu/4101/ (2019).

  156. Johnson-Bell, L. in Climate Action (eds Leal Filho, W. et al.) 1–11 (Springer, 2019).

  157. Gladstones, J. Wine, Terroir and Climate Change (Wakefield, 2011).

  158. Milano, M. et al. Current state of Mediterranean water resources and future trends under climatic and anthropogenic changes. Hydrol. Sci. J. 58, 498–518 (2013).

    Article  Google Scholar 

  159. Ayuda, M.-I., Esteban, E., Martín-Retortillo, M. & Pinilla, V. The blue water footprint of the Spanish wine industry: 1930–2015. Water 12, 1872 (2020).

    Article  Google Scholar 

  160. Romero, P., Navarro, J. M. & Ordaz, P. B. Towards a sustainable viticulture: the combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update. Agric. Water Manag. 259, 107216 (2022).

    Article  Google Scholar 

  161. Aragüés, R., Medina, E. T., Clavería, I., Martínez-Cob, A. & Faci, J. Regulated deficit irrigation, soil salinization and soil sodification in a table grape vineyard drip-irrigated with moderately saline waters. Agric. Water Manag. 134, 84–93 (2014).

    Article  Google Scholar 

  162. Cheng, W. et al. Global monthly gridded atmospheric carbon dioxide concentrations under the historical and future scenarios. Sci. Data 9, 83 (2022).

    Article  CAS  Google Scholar 

  163. Chaudhry, S. & Sidhu, G. P. S. Climate change regulated abiotic stress mechanisms in plants: a comprehensive review. Plant. Cell Rep. 41, 1–31 (2022).

    Article  CAS  Google Scholar 

  164. Gojon, A., Cassan, O., Bach, L., Lejay, L. & Martin, A. The decline of plant mineral nutrition under rising CO2: physiological and molecular aspects of a bad deal. Trends Plant. Sci. 28, 185–198 (2023).

    Article  CAS  Google Scholar 

  165. Foyer, C. H. & Noctor, G. Redox homeostasis and signaling in a higher-CO2 world. Annu. Rev. Plant. Biol. 71, 157–182 (2020).

    Article  CAS  Google Scholar 

  166. Edwards, E. J., Unwin, D., Kilmister, R. & Treeby, M. Multi-seasonal effects of warming and elevated CO2 on the physiology, growth and production of mature, field grown, Shiraz grapevines. OENO One 51, 127–132 (2017).

    Article  CAS  Google Scholar 

  167. Wohlfahrt, Y., Smith, J. P., Tittmann, S., Honermeier, B. & Stoll, M. Primary productivity and physiological responses of Vitis vinifera L. cvs. under Free Air Carbon dioxide Enrichment (FACE). Eur. J. Agron. 101, 149–162 (2018).

    Article  CAS  Google Scholar 

  168. Clemens, M. E., Zuniga, A. & Oechel, W. Effects of elevated atmospheric carbon dioxide on the vineyard system of Vitis vinifera: a review. Am. J. Enol. Vitic. 73, 1–10 (2022).

    Article  CAS  Google Scholar 

  169. Kahn, C. et al. VineyardFACE: investigation of a moderate (+20%) increase of ambient CO2 concentration on berry ripening dynamics and fruit composition of Cabernet-Sauvignon. OENO One 56, 193–204 (2022).

    Article  CAS  Google Scholar 

  170. Yuan, W. et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5, eaax1396 (2019).

    Article  CAS  Google Scholar 

  171. Wang, S. et al. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 370, 1295–1300 (2020).

    Article  CAS  Google Scholar 

  172. Birami, B. et al. Hot drought reduces the effects of elevated CO2 on tree water-use efficiency and carbon metabolism. N. Phytol. 226, 1607–1621 (2020).

    Article  CAS  Google Scholar 

  173. Martínez-Lüscher, J. et al. Ultraviolet-B alleviates the uncoupling effect of elevated CO2 and increased temperature on grape berry (Vitis vinifera cv. Tempranillo) anthocyanin and sugar accumulation. Aust. J. Grape Wine Res. 22, 87–95 (2016).

    Article  Google Scholar 

  174. Venios, X., Korkas, E., Nisiotou, A. & Banilas, G. Grapevine responses to heat stress and global warming. Plants 9, 1754 (2020).

    Article  Google Scholar 

  175. Webb, L. et al. Extreme heat: managing grapevine response based on vineyard observations from the 2009 heatwave across south-eastern Australia. Wine Vitic. J. 54, 39–50 (2009).

  176. Fraga, H., Molitor, D., Leolini, L. & Santos, J. A. What is the impact of heatwaves on European viticulture? A modelling assessment. Appl. Sci. 10, 3030 (2020).

    Article  CAS  Google Scholar 

  177. Greer, D. H. Responses of biomass accumulation, photosynthesis and the net carbon budget to high canopy temperatures of Vitis vinifera L. cv. Semillon vines grown in field conditions. Environ. Exp. Bot. 138, 10–20 (2017).

    Article  Google Scholar 

  178. Parker, L. E., McElrone, A. J., Ostoja, S. M. & Forrestel, E. J. Extreme heat effects on perennial crops and strategies for sustaining future production. Plant. Sci. 295, 110397 (2020).

    Article  CAS  Google Scholar 

  179. Rienth, M. et al. Day and night heat stress trigger different transcriptomic responses in green and ripening grapevine (Vitis vinifera) fruit. BMC Plant. Biol. 14, 108 (2014).

    Article  Google Scholar 

  180. Lecourieux, F. et al. Dissecting the biochemical and transcriptomic effects of a locally applied heat treatment on developing cabernet sauvignon grape berries. Front. Plant. Sci. 8, 53 (2017).

    Article  Google Scholar 

  181. Rienth, M. et al. Temperature desynchronizes sugar and organic acid metabolism in ripening grapevine fruits and remodels their transcriptome. BMC Plant. Biol. 16, 164 (2016).

    Article  Google Scholar 

  182. IPCC: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 3–32 (IPCC, Cambridge Univ. Press, 2021).

  183. Ascoli, D., Moris, J. V., Marchetti, M. & Sallustio, L. Land use change towards forests and wooded land correlates with large and frequent wildfires in Italy. Ann. Silvic. Res. 46, 1–10 (2021).

    Google Scholar 

  184. Thach, L. The amazing resilience of wine grape vineyards. Wine Econ. Policy 7, 1–2 (2018).

    Article  Google Scholar 

  185. Collins, C. et al. Grapevine recovery after fire and a first look at rapid damage assessment with satellite imagery. OENO One 56, 265–278 (2022).

    Article  CAS  Google Scholar 

  186. Krstic, M. P., Johnson, D. L. & Herderich, M. J. Review of smoke taint in wine: smoke-derived volatile phenols and their glycosidic metabolites in grapes and vines as biomarkers for smoke exposure and their role in the sensory perception of smoke taint. Aust. J. Grape Wine Res. 21, 537–553 (2015).

    Article  CAS  Google Scholar 

  187. Noestheden, M., Dennis, E. G. & Zandberg, W. F. Quantitating volatile phenols in Cabernet franc berries and wine after on-vine exposure to smoke from a simulated forest fire. J. Agric. Food Chem. 66, 695–703 (2018).

    Article  CAS  Google Scholar 

  188. Jiang, W., Parker, M., Hayasaka, Y., Simos, C. & Herderich, M. Compositional changes in grapes and leaves as a consequence of smoke exposure of vineyards from multiple bushfires across a ripening season. Molecules 26, 3187 (2021).

    Article  CAS  Google Scholar 

  189. Hamilton, R. Vineyard focus: managing fire affected vineyards. Aust. N. Z. Grapegrow. Winemak. https://doi.org/10.3316/ielapa.137362282741902 (2020).

  190. Nortes Martínez, D., Grelot, F., Brémond, P., Farolfi, S. & Rouchier, J. Are interactions important in estimating flood damage to economic entities? The case of wine-making in France. Nat. Hazards Earth Syst. Sci. 21, 3057–3084 (2021).

    Article  Google Scholar 

  191. Petruccelli, N., Domeneghetti, A., Marinelli, L., Molino, M. C. & Brath, A. Development, application and validation of a flood damage model for multi-year crops (vineyards and orchards). In EGU General Assembly EGU23-12202 https://doi.org/10.5194/egusphere-egu23-12202 (2023).

  192. Vanden Heuvel, J. & Centinari, M. Under-vine vegetation mitigates the impacts of excessive precipitation in vineyards. Front. Plant. Sci. 12, 713135 (2021).

    Article  Google Scholar 

  193. Poni, P. S. Designing and Managing a Sustainable Vineyard in a Climate Change Scenario (2023).

  194. Bessis, R., Fournioux, J.-C. & Olivain, C. Divers aspects de la fertilité de la vigne après une grêle. Connaiss. Vigne Vin. 15, 53–64 (1981).

    Google Scholar 

  195. Karaman, B., Taskin, S., Simbeye, D. S., Mkiramweni, M. E. & Kurtoglu, A. Design and development of smart cover system for vineyards. Smart Agric. Technol. 3, 100064 (2023).

    Article  Google Scholar 

  196. Molitor, D. et al. Late frost damage risk for viticulture under future climate conditions: a case study for the Luxembourgish winegrowing region. Aust. J. Grape Wine Res. 20, 160–168 (2014).

    Article  Google Scholar 

  197. Bois, B., Gavrilescu, C., Zito, S., Richard, Y. & Castel, T. L’incertaine évolution des risques de gelées de printemps au vignoble au 21ème siècle. IVES Tech. Rev. Vine Wine https://doi.org/10.20870/IVES-TR.2023.7514 (2023).

  198. Poling, E. B. Spring cold injury to winegrapes and protection strategies and methods. HortScience 43, 1652–1662 (2008).

    Article  Google Scholar 

  199. Komárek, M., Čadková, E., Chrastný, V., Bordas, F. & Bollinger, J.-C. Contamination of vineyard soils with fungicides: a review of environmental and toxicological aspects. Environ. Int. 36, 138–151 (2010).

    Article  Google Scholar 

  200. Ntzani, A., Chondrogiorgi, M., Ntritsos, G., Evangelou, E. & Tzouki, I. Literature Review on Epidemiological Studies Linking Exposure to Pesticides and Health Effects. EFSA Supporting Publication https://doi.org/10.2903/sp.efsa.2013.EN-497 (2013).

  201. Pimentel, D. Environmental and economic costs of the application of pesticides primarily in the United States. Environ. Dev. Sustain. 7, 229–252 (2005).

    Article  Google Scholar 

  202. Barbetti, M. J., Banga, S. S. & Salisbury, P. A. Challenges for crop production and management from pathogen biodiversity and diseases under current and future climate scenarios — case study with oilseed Brassicas. Field Crop. Res. 127, 225–240 (2012).

    Article  Google Scholar 

  203. Bebber, D. P., Ramotowski, M. A. T. & Gurr, S. J. Crop pests and pathogens move polewards in a warming world. Nat. Clim. Change 3, 985–988 (2013).

    Article  Google Scholar 

  204. Chakraborty, S. & Newton, A. C. Climate change, plant diseases and food security: an overview. Plant. Pathol. 60, 2–14 (2011).

    Article  Google Scholar 

  205. Coakley, S. M., Scherm, H. & Chakraborty, S. Climate change and plant disease management. Annu. Rev. Phytopathol. 37, 399–426 (1999).

    Article  CAS  Google Scholar 

  206. Chakraborty, S., Tiedemann, A. V. & Teng, P. S. Climate change: potential impact on plant diseases. Environ. Pollut. 108, 317–326 (2000).

    Article  CAS  Google Scholar 

  207. Luck, J. et al. Climate change and diseases of food crops. Plant. Pathol. 60, 113–121 (2011).

    Article  Google Scholar 

  208. Sutherst, R. W. et al. Adapting to crop pest and pathogen risks under a changing climate. WIREs Clim. Change 2, 220–237 (2011).

    Article  Google Scholar 

  209. Porter, J. H., Parry, M. L. & Carter, T. R. The potential effects of climatic change on agricultural insect pests. Agric. For. Meteorol. 57, 221–240 (1991).

    Article  Google Scholar 

  210. Langille, A. B., Arteca, E. M. & Newman, J. A. The impacts of climate change on the abundance and distribution of the Spotted Wing Drosophila (Drosophila suzukii) in the United States and Canada. PeerJ 5, e3192 (2017).

    Article  Google Scholar 

  211. Iltis, C. et al. Are life-history traits equally affected by global warming? A case study combining a multi-trait approach with fine-grain climate modeling. J. Insect Physiol. 117, 103916 (2019).

    Article  CAS  Google Scholar 

  212. Reineke, A. & Selim, M. Elevated atmospheric CO2 concentrations alter grapevine (Vitis vinifera) systemic transcriptional response to European grapevine moth (Lobesia botrana) herbivory. Sci. Rep. 9, 2995 (2019).

    Article  Google Scholar 

  213. Tobin, P. C., Nagarkatti, S., Loeb, G. & Saunders, M. C. Historical and projected interactions between climate change and insect voltinism in a multivoltine species. Glob. Change Biol. 14, 951–957 (2008).

    Article  Google Scholar 

  214. Caffarra, A., Rinaldi, M., Eccel, E., Rossi, V. & Pertot, I. Modelling the impact of climate change on the interaction between grapevine and its pests and pathogens: European grapevine moth and powdery mildew. Agric. Ecosyst. Environ. 148, 89–101 (2012).

    Article  Google Scholar 

  215. Castex, V. et al. Exploring future changes in synchrony between grapevine (Vitis vinifera) and its major insect pest. Lobesia botrana. OENO One 57, 161–174 (2023).

    Article  Google Scholar 

  216. Gutierrez, A. P. et al. Prospective analysis of the invasive potential of the European grapevine moth Lobesia botrana (Den. & Schiff.) in California. Agric. For. Entomol. 14, 225–238 (2012).

    Article  Google Scholar 

  217. Gutierrez, A. P., Ponti, L., Gilioli, G. & Baumgärtner, J. Climate warming effects on grape and grapevine moth (Lobesia botrana) in the Palearctic region. Agric. For. Entomol. 20, 255–271 (2018).

    Article  Google Scholar 

  218. Bois, B., Zito, S. & Calonnec, A. Climate vs grapevine pests and diseases worldwide: the first results of a global survey. OENO One 51, 133–139 (2017).

    Article  Google Scholar 

  219. Gessler, C., Pertot, I. & Perazzolli, M. Plasmopara viticola: a review of knowledge on downy mildew of grapevine and effective disease management. Phytopathol. Mediterr. 50, 3–44 (2011).

    Google Scholar 

  220. Launay, M. et al. Climatic indicators for crop infection risk: application to climate change impacts on five major foliar fungal diseases in northern France. Agric. Ecosyst. Environ. 197, 147–158 (2014).

    Article  Google Scholar 

  221. Salinari, F. et al. Downy mildew (Plasmopara viticola) epidemics on grapevine under climate change. Glob. Change Biol. 12, 1299–1307 (2006).

    Article  Google Scholar 

  222. Bregaglio, S., Donatelli, M. & Confalonieri, R. Fungal infections of rice, wheat, and grape in Europe in 2030–2050. Agron. Sustain. Dev. 33, 767–776 (2013).

    Article  Google Scholar 

  223. Pugliese, M. & Gullino, M. L. & Garibaldi, A. Effects of elevated CO2 and temperature on interactions of grapevine and powdery mildew: first results under phytotron conditions. J. Plant. Dis. Prot. 117, 9–14 (2010).

    Article  CAS  Google Scholar 

  224. Zito, S. Evolution du risque phytosanitaire au vignoble dans le nord-est de la France en lien avec le changement climatique: observations et modélisation. Cas de l’oïdium de la vigne. PhD thesis, Univ. de Bourgogne (2021).

  225. Bertsch, C. et al. Grapevine trunk diseases: complex and still poorly understood. Plant. Pathol. 62, 243–265 (2013).

    Article  Google Scholar 

  226. Molitor, D., Baus, O., Hoffmann, L. & Beyer, M. Meteorological conditions determine the thermal-temporal position of the annual Botrytis bunch rot epidemic on Vitis vinifera L. cv. Riesling grapes. OENO One 50, 231–244 (2016).

    Article  Google Scholar 

  227. Chuche, J. & Thiéry, D. Biology and ecology of the Flavescence dorée vector Scaphoideus titanus: a review. Agron. Sustain. Dev. 34, 381–403 (2014).

    Article  Google Scholar 

  228. Benelli, G. et al. European grapevine moth, Lobesia botrana Part I: biology and ecology. Entomol. Gen. 43, 261–280 (2023).

    Article  Google Scholar 

  229. Gadoury, D. M. et al. Grapevine powdery mildew (Erysiphe necator): a fascinating system for the study of the biology, ecology and epidemiology of an obligate biotroph. Mol. Plant. Pathol. 13, 1–16 (2012).

    Article  Google Scholar 

  230. Bettenfeld, P. et al. The microbiota of the grapevine holobiont: a key component of plant health. J. Adv. Res. 40, 1–15 (2022).

    Article  Google Scholar 

  231. Castex, V., Beniston, M., Calanca, P., Fleury, D. & Moreau, J. Pest management under climate change: the importance of understanding tritrophic relations. Sci. Total. Environ. 616–617, 397–407 (2018).

    Article  Google Scholar 

  232. Waheed, A. et al. Climate change reshaping plant–fungal interaction. Environ. Res. 238, 117282 (2023).

    Article  CAS  Google Scholar 

  233. Nesbitt, A. et al. Climate change projections for UK viticulture to 2040: a focus on improving suitability for Pinot noir. OENO One 56, 69–87 (2022).

    Article  Google Scholar 

  234. Neumann, P. A. & Matzarakis, A. Viticulture in southwest Germany under climate change conditions. Clim. Res. 47, 161–169 (2011).

    Article  Google Scholar 

  235. Prosdocimi, M., Cerdà, A. & Tarolli, P. Soil water erosion on Mediterranean vineyards: a review. CATENA 141, 1–21 (2016).

    Article  Google Scholar 

  236. Basso, M. Land-use changes triggered by the expansion of wine-growing areas: a study on the Municipalities in the Prosecco’s production zone (Italy). Land Use Policy 83, 390–402 (2019).

    Article  Google Scholar 

  237. Fairbanks, D. H. K., Hughes, C. J. & Turpie, J. K. Potential impact of viticulture expansion on habitat types in the Cape Floristic Region, South Africa. Biodivers. Conserv. 13, 1075–1100 (2004).

    Article  Google Scholar 

  238. SAWIS. SA Wine Industry 2021 Statistics NR 46 https://www.sawis.co.za/ (2021).

  239. Dion, R. Histoire de la vigne et du vin en France des origines au XIXe siècle (Payot, 1959).

  240. Dobos, A., Nagy, R. & Molek, Á. Land use changes in a historic wine region and their connections with optimal land-use: a case study of Nagy-Eged Hill, northern Hungary. Carpathian J. Earth Environ. Sci. 9, 219–230 (2014).

    Google Scholar 

  241. Badia-Miró, M., Tello, E., Valls, F. & Garrabou, R. The grape phylloxera plague as a natural experiment: the upkeep of vineyards in Catalonia (spain), 1858–1935. Aust. Econ. Hist. Rev. 50, 39–61 (2010).

    Article  Google Scholar 

  242. Cossart, E., Pic, J., Le Guen, Y. & Fressard, M. Spatial patterns of vineyard abandonment and related land use transitions in Beaujolais (France): a multiscale approach. Sustainability 12, 4695 (2020).

    Article  Google Scholar 

  243. Molinero Hernando, F. & Herrero Luque, D. Les paysages viticoles espagnols: de la dispersion à la concentration; de la rusticité à la modernisation. Rives Méditerr. https://doi.org/10.4000/rives.5942 (2018).

  244. Brown, A. G. & Meadows, I. Roman vineyards in Britain: finds from the Nene Valley and new research. Antiquity 74, 491–492 (2000).

    Article  Google Scholar 

  245. PAGES 2k Consortium. Continental-scale temperature variability during the past two millennia. Nat. Geosci. 6, 339–346 (2013).

    Article  Google Scholar 

  246. Shi, F. et al. Roman warm period and late antique Little Ice Age in an Earth system model large ensemble. J. Geophys. Res. Atmos. 127, e2021JD035832 (2022).

    Article  Google Scholar 

  247. Salomon, J.-N. Nouveaux vignobles et évolution des anciens face à la mondialisation. Cah. d’Outre-Mer 231–232, 397–428 (2005).

    Article  Google Scholar 

  248. Wanner, H., Pfister, C. & Neukom, R. The variable European Little Ice Age. Quat. Sci. Rev. 287, 107531 (2022).

    Article  Google Scholar 

  249. Legouy, F. La géohistoire de l’espace viticole français sur deux siècles (1808–2010): plusieurs cycles viticoles décryptés. Espac. Rev. Électronique Sci. Hum. Soc. https://www.espacestemps.net/en/auteurs/francois-legouy-2/ (2014).

  250. Cavoleau, J.-A. Oenologie française, ou Statistique de tous les vignobles et de toutes les boissons vineuses et spiritueuses de la France: suivie de considérations générales sur la culture de la vigne (Madame Huzard, 1827).

  251. Mishkin, D. The American colonial vineyard: an economic interpretation. J. Econ. Hist. 25, 683–685 (1965).

    Article  Google Scholar 

  252. Anderson, K. & Nelgen, S. Which Winegrape Varieties Are Grown Where? A Global Empirical Picture (Univ. Adelaide Press, 2020).

  253. Puga, G., Anderson, K., Jones, G., Tchatoka, F. D. & Umberger, W. A climatic classification of the world’s wine regions. OENO One 56, 165–177 (2022).

    Article  Google Scholar 

  254. Schneider, U. et al. GPCC Full Data Reanalysis Version 7.0 at 0.5°: Monthly Land-Surface Precipitation from Rain-Gauges built on GTS-based and Historic Data (DWD, 2015); https://doi.org/10.5676/DWD_GPCC/FD_M_V7_050.

  255. Dayer, S., Gowdy, M., van Leeuwen, C. & Gambetta, G. A. Leveraging the grapevine drought response to increase vineyard sustainability. IVES Tech. Rev. Vine Wine https://doi.org/10.20870/IVES-TR.2020.4482 (2020).

    Article  Google Scholar 

  256. Reineke, A. & Thiéry, D. Grapevine insect pests and their natural enemies in the age of global warming. J. Pest. Sci. 89, 313–328 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

B.B. and S.Z. thank P. Louâpre and M. Adrian for help with Fig. 6. D.S., C.v.L., G.G. and G.S. acknowledge the financial support of the RRI ‘Tackling Global Change’ funded by the University of Bordeaux and Jas Hennessy.

Author information

Authors and Affiliations

Authors

Contributions

C.v.L. acted as lead author and designed Fig. 2. G.S. implemented an extensive literature review for Fig. 1, designed that figure and participated in writing. G.S. also wrote the methodology in the Supplementary Data section. D.S. designed Fig. 4 and participated in writing. B.B. and S.Z. designed Fig. 6 and participated in writing. N.O. participated in writing. G.G. designed Fig. 5, participated in writing and edited the manuscript.

Corresponding author

Correspondence to Cornelis van Leeuwen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

A story map about a climate change study in the Saint-Emilion–Pomerol area (France): https://www-iuem.univ-brest.fr/wapps/letg/adviclim/BDX/EN/#

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Leeuwen, C., Sgubin, G., Bois, B. et al. Climate change impacts and adaptations of wine production. Nat Rev Earth Environ 5, 258–275 (2024). https://doi.org/10.1038/s43017-024-00521-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-024-00521-5

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene