Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Arsenic and other geogenic contaminants in global groundwater

This article has been updated

Abstract

Geogenic groundwater contaminants (GGCs) affect drinking-water availability and safety, with up to 60% of groundwater sources in some regions contaminated by more than recommended concentrations. As a result, an estimated 300–500 million people are at risk of severe health impacts and premature mortality. In this Review, we discuss the sources, occurrences and cycling of arsenic, fluoride, selenium and uranium, which are GGCs with widespread distribution and/or high toxicity. The global distribution of GGCs is controlled by basin geology and tectonics, with GGC enrichment in both orogenic systems and cratonic basement rocks. This regional distribution is broadly influenced by climate, geomorphology and hydrogeochemical evolution along groundwater flow paths. GGC distribution is locally heterogeneous and affected by in situ lithology, groundwater flow and water–rock interactions. Local biogeochemical cycling also determines GGC concentrations, as arsenic, selenium and uranium mobilizations are strongly redox-dependent. Increasing groundwater extraction and land-use changes are likely to modify GGC distribution and extent, potentially exacerbating human exposure to GGCs, but the net impact of these activities is unknown. Integration of science, policy, community involvement programmes and technological interventions is needed to manage GGC-enriched groundwater and ensure equitable access to clean water.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Geogenic contaminant occurrence in groundwater.
Fig. 2: Geological sources and processes affecting GGCs.
Fig. 3: Regional-scale GGC mobilization.
Fig. 4: Arsenic fate and transport in fluvial aquifers influenced by anthropogenic activities.
Fig. 5: Driver–pressure–state–impact–response framework of GGC.

Similar content being viewed by others

Change history

  • 28 September 2020

    In the version of the article initially published an incorrect version of the Supplementary information was included. This has now been updated in the HTML version of the article.

References

  1. Lapworth, D. et al. Groundwater quality: global challenges, emerging threats and novel approaches. Hydrogeol. J. 31, 15–18 (2023).

    Article  CAS  Google Scholar 

  2. Mukherjee, A. et al. Global Groundwater: Source, Scarcity, Sustainability, Security, and Solutions (Elsevier, 2020).

  3. Groundwater: Making the Invisible Visible. United Nations World Water Development Report 2022 (UN-Water, 2022).

  4. Scanlon, B. R. et al. Global water resources and the role of groundwater in a resilient water future. Nat. Rev. Earth Environ. 4, 87–101 (2023).

    Article  Google Scholar 

  5. Coomar, P. & Mukherjee, A. in Global Groundwater 187–213 (Elsevier, 2021).

  6. Jasechko, S. et al. Global aquifers dominated by fossil groundwaters but wells vulnerable to modern contamination. Nat. Geosci. 10, 425–429 (2017).

    Article  CAS  Google Scholar 

  7. MacDonald, A. M. et al. Groundwater quality and depletion in the Indo-Gangetic Basin mapped from in situ observations. Nat. Geosci. 9, 762–766 (2016).

    Article  CAS  Google Scholar 

  8. Edmunds, W. M. & Smedley, P. L. Groundwater geochemistry and health: an overview. Geol. Soc. Lond. Spec. Publ. 113, 91–105 (1996).

    Article  CAS  Google Scholar 

  9. Nordstrom, D. K. Quality of our groundwater resources: arsenic and fluoride. Geosciences 13, 82–87 (2011).

    Google Scholar 

  10. Nordstrom, D. K. Worldwide Occurrences of Arsenic in Ground Water, Vol. 296 (AAAS, 2002).

  11. Ravenscroft, P., Brammer, H. & Richards, K. Arsenic Pollution: A Global Synthesis (Wiley, 2011).

  12. Smedley, P. L. & Kinniburgh, D. G. Uranium in natural waters and the environment: distribution, speciation and impact.Appl. Geochem. 148, 105534 (2022).

    Article  Google Scholar 

  13. Smedley, P. L. & Kinniburgh, D. G. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 17, 517–568 (2002).

    Article  CAS  Google Scholar 

  14. Welch, A. H. & Lico, M. S. Factors controlling As and U in shallow ground water, southern Carson Desert, Nevada. Appl. Geochem. 13, 521–539 (1998).

    Article  CAS  Google Scholar 

  15. Podgorski, J. & Berg, M. Global threat of arsenic in groundwater. Science 368, 845–850 (2020).

    Article  CAS  Google Scholar 

  16. Henke, K. Arsenic: Environmental Chemistry, Health Threats and Waste Treatment (Wiley, 2009).

  17. Selinus, O. et al. Essentials of Medical Geology (Springer, 2005).

  18. Edmunds, W. M. & Smedley, P. L. in Essentials of Medical Geology (ed. Selinus, O.) 311–336 (Springer, 2013).

  19. Vengosh, A., Coyte, R. M., Podgorski, J. & Johnson, T. M. A critical review on the occurrence and distribution of the uranium- and thorium-decay nuclides and their effect on the quality of groundwater. Sci. Total. Environ. 808, 151914 (2022).

    Article  CAS  Google Scholar 

  20. Mukherjee, A., Verma, S., Gupta, S., Henke, K. R. & Bhattacharya, P. Influence of tectonics, sedimentation and aqueous flow cycles on the origin of global groundwater arsenic: paradigms from three continents. J. Hydrol. 518, 284–299 (2014).

    Article  CAS  Google Scholar 

  21. Saunders, J. A. et al. Natural arsenic contamination of Holocene alluvial aquifers by linked tectonic, weathering, and microbial processes. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2004GC000803 (2005).

  22. Dhar, R. K. et al. Temporal variability of groundwater chemistry in shallow and deep aquifers of Araihazar, Bangladesh. J. Contam. Hydrol. 99, 97–111 (2008).

    Article  CAS  Google Scholar 

  23. Mukherjee, A. et al. Occurrence, predictors and hazards of elevated groundwater arsenic across India through field observations and regional-scale AI-based modeling. Sci. Total. Environ. 759, 143511 (2021).

  24. van Geen, A. et al. Spatial variability of arsenic in 6000 tube wells in a 25 km2 area of Bangladesh. Water Resour. Res. 39, 1140 (2003).

  25. Yang, Q. et al. Uranium and radon in private bedrock well water in Maine: geospatial analysis at two scales. Environ. Sci. Technol. 48, 4298–4306 (2014).

    Article  CAS  Google Scholar 

  26. van Geen, A. International drilling to recover aquifer sands (IDRAs) and arsenic contaminated groundwater in Asia. Sci. Dril. 12, 49–52 (2011).

    Article  Google Scholar 

  27. Chakraborty, M., Mukherjee, A. & Ahmed, K. M. A review of groundwater arsenic in the Bengal Basin, Bangladesh and India: from source to sink. Curr. Pollut. Rep. 1, 220–247 (2015).

    Article  CAS  Google Scholar 

  28. Fendorf, S., Michael, H. A. & Van Geen, A. Spatial and temporal variations of groundwater arsenic in South and Southeast Asia. Science 328, 1123–1127 (2010).

    Article  CAS  Google Scholar 

  29. Bhattacharya, P., Polya, D. & Jovanovic, D. Best Practice Guide on the Control of Arsenic in Drinking Water (IWA, 2017).

  30. Bundschuh, J. et al. Seven potential sources of arsenic pollution in Latin America and their environmental and health impacts. Sci. Total. Environ. 780, 146274–146274 (2021).

    Article  CAS  Google Scholar 

  31. Podgorski, J. & Berg, M. Global analysis and prediction of fluoride in groundwater. Nat. Commun. 13, 4232 (2022).

    Article  CAS  Google Scholar 

  32. Smedley, P. L., Nicolli, H. B., Macdonald, D. M. J., Barros, A. J. & Tullio, J. O. Hydrogeochemistry of arsenic and other inorganic constituents in groundwaters from La Pampa, Argentina. Appl. Geochem. 17, 259–284 (2002).

    Article  CAS  Google Scholar 

  33. Chen, S.-L. et al. Arsenic species in groundwaters of the blackfoot disease area, Taiwan. Environ. Sci. Technol. 28, 877–881 (1994).

    Article  CAS  Google Scholar 

  34. Garai, R., Chakraborty, A. K., Dey, S. B. & Saha, K. C. Chronic arsenic poisoning from tube-well water. J. Indian Med. Assoc. 82, 34–35 (1984).

    CAS  Google Scholar 

  35. Bailey, R. T. Selenium contamination, fate, and reactive transport in groundwater in relation to human health. Hydrogeol. J. 25, 1191 (2017).

    Article  CAS  Google Scholar 

  36. Smedley, P. L., Smith, B., Abesser, C. & Lapworth, D. Uranium Occurrence and Behaviour in British Groundwater. Commissioned Report CR/06/050N (British Geological Survey, 2006).

  37. Polya, D. A., Sparrenbom, C., Datta, S. & Guo, H. Groundwater Arsenic Biogeochemistry — Key Questions and Use of Tracers to Understand Arsenic-Prone Groundwater Systems, Vol. 10 (Elsevier, 2019).

  38. Drever, J. I. The Geochemistry of Natural Waters, Vol. 437 (Prentice Hall, 1997).

  39. Bethke, C. M. Geochemical and Biogeochemical Reaction Modeling (Cambridge Univ. Press, 2010).

  40. Dalai, S. et al. Mechanistic insight into the abiotic interactions of selenate and selenite with natural organic matter. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.3c06276 (2023).

    Article  Google Scholar 

  41. Oremland, R. S. et al. Selenate reduction to elemental selenium by anaerobic bacteria in sediments and culture: biogeochemical significance of a novel, sulfate-independent respiration. Appl. Environ. Microbiol. 55, 2333–2343 (1989).

    Article  CAS  Google Scholar 

  42. Oremland, R. S. & Stolz, J. in Environmental Microbe–Metal Interactions (ed. Lovley, D. R.) 199–224 (ASM, 2000).

  43. López, D. L. et al. Arsenic in volcanic geothermal fluids of Latin America. Sci. Total. Environ. 429, 57–75 (2012).

    Article  Google Scholar 

  44. BGS, MML & DPHE. Arsenic Contamination of Groundwater in Bangladesh, Vol. 2: Final Report. British Geological Survey Technical Report WC/00/19 (eds Kinniburgh, D. G. & Smedley, P. L.) 255 (British Geological Survey, 2001).

  45. Mukherjee, A., Fryar, A. E. & O’Shea, B. M. in Arsenic: Environmental Chemistry, Health Threats and Waste Treatment (ed. Henke, K. R.) 303–350 (Wiley, 2009).

  46. Nicolli, H. B., Bundschuh, J., García, J. W., Falcón, C. M. & Jean, J.-S. Sources and controls for the mobility of arsenic in oxidizing groundwaters from loess-type sediments in arid/semi-arid dry climates— evidence from the Chaco–Pampean plain (Argentina). Water Res. 44, 5589–5604 (2010).

    Article  CAS  Google Scholar 

  47. Bhattacharya, P., Chatterjee, D. & Jacks, G. Occurrence of arsenic-contaminated groundwater in alluvial aquifers from delta plains, eastern India: options for safe drinking water supply. Int. J. Water Resour. Dev. 13, 79–92 (1997).

    Article  Google Scholar 

  48. Chakraborti, D. et al. Possible arsenic contamination free groundwater source in Bangladesh. J. Surf. Sci. Technol. 15, 180–188 (1999).

    CAS  Google Scholar 

  49. Dhar, R. K. et al. Groundwater arsenic calamity in Bangladesh. Curr. Sci. 73, 48–59 (1997).

    CAS  Google Scholar 

  50. Polya, D. & Charlet, L. Rising arsenic risk? Nat. Geosci. 2, 383–384 (2009).

    Article  CAS  Google Scholar 

  51. Polizzotto, M. L., Harvey, C. F., Sutton, S. R. & Fendorf, S. Processes conducive to the release and transport of arsenic into aquifers of Bangladesh. Proc. Natl Acad. Sci. USA 102, 18819–18823 (2005).

    Article  CAS  Google Scholar 

  52. Polizzotto, M. L., Kocar, B. D., Benner, S. G., Sampson, M. & Fendorf, S. Near-surface wetland sediments as a source of arsenic release to ground water in Asia. Nature 454, 505–508 (2008).

    Article  CAS  Google Scholar 

  53. Bundschuh, J. et al. Groundwater arsenic in the Chaco-Pampean Plain, Argentina: case study from Robles county, Santiago del Estero Province. Appl. Geochem. 19, 231–243 (2004).

    Article  CAS  Google Scholar 

  54. Ijumulana, J. et al. Spatial variability of the sources and distribution of fluoride in groundwater of the Sanya alluvial plain aquifers in Northern Tanzania. Sci. Total. Environ. 810, 152153 (2022).

    Article  CAS  Google Scholar 

  55. Cullen, W. R. & Reimer, K. J. Arsenic speciation in the environment. Chem. Rev. 89, 713–764 (1989).

    Article  CAS  Google Scholar 

  56. Dixit, S. & Hering, J. G. Comparison of arsenic (V) and arsenic (III) sorption onto iron oxide minerals: implications for arsenic mobility. Environ. Sci. Technol. 37, 4182–4189 (2003).

    Article  CAS  Google Scholar 

  57. Polizzotto, M. L. et al. Solid-phases and desorption processes of arsenic within Bangladesh sediments. Chem. Geol. 228, 97–111 (2006).

    Article  CAS  Google Scholar 

  58. Rittle, K. A., Drever, J. I. & Colberg, P. J. Precipitation of arsenic during bacterial sulfate reduction. Geomicrobiol. J. 13, 1–11 (1995).

    Article  CAS  Google Scholar 

  59. Saunders, J. A., Pritchett, M. A. & Cook, R. B. Geochemistry of biogenic pyrite and ferromanganese coatings from a small watershed: a bacterial connection? Geomicrobiol. J. 14, 203–217 (1997).

    Article  CAS  Google Scholar 

  60. Suess, E. & Planer-Friedrich, B. Thioarsenate formation upon dissolution of orpiment and arsenopyrite. Chemosphere 89, 1390–1398 (2012).

    Article  CAS  Google Scholar 

  61. Fuge, R. Fluorine in the environment, a review of its sources and geochemistry. Appl. Geochem. 100, 393–406 (2019).

    Article  CAS  Google Scholar 

  62. Nordstrom, D. K. Fluoride in thermal and non-thermal groundwater: insights from geochemical modeling. Sci. Total. Environ. 824, 153606 (2022).

    Article  CAS  Google Scholar 

  63. Boyle, D. R. & Chagnon, M. An incidence of skeletal fluorosis associated with groundwaters of the maritime Carboniferous basin, Gaspé region, Quebec, Canada. Environ. Geochem. Health 17, 5–12 (1995).

    Article  CAS  Google Scholar 

  64. A Global Overview of National Regulations and Standards for Drinking-Water Quality (World Health Organization, 2021).

  65. Alarcón-Herrera, M. T. et al. Co-occurrence, possible origin, and health-risk assessment of arsenic and fluoride in drinking water sources in Mexico: geographical data visualization. Sci. Total. Environ. 698, 134168 (2020).

    Article  Google Scholar 

  66. Knappett, P. S. et al. Changing recharge pathways within an intensively pumped aquifer with high fluoride concentrations in Central Mexico. Sci. Total. Environ. 622, 1029–1045 (2018).

    Article  Google Scholar 

  67. Deng, Y., Nordstrom, D. K. & McCleskey, R. B. Fluoride geochemistry of thermal waters in Yellowstone National Park: I. Aqueous fluoride speciation. Geochim. Cosmochim. Acta 75, 4476–4489 (2011).

    Article  CAS  Google Scholar 

  68. Manzano, M. & Guimaraens, M. Hidroquímica del Sistema Acuífero Guaraní e implicaciones para la gestión. Bol. Geol. Min. 123, 281–295 (2012).

    Google Scholar 

  69. Wang, Z., Guo, H., Xing, S. & Liu, H. Hydrogeochemical and geothermal controls on the formation of high fluoride groundwater. J. Hydrol. 598, 126372 (2021).

    Article  CAS  Google Scholar 

  70. Reyes, A. G., Christenson, B. W. & Faure, K. Sources of solutes and heat in low-enthalpy mineral waters and their relation to tectonic setting, New Zealand. J. Volcanol. Geotherm. Res. 192, 117–141 (2010).

    Article  CAS  Google Scholar 

  71. Armienta, M. A. & Segovia, N. Arsenic and fluoride in the groundwater of Mexico. Environ. Geochem. Health 30, 345–353 (2008).

    Article  CAS  Google Scholar 

  72. LaFayette, G. N., Knappett, P. S., Li, Y., Loza-Aguirre, I. & Polizzotto, M. L. Geogenic sources and chemical controls on fluoride release to groundwater in the Independence Basin, Mexico. Appl. Geochem. 123, 104787 (2020).

    Article  CAS  Google Scholar 

  73. Fordyce, F. M. in Essentials of Medical Geology revised edition (ed. Selinus, O.) 375–416 (Springer, 2012).

  74. Kuisi, M. A. & Abdel-Fattah, A. Groundwater vulnerability to selenium in semi-arid environments: Amman Zarqa Basin, Jordan. Environ. Geochem. Health 32, 107–128 (2010).

    Article  CAS  Google Scholar 

  75. Armstrong, J. G. et al. Mobilisation of arsenic, selenium and uranium from Carboniferous black shales in west Ireland. Appl. Geochem. 109, 104401 (2019).

    Article  CAS  Google Scholar 

  76. Balaba, R. S. & Smart, R. B. Total arsenic and selenium analysis in Marcellus shale, high-salinity water, and hydrofracture flowback wastewater. Chemosphere 89, 1437–1442 (2012).

    Article  CAS  Google Scholar 

  77. Deverel, S. J. & Millard, S. P. Distribution and mobility of selenium and other trace elements in shallow groundwater of the western San Joaquin Valley, California. Environ. Sci. Technol. 22, 697–702 (1988).

    Article  CAS  Google Scholar 

  78. Parnell, J., Brolly, C., Spinks, S. & Bowden, S. Selenium enrichment in Carboniferous Shales, Britain and Ireland: problem or opportunity for shale gas extraction? Appl. Geochem. 66, 82–87 (2016).

    Article  CAS  Google Scholar 

  79. Afzal, S., Younas, M. & Ali, K. Selenium speciation studies from Soan-Sakesar Valley, Salt Range, Pakistan. Water Int. 25, 425–436 (2000).

    Article  CAS  Google Scholar 

  80. Basu, R., Haque, S. E., Tang, J., Ji, J. & Johannesson, K. H. Evolution of selenium concentrations and speciation in groundwater flow systems: Upper Floridan (Florida) and Carrizo Sand (Texas) aquifers. Chem. Geol. 246, 147–169 (2007).

    Article  CAS  Google Scholar 

  81. Balistrieri, L. S. & Chao, T. T. Adsorption of selenium by amorphous iron oxyhydroxide and manganese dioxide. Geochim. Cosmochim. Acta 54, 739–751 (1990).

    Article  CAS  Google Scholar 

  82. Oremland, R. S. et al. Simultaneous reduction of nitrate and selenate by cell suspensions of selenium-respiring bacteria. Appl. Environ. Microbiol. 65, 4385–4392 (1999).

    Article  CAS  Google Scholar 

  83. Coyte, R. M. et al. Large-scale uranium contamination of groundwater resources in India. Environ. Sci. Technol. Lett. 5, 341–347 (2018).

    Article  CAS  Google Scholar 

  84. Prat, O. et al. Uranium speciation in drinking water from drilled wells in southern Finland and its potential links to health effects. Environ. Sci. Technol. 43, 3941–3946 (2009).

    Article  CAS  Google Scholar 

  85. Brindha, K. & Elango, L. Occurrence of uranium in groundwater of a shallow granitic aquifer and its suitability for domestic use in southern India. J. Radioanal. Nucl. Chem. 295, 357–367 (2013).

    Article  CAS  Google Scholar 

  86. Burow, K. R., Belitz, K., Dubrovsky, N. M. & Jurgens, B. C. Large decadal-scale changes in uranium and bicarbonate in groundwater of the irrigated western U.S. Sci. Total. Environ. 586, 87–95 (2017).

    Article  CAS  Google Scholar 

  87. Jurgens, B. C., Fram, M. S., Belitz, K., Burow, K. R. & Landon, M. K. Effects of groundwater development on uranium: Central Valley, California, USA. Groundwater 48, 913–928 (2010).

    Article  CAS  Google Scholar 

  88. Sahoo, P. K. et al. Meta-analysis of uranium contamination in groundwater of the alluvial plains of Punjab, northwest India: status, health risk, and hydrogeochemical processes. Sci. Total. Environ. 807, 151753 (2022).

    Article  CAS  Google Scholar 

  89. Langmuir, D. Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochim. Cosmochim. Acta 42, 547–569 (1978).

    Article  CAS  Google Scholar 

  90. Spalding, R. F., Druliner, A. D., Whiteside, L. S. & Struempler, A. W. Uranium geochemistry in groundwater from Tertiary sediments. Geochim. Cosmochim. Acta 48, 2679–2692 (1984).

    Article  CAS  Google Scholar 

  91. Hsi, C. D. & Langmuir, D. Adsorption of uranyl onto ferric oxyhydroxides: application of the surface complexation site-binding model. Geochim. Cosmochim. Acta 49, 1931–1941 (1985).

    Article  CAS  Google Scholar 

  92. Wu, W.-M. et al. Effects of nitrate on the stability of uranium in a bioreduced region of the subsurface. Environ. Sci. Technol. 44, 5104–5111 (2010).

    Article  CAS  Google Scholar 

  93. Riedel, T. & Kübeck, C. Uranium in groundwater — a synopsis based on a large hydrogeochemical data set. Water Res. 129, 29–38 (2018).

    Article  CAS  Google Scholar 

  94. Coyte, R. M. & Vengosh, A. Factors controlling the risks of co-occurrence of the redox-sensitive elements of arsenic, chromium, vanadium, and uranium in groundwater from the eastern United States. Environ. Sci. Technol. 54, 4367–4375 (2020).

    Article  CAS  Google Scholar 

  95. Kumar, M., Goswami, R., Patel, A. K., Srivastava, M. & Das, N. Scenario, perspectives and mechanism of arsenic and fluoride co-occurrence in the groundwater: a review. Chemosphere 249, 126126 (2020).

    Article  CAS  Google Scholar 

  96. Nicolli, H. B., Suriano, J. M., Gomez Peral, M. A., Ferpozzi, L. H. & Baleani, O. A. Groundwater contamination with arsenic and other trace elements in an area of the Pampa, Province of Córdoba, Argentina. Environ. Geol. Water Sci. 14, 3–16 (1989).

    Article  CAS  Google Scholar 

  97. Kim, S.-H., Kim, K., Ko, K.-S., Kim, Y. & Lee, K.-S. Co-contamination of arsenic and fluoride in the groundwater of unconsolidated aquifers under reducing environments. Chemosphere 87, 851–856 (2012).

    Article  CAS  Google Scholar 

  98. Verma, S. et al. Arsenic fate in the Brahmaputra River basin aquifers: controls of geogenic processes, provenance and water-rock interactions. Appl. Geochem. 107, 171–186 (2019).

    Article  CAS  Google Scholar 

  99. Coyte, R. M., Singh, A., Furst, K. E., Mitch, W. A. & Vengosh, A. Co-occurrence of geogenic and anthropogenic contaminants in groundwater from Rajasthan, India. Sci. Total. Environ. 688, 1216–1227 (2019).

    Article  CAS  Google Scholar 

  100. Guo, H., Zhao, W., Li, H., Xiu, W. & Shen, J. High radionuclides in groundwater of an inland basin from Northwest China: origin and fate. ACS Earth Space Chem. 2, 1137–1144 (2018).

    Article  CAS  Google Scholar 

  101. Haynes, W. M. (ed.) CRC Handbook of Chemistry and Physics 97th edition (CRC Press, 2016).

  102. Mukherjee, A. et al. Plate tectonics influence on geogenic arsenic cycling: from primary sources to global groundwater enrichment. Sci. Total. Environ. 683, 793–807 (2019).

    Article  CAS  Google Scholar 

  103. Raychowdhury, N. et al. Provenance and fate of arsenic and other solutes in the Chaco-Pampean Plain of the Andean foreland, Argentina: from perspectives of hydrogeochemical modeling and regional tectonic setting. J. Hydrol. 518, 300–316 (2014).

    Article  CAS  Google Scholar 

  104. Hattori, K. H. & Guillot, S. Geochemical character of serpentinites associated with high‐to ultrahigh‐pressure metamorphic rocks in the Alps, Cuba, and the Himalayas: recycling of elements in subduction zones. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2007GC001594 (2007).

  105. Nriagu, J. O. A global assessment of natural sources of atmospheric trace metals. Nature 338, 47–49 (1989).

    Article  CAS  Google Scholar 

  106. Johannesson, K. H. & Tang, J. Conservative behavior of arsenic and other oxyanion-forming trace elements in an oxic groundwater flow system. J. Hydrol. 378, 13–28 (2009).

    Article  CAS  Google Scholar 

  107. Tapia, J. et al. Naturally elevated arsenic in the Altiplano-Puna, Chile and the link to recent (Mio-Pliocene to Quaternary) volcanic activity, high crustal thicknesses, and geological structures. J. South. Am. Earth Sci. 105, 102905 (2021).

    Article  CAS  Google Scholar 

  108. Knappett, P. S. K. et al. Rising arsenic concentrations from dewatering a geothermally influenced aquifer in central Mexico. Water Res. 185, 116257 (2020).

    Article  CAS  Google Scholar 

  109. Guo, H. et al. Contrasting distributions of groundwater arsenic and uranium in the western Hetao Basin, Inner Mongolia: implication for origins and fate controls. Sci. Total. Environ. 541, 1172–1190 (2016).

    Article  CAS  Google Scholar 

  110. Johannesson, K. H. et al. Biogeochemical and reactive transport modeling of arsenic in groundwaters from the Mississippi River delta plain: an analog for the As-affected aquifers of South and Southeast Asia. Geochim. Cosmochim. Acta 264, 245–272 (2019).

    Article  CAS  Google Scholar 

  111. van Geen, A. et al. Decoupling of As and Fe release to Bangladesh groundwater under reducing conditions. Part II: evidence from sediment incubations. Geochim. Cosmochim. Acta 68, 3475–3486 (2004).

    Article  Google Scholar 

  112. Zheng, Y. et al. Redox control of arsenic mobilization in Bangladesh groundwater. Appl. Geochem. 19, 201–214 (2004).

    Article  CAS  Google Scholar 

  113. Buschmann, J. et al. Contamination of drinking water resources in the Mekong delta floodplains: arsenic and other trace metals pose serious health risks to population. Environ. Int. 34, 756–764 (2008).

    Article  CAS  Google Scholar 

  114. Coomar, P. et al. Contrasting controls on hydrogeochemistry of arsenic-enriched groundwater in the homologous tectonic settings of Andean and Himalayan basin aquifers, Latin America and South Asia. Sci. Total. Environ. 689, 1370–1387 (2019).

    Article  CAS  Google Scholar 

  115. Lone, S. A., Jeelani, G., Mukherjee, A. & Coomar, P. Geogenic groundwater arsenic in high altitude bedrock aquifers of upper Indus River basin (UIRB), Ladakh. Appl. Geochem. 113, 104497 (2020).

    Article  CAS  Google Scholar 

  116. Stanger, G. A palaeo-hydrogeological model for arsenic contamination in southern and south-east Asia. Environ. Geochem. Health 27, 359–368 (2005).

    Article  CAS  Google Scholar 

  117. McArthur, J. M., Ravenscroft, P., Safiulla, S. & Thirlwall, M. F. Arsenic in groundwater: testing pollution mechanisms for sedimentary aquifers in Bangladesh. Water Resour. Res. 37, 109–117 (2001).

    Article  CAS  Google Scholar 

  118. Michael, H. A. & Voss, C. I. Evaluation of the sustainability of deep groundwater as an arsenic-safe resource in the Bengal Basin. Proc. Natl Acad. Sci. 105, 8531–8536 (2008).

    Article  CAS  Google Scholar 

  119. Ravenscroft, P., Burgess, W. G., Ahmed, K. M., Burren, M. & Perrin, J. Arsenic in groundwater of the Bengal Basin, Bangladesh: distribution, field relations, and hydrogeological setting. Hydrogeol. J. 13, 727–751 (2005).

    Article  CAS  Google Scholar 

  120. Shamsudduha, M., Marzen, L. J., Uddin, A., Lee, M.-K. & Saunders, J. A. Spatial relationship of groundwater arsenic distribution with regional topography and water-table fluctuations in the shallow aquifers in Bangladesh. Environ. Geol. 57, 1521–1535 (2009).

    Article  CAS  Google Scholar 

  121. Tapia, J. et al. The solid-state partitioning, distribution, and mineralogical associations of arsenic and antimony: integrated findings from the Altiplano Puna, South America and international comparisons. J. South Am. Earth Sci. 114, 103713 (2022).

    Article  CAS  Google Scholar 

  122. Weinman, B. et al. Contributions of floodplain stratigraphy and evolution to the spatial patterns of groundwater arsenic in Araihazar, Bangladesh. Geol. Soc. Am. Bull. 120, 1567–1580 (2008).

    Article  Google Scholar 

  123. Charlet, L. et al. Chemodynamics of an arsenic ‘hotspot’ in a West Bengal aquifer: a field and reactive transport modeling study. Appl. Geochem. 22, 1273–1292 (2007).

    Article  CAS  Google Scholar 

  124. van Geen, A. et al. Preliminary evidence of a link between surface soil properties and the arsenic content of shallow groundwater in Bangladesh. J. Geochem. Explor. 88, 157–161 (2006).

    Article  Google Scholar 

  125. McArthur, J. M. et al. Natural organic matter in sedimentary basins and its relation to arsenic in anoxic ground water: the example of West Bengal and its worldwide implications. Appl. Geochem. 19, 1255–1293 (2004).

    Article  CAS  Google Scholar 

  126. Michael, H. A., Russoniello, C. J. & Byron, L. A. Global assessment of vulnerability to sea-level rise in topography-limited and recharge-limited coastal groundwater systems. Water Resour. Res. 49, 2228–2240 (2013).

    Article  Google Scholar 

  127. Nickson, R. T., McArthur, J. M., Ravenscroft, P., Burgess, W. G. & Ahmed, K. M. Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Appl. Geochem. 15, 403–413 (2000).

    Article  CAS  Google Scholar 

  128. Saunders, J. A. et al. Geochemistry and mineralogy of arsenic in (natural) anaerobic groundwaters. Appl. Geochem. 23, 3205–3214 (2008).

    Article  CAS  Google Scholar 

  129. Ormachea Muñoz, M. et al. Geogenic arsenic and other trace elements in the shallow hydrogeologic system of Southern Poopó Basin, Bolivian Altiplano. J. Hazard. Mater. 262, 924–940 (2013).

    Article  Google Scholar 

  130. Addison, M. J. et al. Fluoride occurrence in the lower East African rift system, southern Malawi. Sci. Total. Environ. 712, 136260 (2020).

    Article  CAS  Google Scholar 

  131. Guillot, S. & Charlet, L. Bengal arsenic, an archive of Himalaya orogeny and paleohydrology. J. Environ. Sci. Health Part A 42, 1785–1794 (2007).

    Article  CAS  Google Scholar 

  132. Haque, S. E. & Johannesson, K. H. Concentrations and speciation of arsenic along a groundwater flow-path in the Upper Floridan aquifer, Florida, USA. Environ. Geol. 50, 219–228 (2006).

    Article  CAS  Google Scholar 

  133. Scanlon, B. R. et al. Elevated naturally occurring arsenic in a semiarid oxidizing system, Southern High Plains aquifer, Texas, USA. Appl. Geochem. 24, 2061–2071 (2009).

    Article  CAS  Google Scholar 

  134. Mukherjee, A. et al. Chemical evolution in the high arsenic groundwater of the Huhhot Basin (Inner Mongolia, PR China) and its difference from the western Bengal Basin (India). Appl. Geochem. 24, 1835–1851 (2009).

    Article  CAS  Google Scholar 

  135. Smedley, P. L. et al. Arsenic associations in sediments from the loess aquifer of La Pampa, Argentina. Appl. Geochem. 20, 989–1016 (2005).

    Article  CAS  Google Scholar 

  136. Farooqi, A., Masuda, H. & Firdous, N. Toxic fluoride and arsenic contaminated groundwater in the Lahore and Kasur districts, Punjab, Pakistan and possible contaminant sources. Environ. Pollut. 145, 839–849 (2007).

    Article  CAS  Google Scholar 

  137. Mukherjee, A. et al. Hydrogeochemical comparison and effects of overlapping redox zones on groundwater arsenic near the Western (Bhagirathi sub-basin, India) and Eastern (Meghna sub-basin, Bangladesh) margins of the Bengal Basin. J. Contam. Hydrol. 99, 31–48 (2008).

    Article  CAS  Google Scholar 

  138. Postma, D. et al. Arsenic in groundwater of the Red River floodplain, Vietnam: controlling geochemical processes and reactive transport modeling. Geochim. Cosmochim. Acta 71, 5054–5071 (2007).

    Article  CAS  Google Scholar 

  139. Richards, L. A. et al. Dual in-aquifer and near surface processes drive arsenic mobilization in Cambodian groundwaters. Sci. Total. Environ. 659, 699–714 (2019).

    Article  CAS  Google Scholar 

  140. Fryar, A. E., Schreiber, M. E., Pholkern, K., Srisuk, K. & Ziegler, B. A. Variability in groundwater flow and chemistry in the Mekong River alluvial aquifer (Thailand): implications for arsenic and manganese occurrence. Environ. Earth Sci. 80, 225 (2021).

    Article  CAS  Google Scholar 

  141. Guo, H., Wen, D., Liu, Z., Jia, Y. & Guo, Q. A review of high arsenic groundwater in Mainland and Taiwan, China: distribution, characteristics and geochemical processes. Appl. Geochem. 41, 196–217 (2014).

    Article  CAS  Google Scholar 

  142. Jean, J.-S. et al. The Taiwan Crisis: A Showcase of the Global Arsenic Problem (CRC Press, 2011).

  143. Nath, B., Jean, J.-S., Lee, M.-K., Yang, H.-J. & Liu, C.-C. Geochemistry of high arsenic groundwater in Chia-Nan plain, Southwestern Taiwan: possible sources and reactive transport of arsenic. J. Contam. Hydrol. 99, 85–96 (2008).

    Article  CAS  Google Scholar 

  144. Parkhurst, D. L., Christenson, S. C. & Schlottmann, J. L. Ground-water-quality assessment of the Central Oklahoma Aquifer, Oklahoma; analysis of available water-quality data through 1987. U.S. Geological Survey Water Supply Paper 2357-B.

  145. Nickson, R. et al. Arsenic poisoning of Bangladesh groundwater. Nature 395, 338–338 (1998).

    Article  CAS  Google Scholar 

  146. Lowers, H. A. et al. Arsenic incorporation into authigenic pyrite, Bengal Basin sediment, Bangladesh. Geochim. Cosmochim. Acta 71, 2699–2717 (2007).

    Article  CAS  Google Scholar 

  147. Nghiem, A. A. et al. Sulfate reduction accelerates groundwater arsenic contamination even in aquifers with abundant iron oxides. Nat. Water 1, 151–165 (2023).

    Article  Google Scholar 

  148. Mukherjee, A. & Fryar, A. E. Deeper groundwater chemistry and geochemical modeling of the arsenic affected western Bengal Basin, West Bengal, India. Appl. Geochem. 23, 863–894 (2008).

    Article  CAS  Google Scholar 

  149. Islam, F. S. et al. Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 430, 68–71 (2004).

    Article  CAS  Google Scholar 

  150. Datta, S. et al. Perennial ponds are not an important source of water or dissolved organic matter to groundwaters with high arsenic concentrations in West Bengal, India. Geophys. Res. Lett. 38, L20404 (2011).

    Article  Google Scholar 

  151. Coomar, P. et al. Arsenic enriched groundwater discharge to a tropical ocean: understanding controls and processes. Environ. Pollut. 318, 120838 (2023).

    Article  CAS  Google Scholar 

  152. Winograd, I. J. & Robertson, F. N. Deep oxygenated ground water: anomaly or common occurrence? Science 216, 1227–1230 (1982).

    Article  CAS  Google Scholar 

  153. Zeng, J. H., Zhang, Z. H. & Ren, F. H. Fluorine geochemistry in the unsaturated soils shallow groundwater systems: a case study on the Xingtai Piedmont Plain, Hebei. Acta Geosci. Sin. 18, 389–396 (1997).

    CAS  Google Scholar 

  154. Masson, M., Schäfer, J., Blanc, G. & Pierre, A. Seasonal variations and annual fluxes of arsenic in the Garonne, Dordogne and Isle Rivers, France. Sci. Total. Environ. 373, 196–207 (2007).

    Article  CAS  Google Scholar 

  155. Pathak, P. et al. Impact of differential surface water mixing on seasonal arsenic mobilization in shallow aquifers of Nadia district; Western Bengal Basin, India. J. Hydrol. 612, 128270–128270 (2022).

    Article  CAS  Google Scholar 

  156. Scanlon, B. R. et al. Inventories and mobilization of unsaturated zone sulfate, fluoride, and chloride related to land use change in semiarid regions, southwestern United States and Australia. Water Resour. Res. 45, W00A18 (2009).

    Article  Google Scholar 

  157. Manning, A. H., Verplanck, P. L., Caine, J. S. & Todd, A. S. Links between climate change, water-table depth, and water chemistry in a mineralized mountain watershed. Appl. Geochem. 37, 64–78 (2013).

    Article  CAS  Google Scholar 

  158. Hsu, K.-C., Wang, C.-H., Chen, K.-C., Chen, C.-T. & Ma, K.-W. Climate-induced hydrological impacts on the groundwater system of the Pingtung Plain, Taiwan. Hydrogeol. J. 15, 903–913 (2007).

    Article  Google Scholar 

  159. Ayotte, J. D. et al. Factors affecting temporal variability of arsenic in groundwater used for drinking water supply in the United States. Sci. Total. Environ. 505, 1370–1379 (2015).

    Article  CAS  Google Scholar 

  160. Mukherjee, A. et al. Solute chemistry and arsenic fate in aquifers between the Himalayan foothills and Indian craton (including central Gangetic plain): Influence of geology and geomorphology. Geochim. Cosmochim. Acta 90, 283–302 (2012).

    Article  CAS  Google Scholar 

  161. Benner, S. G. & Fendorf, S. Arsenic in south Asia groundwater. Geogr. Compass 4, 1532–1552 (2010).

    Article  Google Scholar 

  162. Lawson, M. et al. Pond-derived organic carbon driving changes in arsenic hazard found in Asian groundwaters. Environ. Sci. Technol. 47, 7085–7094 (2013).

    Article  CAS  Google Scholar 

  163. Bostick, B. C. & Fendorf, S. Arsenite sorption on troilite (FeS) and pyrite (FeS2). Geochim. Cosmochim. Acta 67, 909–921 (2003).

    Article  CAS  Google Scholar 

  164. Aind, D. A., Malakar, P., Sarkar, S. & Mukherjee, A. Controls on groundwater fluoride contamination in eastern parts of India: insights from unsaturated zone fluoride profiles and AI-based modeling. Water 14, 3220 (2022).

    Article  CAS  Google Scholar 

  165. Harvey, C. F. et al. Arsenic mobility and groundwater extraction in Bangladesh. Science 298, 1602–1606 (2002).

    Article  CAS  Google Scholar 

  166. Hobday, D. K. & Galloway, W. E. Groundwater processes and sedimentary uranium deposits. Hydrogeol. J. 7, 127–138 (1999).

    Article  Google Scholar 

  167. Peters, S. C. Arsenic in groundwaters in the Northern Appalachian Mountain belt: a review of patterns and processes. J. Contam. Hydrol. 99, 8–21 (2008).

    Article  CAS  Google Scholar 

  168. Gates, T. K. et al. Assessing selenium contamination in the irrigated stream–aquifer system of the Arkansas River, Colorado. J. Environ. Qual. 38, 2344–2356 (2009).

    Article  CAS  Google Scholar 

  169. Mast, M. A. et al. Mobilization of selenium from the Mancos Shale and associated soils in the lower Uncompahgre River Basin, Colorado. Appl. Geochem. 48, 16–27 (2014).

    Article  CAS  Google Scholar 

  170. Tuttle, M. L., Fahy, J. W., Elliott, J. G., Grauch, R. I. & Stillings, L. L. Contaminants from Cretaceous black shale: I. Natural weathering processes controlling contaminant cycling in Mancos Shale, southwestern United States, with emphasis on salinity and selenium. Appl. Geochem. 46, 57–71 (2014).

    Article  CAS  Google Scholar 

  171. Bailey, R. T., Hunter, W. J. & Gates, T. K. The influence of nitrate on selenium in irrigated agricultural groundwater systems. J. Environ. Qual. 41, 783–792 (2012).

    Article  CAS  Google Scholar 

  172. Lloyd, J. R. Microbial reduction of metals and radionuclides. FEMS Microbiol. Rev. 27, 411–425 (2003).

    Article  CAS  Google Scholar 

  173. Cummings, D. E., Caccavo, F., Fendorf, S. & Rosenzweig, R. F. Arsenic mobilization by the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY.Environ. Sci. Technol. 33, 723–729 (1999).

    Article  CAS  Google Scholar 

  174. Rowland, H. A. L., Polya, D. A., Lloyd, J. R. & Pancost, R. D. Characterisation of organic matter in a shallow, reducing, arsenic-rich aquifer, West Bengal. Org. Geochem. 37, 1101–1114 (2006).

    Article  CAS  Google Scholar 

  175. Mladenov, N. et al. Dissolved organic matter quality in a shallow aquifer of Bangladesh: implications for arsenic mobility. Environ. Sci. Technol. 49, 10815–10824 (2015).

    Article  CAS  Google Scholar 

  176. Sengupta, S. et al. Do ponds cause arsenic-pollution of groundwater in the Bengal Basin? An answer from West Bengal. Environ. Sci. Technol. 42, 5156–5164 (2008).

    Article  CAS  Google Scholar 

  177. Kulp, T. R. & Pratt, L. M. Speciation and weathering of selenium in Upper Cretaceous chalk and shale from South Dakota and Wyoming, USA. Geochim. Cosmochim. Acta 68, 3687–3701 (2004).

    Article  CAS  Google Scholar 

  178. Matamoros-Veloza, A., Newton, R. J. & Benning, L. G. What controls selenium release during shale weathering? Appl. Geochem. 26, S222–S226 (2011).

    Article  CAS  Google Scholar 

  179. Macy, J. M. et al. Thauera selenatis gen. nov., sp. nov., a member of the beta subclass of Proteobacteria with a novel type of anaerobic respiration. Int. J. Syst. Evolut. Microbiol. 43, 135–142 (1993).

    CAS  Google Scholar 

  180. Ginder-Vogel, M., Criddle, C. S. & Fendorf, S. Thermodynamic constraints on the oxidation of biogenic UO2 by Fe(III) (hydr)oxides. Environ. Sci. Technol. 40, 3544–3550 (2006).

    Article  CAS  Google Scholar 

  181. Nolan, J. & Weber, K. A. Natural uranium contamination in major US aquifers linked to nitrate. Environ. Sci. Technol. Lett. 2, 215–220 (2015).

    Article  CAS  Google Scholar 

  182. Mukherjee, A., Fryar, A. E., Scanlon, B. R., Bhattacharya, P. & Bhattacharya, A. Elevated arsenic in deeper groundwater of the western Bengal Basin, India: extent and controls from regional to local scale. Appl. Geochem. 26, 600–613 (2011).

    Article  CAS  Google Scholar 

  183. Erban, L. E., Gorelick, S. M., Zebker, H. A. & Fendorf, S. Release of arsenic to deep groundwater in the Mekong delta, Vietnam, linked to pumping-induced land subsidence. Proc. Natl Acad. Sci. 110, 13751–13756 (2013).

    Article  CAS  Google Scholar 

  184. Smith, R., Knight, R. & Fendorf, S. Overpumping leads to California groundwater arsenic threat. Nat. Commun. 9, 2089 (2018).

    Article  Google Scholar 

  185. Khan, M. R. et al. High-arsenic groundwater in the southwestern Bengal Basin caused by a lithologically controlled deep flow system. Geophys. Res. Lett. 46, 13062–13071 (2019).

    Article  CAS  Google Scholar 

  186. Bhanja, S. N. & Mukherjee, A. In situ and satellite-based estimates of usable groundwater storage across India: implications for drinking water supply and food security. Adv. Water Resour. 126, 15–23 (2019).

    Article  Google Scholar 

  187. Neumann, R. B. et al. Anthropogenic influences on groundwater arsenic concentrations in Bangladesh. Nat. Geosci. 3, 46–52 (2010).

    Article  CAS  Google Scholar 

  188. Reich, E. S. Conflicting studies fuel arsenic debate. Nature 478, 437–438 (2011).

    CAS  Google Scholar 

  189. Burgess, W. et al. Trends in arsenic concentration at tubewells in Bangladesh: conceptual models, numerical models, and monitoring proxies. Trace Met. Other Contam. Environ. 9, 63–83 (2007).

    Article  CAS  Google Scholar 

  190. Burgess, W. G. et al. Vulnerability of deep groundwater in the Bengal aquifer system to contamination by arsenic. Nat. Geosci. 3, 83–87 (2010).

    Article  CAS  Google Scholar 

  191. Mukherjee, A., Fryar, A. E. & Howell, P. D. Regional hydrostratigraphy and groundwater flow modeling in the arsenic-affected areas of the western Bengal Basin, West Bengal, India. Hydrogeol. J. 15, 1397–1418 (2007).

    Article  CAS  Google Scholar 

  192. van Geen, A. et al. Retardation of arsenic transport through a Pleistocene aquifer. Nature 501, 204–207 (2013).

    Article  Google Scholar 

  193. Shamsudduha, M., Zahid, A. & Burgess, W. G. Security of deep groundwater against arsenic contamination in the Bengal aquifer system: a numerical modeling study in southeast Bangladesh. Sustain. Water Resour. Manag. 5, 1073–1087 (2019).

    Google Scholar 

  194. Radloff, K. A. et al. Arsenic migration to deep groundwater in Bangladesh influenced by adsorption and water demand. Nat. Geosci. 4, 793–798 (2011).

    Article  CAS  Google Scholar 

  195. Bagheri-Gavkosh, M. et al. Land subsidence: a global challenge. Sci. Total. Environ. 778, 146193 (2021).

    Article  CAS  Google Scholar 

  196. Mondal, D. & Polya, D. A. Rice is a major exposure route for arsenic in Chakdaha block, Nadia district, West Bengal, India: a probabilistic risk assessment. Appl. Geochem. 23, 2987–2998 (2008).

    Article  CAS  Google Scholar 

  197. van Geen, A. et al. Flushing history as a hydrogeological control on the regional distribution of arsenic in shallow groundwater of the Bengal Basin. Environ. Sci. Technol. 42, 2283–2288 (2008).

    Article  Google Scholar 

  198. Biswas, A. et al. Shallow hydrostratigraphy in an arsenic affected region of Bengal Basin: implication for targeting safe aquifers for drinking water supply. Sci. Total. Environ. 485–486, 12–22 (2014).

    Article  Google Scholar 

  199. Li, Y., Bi, Y., Mi, W., Xie, S. & Ji, L. Land-use change caused by anthropogenic activities increase fluoride and arsenic pollution in groundwater and human health risk. J. Hazard. Mater. 406, 124337 (2021).

    Article  CAS  Google Scholar 

  200. Alam, M. F., Villholth, K. G. & Podgorski, J. Human arsenic exposure risk via crop consumption and global trade from groundwater-irrigated areas. Environ. Res. Lett. 16, 124013 (2021).

    Article  CAS  Google Scholar 

  201. World Food Situation: Cereal Supply and Demand Brief www.fao.org/worldfoodsituation/csdb/en/ (FAO, 2022).

  202. Abbas, M., Atangana Njock, P. G. & Wang, Y. Influence of climate change and land-use alteration on water resources in Multan, Pakistan. Appl. Sci. 12, 5210 (2022).

    Article  CAS  Google Scholar 

  203. Dittmar, J. et al. Spatial distribution and temporal variability of arsenic in irrigated rice fields in Bangladesh. 2. Paddy soil. Environ. Sci. Technol. 41, 5967–5972 (2007).

    Article  CAS  Google Scholar 

  204. Neumann, R. B. et al. Hydrology of a groundwater-irrigated rice field in Bangladesh: seasonal and daily mechanisms of infiltration. Water Resour. Res. 45, W09412 (2009).

    Article  Google Scholar 

  205. Connolly, C. T., Stahl, M. O., DeYoung, B. A. & Bostick, B. C. Surface flooding as a key driver of groundwater arsenic contamination in Southeast Asia. Environ. Sci. Technol. 56, 928–937 (2021).

    Article  Google Scholar 

  206. Ayenew, T. The distribution and hydrogeological controls of fluoride in the groundwater of central Ethiopian rift and adjacent highlands. Environ. Geol. 54, 1313–1324 (2008).

    Article  CAS  Google Scholar 

  207. Bonotto, D. M., Wijesiri, B. & Goonetilleke, A. Nitrate-dependent uranium mobilisation in groundwater. Sci. Total. Environ. 693, 133655 (2019).

    Article  CAS  Google Scholar 

  208. Kent, D. B. & Fox, P. M. The influence of groundwater chemistry on arsenic concentrations and speciation in a quartz sand and gravel aquifer. Geochem. Trans. 5, 1 (2004).

    Article  CAS  Google Scholar 

  209. Bhowmick, S. et al. Arsenic mobilization in the aquifers of three physiographic settings of West Bengal, India: understanding geogenic and anthropogenic influences. J. Hazard. Mater. 262, 915–923 (2013).

    Article  CAS  Google Scholar 

  210. McArthur, J. M., Sikdar, P. K., Hoque, M. & Ghosal, U. Waste-water impacts on groundwater: Cl/Br ratios and implications for arsenic pollution of groundwater in the Bengal Basin and Red River Basin, Vietnam. Sci. Total. Environ. 437, 390–402 (2012).

    Article  CAS  Google Scholar 

  211. Javed, M. B. & Siddique, T. Thermally released arsenic in porewater from sediments in the Cold Lake area of Alberta, Canada. Environ. Sci. Technol. 50, 2191–2199 (2016).

    Article  CAS  Google Scholar 

  212. Schreiber, M. E. & Cozzarelli, I. M. Arsenic release to the environment from hydrocarbon production, storage, transportation, use and waste management. J. Hazard. Mater. 411, 125013 (2021).

    Article  CAS  Google Scholar 

  213. Rong, H. et al. Arsenic record from a 3 m snow pit at Dome Argus, Antarctica. Antarct. Sci. 28, 305–312 (2016).

    Article  Google Scholar 

  214. Ravenscroft, P. & Lytton, L. Seeing the Invisible: A Strategic Report on Groundwater Quality (World Bank, 2022).

  215. Bhowmik, T., Sarkar, S., Bhattacharya, A. & Mukherjee, A. A review of arsenic mitigation strategies in community water supply with insights from South Asia: options, opportunities and constraints. Environ. Sci. Water Res. Technol. 8, 2491–2520 (2022).

    Article  CAS  Google Scholar 

  216. Mukherjee, A., Sarkar, S., Coomar, P. & Bhattacharya, P. Towards clean water: managing risk of arsenic-contaminated groundwater for human consumption. Curr. Opin. Environ. Sci. Health 36, 100509 (2023).

    Article  Google Scholar 

  217. Ozsvath, D. L. Fluoride and environmental health: a review. Rev. Environ. Sci. Biotechnol. 8, 59–79 (2009).

    Article  CAS  Google Scholar 

  218. Argos, M. et al. Arsenic exposure from drinking water, and all-cause and chronic-disease mortalities in Bangladesh (HEALS): a prospective cohort study. Lancet 376, 252–258 (2010).

    Article  CAS  Google Scholar 

  219. Chakraborty, M. et al. Modeling regional-scale groundwater arsenic hazard in the transboundary Ganges River delta, India and Bangladesh: Infusing physically-based model with machine learning. Sci. Total. Environ. 748, 141107 (2020).

    Article  CAS  Google Scholar 

  220. Smith, A. H., Lingas, E. O. & Rahman, M. Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bull. World Health Organ. 11, 1093–1103 (2000).

    Google Scholar 

  221. Mondal, D. et al. Arsenic exposure from food exceeds that from drinking water in endemic area of Bihar, India. Sci. Total. Environ. 754, 142082 (2021).

    Article  CAS  Google Scholar 

  222. Shridhar, K. et al. Chronic exposure to drinking water arsenic and gallbladder cancer risk: preliminary evidence from endemic regions of India. Cancer Epidemiol. Biomarkers Prev. 32, 406–414 (2023).

    Article  CAS  Google Scholar 

  223. Yu, W. H., Harvey, C. M. & Harvey, C. F. Arsenic in groundwater in Bangladesh: a geostatistical and epidemiological framework for evaluating health effects and potential remedies. Water Resour. Res. 39, 1146 (2003).

    Article  Google Scholar 

  224. Flanagan, S. V., Johnston, R. B. & Zheng, Y. Arsenic in tube well water in Bangladesh: health and economic impacts and implications for arsenic mitigation. Bull. World Health Organ. 90, 839–846 (2012).

    Article  Google Scholar 

  225. Signes-Pastor, A. J. et al. Urinary arsenic speciation in children and pregnant women from Spain. Expos. Health 9, 105–111 (2017).

    Article  CAS  Google Scholar 

  226. Sarkar, S. et al. Prediction of elevated groundwater fluoride across India using multi-model approach: insights on the influence of geologic and environmental factors. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-022-24328-3 (2022).

    Article  Google Scholar 

  227. Abtahi, M. et al. Age-sex specific disability-adjusted life years (DALYs) attributable to elevated levels of fluoride in drinking water: a national and subnational study in Iran, 2017. Water Res. 157, 94–105 (2019).

    Article  CAS  Google Scholar 

  228. Chatterjee, D. et al. Assessment of arsenic exposure from groundwater and rice in Bengal delta region, West Bengal, India. Water Res. 44, 5803–5812 (2010).

    Article  CAS  Google Scholar 

  229. Ligate, F. et al. Groundwater resources in the East African Rift Valley: understanding the geogenic contamination and water quality challenges in Tanzania. Sci. Afr. 13, e00831 (2021).

    CAS  Google Scholar 

  230. Keshavarz, S., Ebrahimi, A. & Nikaeen, M. Fluoride exposure and its health risk assessment in drinking water and staple food in the population of Dayyer, Iran, in 2013. J. Educ. Health Promot. 4, 72 (2015).

    Google Scholar 

  231. Mazumder, D. N. G. et al. Arsenic levels in drinking water and the prevalence of skin lesions in West Bengal, India. Int. J. Epidemiol. 27, 871–877 (1998).

    Article  Google Scholar 

  232. Ahmed, M. F. et al. Ensuring safe drinking water in Bangladesh. Science 314, 1687–1688 (2006).

    Article  CAS  Google Scholar 

  233. Chakraborty, M. et al. Influence of hydrostratigraphy on the distribution of groundwater arsenic in the transboundary Ganges River delta aquifer system, India and Bangladesh. GSA Bull. 134, 2680–2692 (2022).

    Article  CAS  Google Scholar 

  234. Breit, G. N. et al. in Water–Rock Interactions (eds Wanty, R. B. & Seal II, R. R.) 1457–1461 (Saratoga Springs, 2004).

  235. Harvey, C. F. et al. Groundwater dynamics and arsenic contamination in Bangladesh. Chem. Geol. 228, 112–136 (2006).

    Article  CAS  Google Scholar 

  236. Desbarats, A. J., Pal, T., Mukherjee, P. K. & Beckie, R. D. Geochemical evolution of groundwater flowing through arsenic source sediments in an aquifer system of West Bengal, India. Water Resour. Res. 53, 8715–8735 (2017).

    Article  CAS  Google Scholar 

  237. Mukherjee, A. et al. Controls on high and low groundwater arsenic on the opposite banks of the lower reaches of River Ganges, Bengal Basin, India. Sci. Total. Environ. 645, 1371–1387 (2018).

    Article  CAS  Google Scholar 

  238. McArthur, J. M., Nath, B., Banerjee, D. M., Purohit, R. & Grassineau, N. Palaeosol control on groundwater flow and pollutant distribution: the example of arsenic. Environ. Sci. Technol. 45, 1376–1383 (2011).

    Article  CAS  Google Scholar 

  239. McArthur, J. M. et al. How paleosols influence groundwater flow and arsenic pollution: a model from the Bengal Basin and its worldwide implication. Water Resour. Res. 44, W11411 (2008).

    Article  Google Scholar 

  240. Harvey, C. F. et al. Groundwater arsenic contamination on the Ganges delta: biogeochemistry, hydrology, human perturbations, and human suffering on a large scale. C. R. Geosci. 337, 285–296 (2005).

    Article  CAS  Google Scholar 

  241. Métral, J. et al. Comparison of dissolved and particulate arsenic distributions in shallow aquifers of Chakdaha, India, and Araihazar, Bangladesh. Geochem. Trans. 9, 1 (2008).

    Article  Google Scholar 

  242. Breit, G. N. et al. Arsenic cycling in eastern Bangladesh: the role of phyllosilicates. Geol. Soc. Am. Abstr. Prog. 32, A192 (2001).

    Google Scholar 

  243. Mandal, B. K. et al. Arsenic in groundwater in seven districts of West Bengal, India — the biggest arsenic calamity in the world. Curr. Sci. 70, 976–986 (1996).

    CAS  Google Scholar 

  244. Acharyya, S. K. et al. Arsenic poisoning in the Ganges delta. Nature 401, 545–545 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.M. acknowledges the time and resources obtained from the project DST/TMD-EWO/WTI/2K19/EWFH/2019/201 (G) & (C) dated 28.10.2020 for authoring the manuscript. A.M. and D.A.P. acknowledge Newton Fund NERC and DST (NE/R003386/1 and DST/TM/INDO-UK/2K17/55I 609 & 55(G)). US National Science Foundation grant EAR-2037553 partially supported K.H.J.’s efforts and contribution. M.A.A. acknowledges the support of the ANID Vinculación Internacional FOVI220217 project, also participated in by A.M., P.B., J.B., J.I., D.A.P. and J.T. P.B. would like to thank the seminal research funding from the Swedish International Development Cooperation Agency [Sida Contributions: 7500707606 (2007-2013), 75000553 (2014-2020), and 54100087 (2021-2025)] for research cooperation in the Altiplano Region, Idea Support Grant 2005-035-137 from the Strategic Environmental Research Foundation (MISTRA), Stockholm, Sweden, Swedish International Development Cooperation Agency (Sida) project “Sustainable Arsenic Mitigation (SASMIT)” (Sida Contribution 73000854), and the project, DAFWAT (Sida Contribution 51170071) at KTH Royal Institute of Technology. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Contributions

A.M. authored the manuscript with the support of P.C., S.S., K.H.J., A.E.F. and M.E.S. D.A.P. and B.R.S. helped with editing. M.C., P.B. and B.R.S. provided data for the Supplementary Information. J.P. drafted Fig. 2b. K.M.A., M.A.A., P.B., J.B., W.B., M.C., R.C., A.Fa., H.G., J.I., G.J., D.M., D.K.N., J.P., D.A.P., M.Sh., J.T. and A.V. reviewed and edited the manuscript. All authors made substantial contributions to the content of the manuscript.

Corresponding author

Correspondence to Abhijit Mukherjee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, A., Coomar, P., Sarkar, S. et al. Arsenic and other geogenic contaminants in global groundwater. Nat Rev Earth Environ 5, 312–328 (2024). https://doi.org/10.1038/s43017-024-00519-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-024-00519-z

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene