Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Drainage divide migration and implications for climate and biodiversity

Abstract

Drainage divides separate Earth’s surface into individual river basins. Divide migration impacts the evolution of landforms, regional climate, ecosystems and biodiversity. In this Review, we assess the processes and dynamics of divide migration and offer insights into the impact on climate and biodiversity. Drainage divides are not static: they can move through the processes of gradual migration that is continuous in unsteady landscapes, or sudden through infrequent river capture events. Divides tend to move in the direction of slower erosion, faster uplift or with horizontal tectonic advection, with rates typically ranging between 0.001 and 10 mm year−1, and a global average of 0.6 mm year−1. Evidence of river capture, such as a sharp change in flow direction with an upstream waterfall, can constrain divide migration history. Topographic metrics, such as cross-divide steepness, can predict the migration of drainage divides towards directions with a lower topographic steepness. Divide migration influences the spatial distribution of regional precipitation, temperature and topographic connectivity between species, thereby affecting biodiversity. For example, freshwater fish can migrate into a new drainage basin through river capture, potentially increasing the species richness. Future research should couple advanced landscape evolution models and observations from field and remote sensing to better investigate divide migration dynamics.

Key points

  • Drainage divides can move through gradual migration and occasional river capture. Drainage divides tend to move in the direction of slower erosion, faster uplift or with horizontal tectonic advection.

  • Tectonics and erosion jointly influence divide dynamics and mountain asymmetry. Mountain asymmetry can increase with tectonic convergence velocity, whereas climate can both increase and decrease mountain asymmetry.

  • Evidence of river capture can decode divide motion history. Cross-divide steepness metrics and χ-value (drainage-area normalized distance along a river channel) can predict short-term and long-term divide stability, respectively.

  • Main drainage divide position of mountains affects spatial patterns of rainfall via orographic effect and temperature through altitude–temperature relationship, thereby influencing the richness and type of species.

  • River capture events can promote species richness in expanding basins, but they can decrease biodiversity in shrinking catchments. However, overall diversity tends to increase owing to vicariant speciation in expanding catchments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Drainage divides across scales.
Fig. 2: The processes of gradual divide migration and river capture.
Fig. 3: Drivers of drainage divide motion.
Fig. 4: Stable position and migration rate of drainage divides.
Fig. 5: Methods of judging divide migration direction.
Fig. 6: Effects of drainage divides on climate and biodiversity.

Similar content being viewed by others

Data availability

The locations of the natural examples on Earth and Mars (Google Earth files), as well as the raw data for Figs. 4d, 5b and 6, and Supplementary Figs. 2, 5 and 7, are available at https://doi.org/10.6084/m9.figshare.21952820.v11.

References

  1. Dahlquist, M. P., West, A. J. & Li, G. Landslide-driven drainage divide migration. Geology 46, 403–406 (2018).

    Article  ADS  Google Scholar 

  2. Scheingross, J. S., Limaye, A. B., McCoy, S. W. & Whittaker, A. C. The shaping of erosional landscapes by internal dynamics. Nat. Rev. Earth Environ. 1, 661–676 (2020).

    Article  ADS  CAS  Google Scholar 

  3. Stokes, M. F. et al. The erosional signature of drainage divide motion along the Blue Ridge Escarpment. J. Geophys. Res. Earth Surf. 128, e2022JF006757 (2023).

    Article  ADS  Google Scholar 

  4. Willett, S. D., McCoy, S. W. & Beeson, H. W. Transience of the North American High Plains landscape and its impact on surface water. Nature 561, 528–532 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Salles, T. et al. Hundred million years of landscape dynamics from catchment to global scale. Science 379, 918–923 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Battin, T. J. et al. River ecosystem metabolism and carbon biogeochemistry in a changing world. Nature 613, 449–459 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Craw, D., Upton, P., Burridge, C. P., Wallis, G. P. & Waters, J. M. Rapid biological speciation driven by tectonic evolution in New Zealand. Nat. Geosci. 9, 140–144 (2015).

    Article  ADS  Google Scholar 

  8. Deiner, K., Fronhofer, E. A., Machler, E., Walser, J. C. & Altermatt, F. Environmental DNA reveals that rivers are conveyer belts of biodiversity information. Nat. Commun. 7, 12544 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Antonelli, A. et al. Geological and climatic influences on mountain biodiversity. Nat. Geosci. 11, 718–725 (2018).

    Article  ADS  CAS  Google Scholar 

  10. Musher, L. J. et al. River network rearrangements promote speciation in lowland Amazonian birds. Sci. Adv. 8, eabn1099 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fjeldså, J., Bowie, R. C. K. & Rahbek, C. The role of mountain ranges in the diversification of birds. Annu. Rev. Ecol. Evol. Syst. 43, 249–265 (2012).

    Article  Google Scholar 

  12. Rahbek, C. et al. Building mountain biodiversity: geological and evolutionary processes. Science 365, 1114–1119 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Salles, T. et al. Quaternary landscape dynamics boosted species dispersal across Southeast Asia. Commun. Earth Environ. 2, 240 (2021).

    Article  ADS  Google Scholar 

  14. Val, P., Lyons, N. J., Gasparini, N., Willenbring, J. K. & Albert, J. S. Landscape evolution as a diversification driver in freshwater fishes. Front. Ecol. Evol. 9, 788328 (2022).

    Article  Google Scholar 

  15. Cassemiro, F. A. S. et al. Landscape dynamics and diversification of the megadiverse South American freshwater fish fauna. Proc. Natl. Acad. Sci. USA 120, e2211974120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hu, K. et al. Covariation of cross-divide differences in denudation rate and χ: implications for drainage basin reorganization in the Qilian Shan, northeast Tibet. Earth Planet. Sci. Lett. 562, 116812 (2021).

    Article  CAS  Google Scholar 

  17. Wang, Y., Willett, S. D., Wu, D., Haghipour, N. & Christl, M. Retreat of the great escarpment of Madagascar from geomorphic analysis and cosmogenic 10Be concentrations. Geochem. Geophys. Geosyst. 22, e2021GC009979 (2021).

    Article  ADS  Google Scholar 

  18. Davis, D. M. A river-pirate. Science 13, 108–109 (1889).

    Article  ADS  Google Scholar 

  19. Bonnet, S. Shrinking and splitting of drainage basins in orogenic landscapes from the migration of the main drainage divide. Nat. Geosci. 2, 766–771 (2009).

    Article  ADS  CAS  Google Scholar 

  20. Habousha, K., Goren, L., Nativ, R. & Gruber, C. Plan‐form evolution of drainage basins in response to tectonic changes: insights from experimental and numerical landscapes. J. Geophys. Res. Earth Surf. 128, e2022JF006876 (2023).

    Article  ADS  Google Scholar 

  21. He, C. et al. Landscape response to normal fault linkage: insights from numerical modeling. Geomorphology 388, 107796 (2021).

    Article  Google Scholar 

  22. Whipple, K. X., Forte, A. M., DiBiase, R. A., Gasparini, N. M. & Ouimet, W. B. Timescales of landscape response to divide migration and drainage capture: implications for the role of divide mobility in landscape evolution. J. Geophys. Res. Earth Surf. 122, 248–273 (2017).

    Article  ADS  Google Scholar 

  23. Goren, L., Willett, S. D., Herman, F. & Braun, J. Coupled numerical-analytical approach to landscape evolution modeling. Earth Surf. Process. Landf. 39, 522–545 (2014).

    Article  ADS  Google Scholar 

  24. Willett, S. D., Slingerland, R. & Hovius, N. Uplift, shortening, and steady state topography in active mountain belts. Am. J. Sci. 301, 455–485 (2001).

    Article  ADS  Google Scholar 

  25. He, C. et al. Constraining tectonic uplift and advection from the main drainage divide of a mountain belt. Nat. Commun. 12, 544 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lanari, R., Reitano, R., Faccenna, C., Agostinetti, N. P. & Ballato, P. Surface and crustal response to deep subduction dynamics: insights from the Apennines, Italy. Tectonics 42, e2022TC007461 (2023).

    Article  ADS  Google Scholar 

  27. Hergarten, S. & Robl, J. The linear feedback precipitation model (LFPM 1.0) — a simple and efficient model for orographic precipitation in the context of landform evolution modeling. Geosci. Model Dev. 15, 2063–2084 (2022).

    Article  ADS  Google Scholar 

  28. Bernard, T., Sinclair, H. D., Gailleton, B., Mudd, S. M. & Ford, M. Lithological control on the post-orogenic topography and erosion history of the Pyrenees. Earth Planet. Sci. Lett. 518, 53–66 (2019).

    Article  ADS  CAS  Google Scholar 

  29. Seagren, E. G. & Schoenbohm, L. M. Base level and lithologic control of drainage reorganization in the Sierra de las Planchadas, NW Argentina. J. Geophys. Res. Earth Surf. 124, 1516–1539 (2019).

    Article  ADS  Google Scholar 

  30. Gilbert, G. K. Report on the Geology of the Henry Mountains (Government Printing Office, 1877).

  31. Val, P. et al. Erosion of an active fault scarp leads to drainage capture in the Amazon region, Brazil. Earth Surf. Process. Landf. 39, 1062–1074 (2014).

    Article  ADS  Google Scholar 

  32. Willett, S. D., McCoy, S. W., Perron, J. T., Goren, L. & Chen, C. Y. Dynamic reorganization of river basins. Science 343, 1248765 (2014).

    Article  PubMed  Google Scholar 

  33. Liu, Z. et al. Quantitative analysis of tectonic geomorphology research based on Web of Science from 1981 to 2021. Remote Sens. 14, 5227 (2022).

    Article  ADS  Google Scholar 

  34. Forte, A. M. & Whipple, K. X. Criteria and tools for determining drainage divide stability. Earth Planet. Sci. Lett. 493, 102–117 (2018).

    Article  ADS  CAS  Google Scholar 

  35. Fan, N. et al. Abrupt drainage basin reorganization following a Pleistocene river capture. Nat. Commun. 9, 3756 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  36. Schildgen, T. F. et al. Quantifying drainage-divide migration from orographic rainfall over geologic timescales: Sierra de Aconquija, southern Central Andes. Earth Planet. Sci. Lett. 579, 117345 (2022).

    Article  CAS  Google Scholar 

  37. Rico, C. N., Hoagstrom, C. W., Elías, D. J., McMahan, C. D. & Matamoros, W. A. Biotic regionalization of freshwater fishes in Northern Middle America highlights high beta diversity created by prominent biogeographic barriers. Front. Biogeogr. 14, e58095 (2022).

    Article  Google Scholar 

  38. de Lavaissière, L., Bonnet, S., Guyez, A. & Davy, P. Autogenic knickpoints in laboratory landscape experiments. Earth Surf. Dyn. 10, 229–246 (2022).

    Article  ADS  Google Scholar 

  39. O’Hara, D., Karlstrom, L. & Roering, J. J. Distributed landscape response to localized uplift and the fragility of steady states. Earth Planet. Sci. Lett. 506, 243–254 (2019).

    Article  ADS  Google Scholar 

  40. Beeson, H. W., McCoy, S. W. & Keen-Zebert, A. Geometric disequilibrium of river basins produces long-lived transient landscapes. Earth Planet. Sci. Lett. 475, 34–43 (2017).

    Article  ADS  CAS  Google Scholar 

  41. Pérez-Consuegra, N. et al. Neogene variations in slab geometry drive topographic change and drainage reorganization in the Northern Andes of Colombia. Glob. Planet. Chang. 206, 103641 (2021).

    Article  Google Scholar 

  42. Seagren, E. G. & Schoenbohm, L. M. Drainage reorganization across the Puna Plateau margin (NW Argentina): implications for the preservation of orogenic plateaus. J. Geophys. Res. Earth Surf. 126, e2021JF006147 (2021).

    Article  ADS  Google Scholar 

  43. Bishop, P. Drainage rearrangement by river capture, beheading and diversion. Prog. Phys. Geogr. 19, 449–473 (1995).

    Article  Google Scholar 

  44. Shelef, E. & Goren, L. The rate and extent of wind-gap migration regulated by tributary confluences and avulsions. Earth Surf. Dyn. 9, 687–700 (2021).

    Article  ADS  Google Scholar 

  45. Harel, E., Goren, L., Crouvi, O., Ginat, H. & Shelef, E. Drainage reorganization induces deviations in the scaling between valley width and drainage area. Earth Surf. Dyn. 10, 875–894 (2022).

    Article  ADS  Google Scholar 

  46. Harel, E., Goren, L., Shelef, E. & Ginat, H. Drainage reversal toward cliffs induced by lateral lithologic differences. Geology 47, 928–932 (2019).

    Article  ADS  Google Scholar 

  47. Su, Q., Wang, X., Lu, H., Zhang, H. & Xie, H. River piracy and its geomorphic effects in the northern Qilian Shan, northeastern Qinghai-Tibet Plateau. Palaeogeogr. Palaeoclimatol. Palaeoecol. 601, 111147 (2022).

    Article  Google Scholar 

  48. Wang, X. et al. Did the modern Yellow River form at the Mid-Pleistocene transition? Sci. Bull. 67, 1603–1610 (2022).

    Article  CAS  Google Scholar 

  49. Miller, K. G. et al. The Phanerozoic record of global sea-level change. Science 310, 1293–1298 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Stokes, M. F., Goldberg, S. L. & Perron, J. T. Ongoing river capture in the Amazon. Geophys. Res. Lett. 45, 5545–5552 (2018).

    Article  ADS  Google Scholar 

  51. Craddock, W. H. et al. Rapid fluvial incision along the Yellow River during headward basin integration. Nat. Geosci. 3, 209–213 (2010).

    Article  ADS  CAS  Google Scholar 

  52. Geurts, A. H. et al. Drainage integration and sediment dispersal in active continental rifts: a numerical modelling study of the central Italian Apennines. Basin Res. 30, 965–989 (2018).

    Article  ADS  Google Scholar 

  53. Hilgendorf, Z., Wells, G., Larson, P. H., Millett, J. & Kohout, M. From basins to rivers: understanding the revitalization and significance of top-down drainage integration mechanisms in drainage basin evolution. Geomorphology 352, 107020 (2020).

    Article  Google Scholar 

  54. Tejedor, A., Singh, A., Zaliapin, I., Densmore, A. L. & Foufoula-Georgiou, E. Scale-dependent erosional patterns in steady-state and transient-state landscapes. Sci. Adv. 3, e1701683 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  55. Bahadori, A. et al. Coupled influence of tectonics, climate, and surface processes on landscape evolution in southwestern North America. Nat. Commun. 13, 4437 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wolf, S. G., Huismans, R. S., Braun, J. & Yuan, X. Topography of mountain belts controlled by rheology and surface processes. Nature 606, 516–521 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Su, Q., Wang, X., Lu, H. & Xie, H. Dynamic divide migration as a response to asymmetric uplift: an example from the Zhongtiao Shan, north China. Remote Sens. 12, 4188 (2020).

    Article  ADS  Google Scholar 

  58. Zhou, C., Tan, X., Liu, Y. & Shi, F. A cross-divide contrast index (C) for assessing controls on the main drainage divide stability of a mountain belt. Geomorphology 398, 108071 (2022).

    Article  Google Scholar 

  59. Willett, S. D. Orogeny and orography: the effects of erosion on the structure of mountain belts. J. Geophys. Res. Solid Earth 104, 28957–28981 (1999).

    Article  Google Scholar 

  60. Willett, S. D. & Brandon, M. T. On steady states in mountain belts. Geology 30, 175–178 (2002).

    Article  ADS  Google Scholar 

  61. Castelltort, S. et al. River drainage patterns in the New Zealand Alps primarily controlled by plate tectonic strain. Nat. Geosci. 5, 744–748 (2012).

    Article  ADS  CAS  Google Scholar 

  62. Eizenhöfer, P. R., McQuarrie, N., Shelef, E. & Ehlers, T. A. Landscape response to lateral advection in convergent orogens over geologic time scales. J. Geophys. Res. Earth Surf. 124, 2056–2078 (2019).

    Article  ADS  Google Scholar 

  63. Brune, S. et al. Geodynamics of continental rift initiation and evolution. Nat. Rev. Earth Environ. 4, 235–253 (2023).

    Article  ADS  Google Scholar 

  64. Mitchell, N. & Forte, A. M. Tectonic advection of contacts enhances landscape transience. Earth Surf. Process. Landf. 48, 1450–1469 (2023).

    Article  ADS  Google Scholar 

  65. Reitano, R. et al. Sediment recycling and the evolution of analog orogenic wedges. Tectonics 41, e2021TC006951 (2022).

    Article  ADS  Google Scholar 

  66. Chen, Y. et al. Evolution of eastern Tibetan river systems is driven by the indentation of India. Commun. Earth Environ. 2, 256 (2021).

    Article  ADS  Google Scholar 

  67. Hoskins, A. M., Attal, M., Mudd, S. M. & Castillo, M. Topographic response to horizontal advection in normal fault‐bound mountain ranges. J. Geophys. Res. Earth Surf. 128, e2023JF007126 (2023).

    Article  ADS  Google Scholar 

  68. Leonard, J. S., Whipple, K. X. & Heimsath, A. M. Isolating climatic, tectonic, and lithologic controls on mountain landscape evolution. Sci. Adv. 9, eadd8915 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Herman, F., De Doncker, F., Delaney, I., Prasicek, G. & Koppes, M. The impact of glaciers on mountain erosion. Nat. Rev. Earth Environ. 2, 422–435 (2021).

    Article  ADS  Google Scholar 

  70. Giachetta, E., Refice, A., Capolongo, D., Gasparini, N. M. & Pazzaglia, F. J. Orogen‐scale drainage network evolution and response to erodibility changes: insights from numerical experiments. Earth Surf. Process. Landf. 39, 1259–1268 (2014).

    Article  ADS  Google Scholar 

  71. Zondervan, J. R., Stokes, M., Boulton, S. J., Telfer, M. W. & Mather, A. E. Rock strength and structural controls on fluvial erodibility: implications for drainage divide mobility in a collisional mountain belt. Earth Planet. Sci. Lett. 538, 116221 (2020).

    Article  CAS  Google Scholar 

  72. Bernard, T., Sinclair, H. D., Gailleton, B. & Fox, M. Formation of longitudinal river valleys and the fixing of drainage divides in response to exhumation of crystalline basement. Geophys. Res. Lett. 48, e2020GL092210 (2021).

    Article  ADS  Google Scholar 

  73. Perron, J. T. Climate and the pace of erosional landscape evolution. Annu. Rev. Earth Planet. Sci. 45, 561–591 (2017).

    Article  ADS  CAS  Google Scholar 

  74. Lai, J. & Huppert, K. Asymmetric glaciation, divide migration, and postglacial fluvial response times in the Qilian Shan. Geology 51, 860–864 (2023).

    Article  ADS  Google Scholar 

  75. Starke, J., Ehlers, T. A. & Schaller, M. Latitudinal effect of vegetation on erosion rates identified along western South America. Science 367, 1358–1361 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  76. Perron, J. T., Richardson, P. W., Ferrier, K. L. & Lapotre, M. The root of branching river networks. Nature 492, 100–103 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  77. Braun, J., Herman, F. & Batt, G. Kinematic strain localization. Earth Planet. Sci. Lett. 300, 197–204 (2010).

    Article  ADS  CAS  Google Scholar 

  78. He, C. et al. Divide migration in response to asymmetric uplift: insights from the Wula Shan horst, North China. Geomorphology 339, 44–57 (2019).

    Article  ADS  Google Scholar 

  79. Shi, F., Tan, X., Zhou, C. & Liu, Y. Impact of asymmetric uplift on mountain asymmetry: analytical solution, numerical modeling, and natural examples. Geomorphology 389, 107862 (2021).

    Article  Google Scholar 

  80. Perron, J. T. & Fagherazzi, S. The legacy of initial conditions in landscape evolution. Earth Surf. Process. Landf. 37, 52–63 (2012).

    Article  ADS  Google Scholar 

  81. Wang, Y. & Willett, S. D. Escarpment retreat rates derived from detrital cosmogenic nuclide concentrations. Earth Surf. Dyn. 9, 1301–1322 (2021).

    Article  ADS  Google Scholar 

  82. Wang, Y., Willett, S. D. & Wu, D. The role of weathering on morphology and rates of escarpment retreat of the rift margin of Madagascar. J. Geophys. Res. Earth Surf. 128, e2022JF007001 (2023).

    Article  ADS  Google Scholar 

  83. Schwanghart, W. & Scherler, D. Divide mobility controls knickpoint migration on the Roan Plateau (Colorado, USA). Geology 48, 698–702 (2020).

    Article  ADS  Google Scholar 

  84. Braun, J. A review of numerical modeling studies of passive margin escarpments leading to a new analytical expression for the rate of escarpment migration velocity. Gondwana Res. 53, 209–224 (2018).

    Article  ADS  Google Scholar 

  85. Zhou, C. et al. Ongoing westward migration of drainage divides in eastern Tibet, quantified from topographic analysis. Geomorphology 402, 108123 (2022).

    Article  Google Scholar 

  86. Ye, Y., Tan, X. & Zhou, C. Initial topography matters in drainage divide migration analysis: insights from numerical simulations and natural examples. Geomorphology 409, 108266 (2022).

    Article  Google Scholar 

  87. Balco, G., Stone, J. O., Lifton, N. A. & Dunai, T. J. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quat. Geochronol. 3, 174–195 (2008).

    Article  Google Scholar 

  88. Ehlers, T. A., Farley, K. A., Rusmore, M. E. & Woodsworth, G. J. Apatite (U-Th)/He signal of large-magnitude accelerated glacial erosion, southwest British Columbia. Geology 34, 765–768 (2006).

    Article  ADS  CAS  Google Scholar 

  89. Linari, C. L. et al. Rates of erosion and landscape change along the Blue Ridge escarpment, southern Appalachian Mountains, estimated from in situ cosmogenic 10Be. Earth Surf. Process. Landf. 42, 928–940 (2017).

    Article  ADS  Google Scholar 

  90. Godard, V., Dosseto, A., Fleury, J., Bellier, O. & Siame, L. Transient landscape dynamics across the Southeastern Australian Escarpment. Earth Planet. Sci. Lett. 506, 397–406 (2019).

    Article  ADS  CAS  Google Scholar 

  91. Struth, L., Teixell, A., Owen, L. A. & Babault, J. Plateau reduction by drainage divide migration in the Eastern Cordillera of Colombia defined by morphometry and 10Be terrestrial cosmogenic nuclides. Earth Surf. Process. Landf. 42, 1155–1170 (2017).

    Article  ADS  CAS  Google Scholar 

  92. Vacherat, A., Bonnet, S. & Mouthereau, F. Drainage reorganization and divide migration induced by the excavation of the Ebro basin (NE Spain). Earth Surf. Dyn. 6, 369–387 (2018).

    Article  ADS  Google Scholar 

  93. Struth, L., Giachetta, E., Willett, S. D., Owen, L. A. & Tesón, E. Quaternary drainage network reorganization in the Colombian Eastern Cordillera plateau. Earth Surf. Process. Landf. 45, 1789–1804 (2020).

    Article  ADS  Google Scholar 

  94. Prince, P. S., Spotila, J. A. & Henika, W. S. Stream capture as driver of transient landscape evolution in a tectonically quiescent setting. Geology 39, 823–826 (2011).

    Article  ADS  Google Scholar 

  95. Burridge, C. P., Craw, D. & Waters, J. M. River capture, range expansion, and cladogenesis: the genetic signature of freshwater vicariance. Evolution 60, 1038–1049 (2007).

    Google Scholar 

  96. Bossu, C. M., Beaulieu, J. M., Ceas, P. A. & Near, T. J. Explicit tests of palaeodrainage connections of southeastern North America and the historical biogeography of orangethroat darters (Percidae: Etheostoma: Ceasia). Mol. Ecol. 22, 5397–5417 (2013).

    Article  PubMed  Google Scholar 

  97. Stokes, M. F. & Perron, J. T. Modeling the evolution of aquatic organisms in dynamic river basins. J. Geophys. Res. Earth Surf. 125, e2020JF005652 (2020).

    Article  ADS  Google Scholar 

  98. Li, X. et al. Genetic memory of fishes on river development in Himalayas. Quat. Sci. 43, 819–837 (2023).

    ADS  Google Scholar 

  99. Fan, N. et al. Timing of river capture in major Yangtze River tributaries: insights from sediment provenance and morphometric indices. Geomorphology 392, 107915 (2021).

    Article  Google Scholar 

  100. Lima, S. M. Q. et al. Headwater capture evidenced by paleo-rivers reconstruction and population genetic structure of the armored catfish (Pareiorhaphis garbei) in the Serra do Mar Mountains of southeastern Brazil. Front. Genet. 8, 199 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Shugar, D. H. et al. River piracy and drainage basin reorganization led by climate-driven glacier retreat. Nat. Geosci. 10, 370–375 (2017).

    Article  ADS  CAS  Google Scholar 

  102. Chen, C. H., Shyu, J. B. H., Willett, S. D. & Chen, C. Y. Structural control on drainage pattern development of the western Taiwan orogenic wedge. Earth Surf. Process. Landf. 48, 1830–1844 (2023).

    Article  ADS  Google Scholar 

  103. Rodrigues Salgado, A. A., Ribeiro Marent, B. & Paixão, R. W. Large rivers, slow drainage rearrangements: the ongoing fluvial piracy of a major river by its tributary in the Branco River basin — northern Amazon. J. South Am. Earth Sci. 112, 103598 (2021).

    Article  Google Scholar 

  104. Simon-Labric, T. et al. Low-temperature thermochronologic signature of range-divide migration and breaching in the North Cascades. Lithosphere 6, 473–482 (2014).

    Article  ADS  Google Scholar 

  105. Mark, C., Cogné, N. & Chew, D. Tracking exhumation and drainage divide migration of the Western Alps: a test of the apatite U-Pb thermochronometer as a detrital provenance tool. Geol. Soc. Am. Bull. 128, 1439–1460 (2016).

    Article  ADS  Google Scholar 

  106. Perron, J. T. & Royden, L. An integral approach to bedrock river profile analysis. Earth Surf. Process. Landf. 38, 570–576 (2013).

    Article  ADS  Google Scholar 

  107. Winterberg, S. & Willett, S. D. Greater Alpine river network evolution, interpretations based on novel drainage analysis. Swiss J. Geosci. 112, 3–22 (2019).

    Article  PubMed  Google Scholar 

  108. Diercks, M.-L., Stanek, K., Domínguez-Gonzalez, L. & Ehling, B. Quaternary landscape evolution and tectonics in Central Germany — a case study of the Harz. Geomorphology 388, 107794 (2021).

    Article  Google Scholar 

  109. Gailleton, B., Mudd, S. M., Clubb, F. J., Grieve, S. W. D. & Hurst, M. D. Impact of changing concavity indices on channel steepness and divide migration metrics. J. Geophys. Res. Earth Surf. 126, e2020JF006060 (2021).

    Article  ADS  Google Scholar 

  110. DeLong, S. B., Hilley, G. E., Prentice, C. S., Crosby, C. J. & Yokelson, I. N. Geomorphology, denudation rates, and stream channel profiles reveal patterns of mountain building adjacent to the San Andreas Fault in northern California, USA. Geol. Soc. Am. Bull. 129, 732–749 (2017).

    Article  ADS  Google Scholar 

  111. García-Delgado, H. & Velandia, F. Tectonic geomorphology of the Serranía de San Lucas (central Cordillera): regional implications for active tectonics and drainage rearrangement in the northern Andes. Geomorphology 349, 106914 (2020).

    Article  Google Scholar 

  112. He, C. et al. Geomorphological signatures of the evolution of active normal faults along the Langshan Mountains, North China. Geodin. Acta 30, 163–182 (2018).

    Article  ADS  Google Scholar 

  113. Wahyudi, D. R., Sinclair, H. D. & Mudd, S. M. Progressive evolution of thrust fold topography in the frontal Himalaya. Geomorphology 384, 107717 (2021).

    Article  Google Scholar 

  114. Amine, A., El Ouardi, H., Zebari, M. & El Makrini, H. Active tectonics in the Moulay Idriss Massif (south Rifian Ridges, NW Morocco): new insights from geomorphic indices and drainage pattern analysis. J. Afr. Earth Sci. 167, 103833 (2020).

    Article  Google Scholar 

  115. Wu, Y., Yang, R., He, C. & He, J. Caution on determining divide migration from cross‐divide contrast in χ. Geol. J. 57, 4090–4098 (2022).

    Article  ADS  Google Scholar 

  116. Zhou, C. & Tan, X. Quantifying the influence of asymmetric uplift, base level elevation, and erodibility on cross-divide χ difference. Geomorphology 427, 108634 (2023).

    Article  Google Scholar 

  117. Pai, M. O. D., Salgado, A. A. R., de Sordi, M. V., de Carvalho Junior, O. A. & de Paula, E. V. Comparing morphological investigation with χ index and Gilbert metrics for analysis of drainage rearrangement and divide migration in inland plateaus. Geomorphology 423, 108554 (2023).

    Article  Google Scholar 

  118. Scherler, D. & Schwanghart, W. Drainage divide networks — part 1: identification and ordering in digital elevation models. Earth Surf. Dynam. 8, 245–259 (2020).

    Article  ADS  Google Scholar 

  119. Alves, F. C., Stokes, M., Boulton, S. J., de Fátima Rossetti, D. & de Morisson Valeriano, M. Post-rift geomorphological evolution of a passive continental margin (Paraíba region, northeastern Brazil): insights from river profile and drainage divide analysis. Geomorphology 414, 108384 (2022).

    Article  Google Scholar 

  120. Schwanghart, W. & Scherler, D. Short communication: TopoToolbox 2 — MATLAB-based software for topographic analysis and modeling in Earth surface sciences. Earth Surf. Dyn. 2, 1–7 (2014).

    Article  ADS  Google Scholar 

  121. Insel, N., Poulsen, C. J. & Ehlers, T. A. Influence of the Andes Mountains on South American moisture transport, convection, and precipitation. Clim. Dyn. 35, 1477–1492 (2009).

    Article  Google Scholar 

  122. Renny, M., Acosta, M. C. & Sérsic, A. N. Ancient climate changes and Andes uplift, rather than Last Glacial Maximum, affected distribution and genetic diversity patterns of the southernmost mycoheterotrophic plant Arachnitis uniflora Phil. (Corsiaceae). Glob. Planet. Chang. 208, 103701 (2022).

    Article  Google Scholar 

  123. Boos, W. R. & Pascale, S. Mechanical forcing of the North American monsoon by orography. Nature 599, 611–615 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  124. Pepin, N. C. et al. Climate changes and their elevational patterns in the mountains of the world. Rev. Geophys. 60, e2020RG000730 (2022).

    Article  ADS  Google Scholar 

  125. Mulch, A., Uba, C. E., Strecker, M. R., Schoenberg, R. & Chamberlain, C. P. Late Miocene climate variability and surface elevation in the Central Andes. Earth Planet. Sci. Lett. 290, 173–182 (2010).

    Article  ADS  CAS  Google Scholar 

  126. Roe, G. H. Orographic precipitation. Annu. Rev. Earth Planet. Sci. 33, 645–671 (2005).

    Article  ADS  CAS  Google Scholar 

  127. Fisher, G. B. et al. Milankovitch-paced erosion in the southern Central Andes. Nat. Commun. 14, 424 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  128. Minder, J. R., Mote, P. W. & Lundquist, J. D. Surface temperature lapse rates over complex terrain: lessons from the Cascade Mountains. J. Geophys. Res. 115, D14122 (2010).

    ADS  Google Scholar 

  129. Hrudya, P. H., Varikoden, H. & Vishnu, R. A review on the Indian summer monsoon rainfall, variability and its association with ENSO and IOD. Meteorol. Atmos. Phys. 133, 1–14 (2020).

    Article  ADS  Google Scholar 

  130. Jury, M. R. Summer climate of Madagascar and monsoon pulsing of its vortex. Meteorol. Atmos. Phys. 128, 117–129 (2015).

    Article  ADS  Google Scholar 

  131. Arivelo, T. A. & Lin, Y.-L. Climatology of heavy orographic rainfall induced by tropical cyclones over Madagascar: from synoptic to mesoscale perspectives. Earth Sci. Res. 5, 132–147 (2016).

    Article  Google Scholar 

  132. Rangel, T. F. et al. Modeling the ecology and evolution of biodiversity: biogeographical cradles, museums, and graves. Science 361, 244 (2018).

    Article  CAS  Google Scholar 

  133. Rahbek, C. et al. Humboldt’s enigma: what causes global patterns of mountain biodiversity? Science 365, 1108–1113 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  134. Lyons, N. J., Val, P., Albert, J. S., Willenbring, J. K. & Gasparini, N. M. Topographic controls on divide migration, stream capture, and diversification in riverine life. Earth Surf. Dyn. 8, 893–912 (2020).

    Article  ADS  Google Scholar 

  135. Ding, L. et al. Timing and mechanisms of Tibetan Plateau uplift. Nat. Rev. Earth Environ. 3, 652–667 (2022).

    Article  ADS  Google Scholar 

  136. Wu, F. et al. Reorganization of Asian climate in relation to Tibetan Plateau uplift. Nat. Rev. Earth Environ. 3, 684–700 (2022).

    Article  ADS  Google Scholar 

  137. Ali, J. R. & Hedges, S. B. A review of geological evidence bearing on proposed Cenozoic land connections between Madagascar and Africa and its relevance to biogeography. Earth Sci. Rev. 232, 104103 (2022).

    Article  Google Scholar 

  138. Ding, W., Ree, R. H., Spicer, R. A. & Xing, Y. Ancient orogenic and monsoon-driven assembly of the world’s richest temperate alpine flora. Science 369, 578–581 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  139. Antonelli, A. et al. Madagascar’s extraordinary biodiversity: evolution, distribution, and use. Science 378, eabf0869 (2022).

    Article  CAS  PubMed  Google Scholar 

  140. Quintero, I. & Jetz, W. Global elevational diversity and diversification of birds. Nature 555, 246–250 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  141. Guo, Q. et al. Global variation in elevational diversity patterns. Sci. Rep. 3, 3007 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Fine, P. V. A. Ecological and evolutionary drivers of geographic variation in species diversity. Annu. Rev. Ecol. Evol. Syst. 46, 369–392 (2015).

    Article  Google Scholar 

  143. Manish, K. et al. Elevational plant species richness patterns and their drivers across non-endemics, endemics and growth forms in the Eastern Himalaya. J. Plant Res. 130, 829–844 (2017).

    Article  CAS  PubMed  Google Scholar 

  144. Hawkins, B. A. et al. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84, 3105–3117 (2003).

    Article  Google Scholar 

  145. Field, R. et al. Spatial species-richness gradients across scales: a meta-analysis. J. Biogeogr. 36, 132–147 (2009).

    Article  Google Scholar 

  146. Stein, A., Gerstner, K. & Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 17, 866–880 (2014).

    Article  PubMed  Google Scholar 

  147. Mittelbach, G. G. et al. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol. Lett. 10, 315–331 (2007).

    Article  PubMed  Google Scholar 

  148. Körner, C. Mountain biodiversity, its causes and function. Ambio 33, 11–17 (2004).

    Article  ADS  Google Scholar 

  149. Sanders, N. J. & Rahbek, C. The patterns and causes of elevational diversity gradients. Ecography 35, 1–3 (2012).

    Article  ADS  Google Scholar 

  150. Körner, C. The use of ‘altitude’ in ecological research. Trends Ecol. Evol. 22, 569–574 (2007).

    Article  PubMed  Google Scholar 

  151. Rahbek, C. The role of spatial scale and the perception of large-scale species-richness patterns. Ecol. Lett. 8, 224–239 (2004).

    Article  Google Scholar 

  152. Hughes, A. C. et al. Sampling biases shape our view of the natural world. Ecography 44, 1259–1269 (2021).

    Article  ADS  Google Scholar 

  153. Raja, N. B. et al. Colonial history and global economics distort our understanding of deep-time biodiversity. Nat. Ecol. Evol. 6, 145–154 (2022).

    Article  PubMed  Google Scholar 

  154. Hoorn, C., Perrigo, A. & Antonelli, A. Mountains, Climate and Biodiversity. (Wiley, 2018).

  155. Chen, F. et al. The evolutions of the Yangtze River and its biodiversity. The Innovation 4, 100417 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Albert, J. S., Tagliacollo, V. A. & Dagosta, F. Diversification of neotropical freshwater fishes. Annu. Rev. Ecol. Evol. Syst. 51, 27–53 (2020).

    Article  Google Scholar 

  157. Waters, J. M., Craw, D., Youngson, J. H. & Wallis, G. P. Genes meet geology: fish phylogeographic pattern reflects ancient, rather than modern, drainage connections. Evolution 55, 1844–1851 (2001).

    CAS  PubMed  Google Scholar 

  158. Waters, J. M., Burridge, C. P. & Craw, D. River capture and freshwater biological evolution: a review of galaxiid fish vicariance. Diversity 12, 216 (2020).

    Article  Google Scholar 

  159. Albert, J. S. et al. Late Neogene megariver captures and the great Amazonian biotic interchange. Glob. Planet. Chang. 205, 103554 (2021).

    Article  Google Scholar 

  160. Pfennig, K. & Pfennig, D. Character displacement: ecological and reproductive responses to a common evolutionary problem. Q. Rev. Biol. 84, 253–276 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Waters, J. M. Competitive exclusion: phylogeography’s ‘elephant in the room’? Mol. Ecol. 20, 4388–4394 (2011).

    Article  PubMed  Google Scholar 

  162. Rabosky, D. L. Diversity-dependence, ecological speciation, and the role of competition in macroevolution. Annu. Rev. Ecol. Evol. Syst. 44, 481–502 (2013).

    Article  Google Scholar 

  163. Abbott, R. et al. Hybridization and speciation. J. Evol. Biol. 26, 229–246 (2013).

    Article  CAS  PubMed  Google Scholar 

  164. Taylor, S. A. & Larson, E. L. Insights from genomes into the evolutionary importance and prevalence of hybridization in nature. Nat. Ecol. Evol. 3, 170–177 (2019).

    Article  PubMed  Google Scholar 

  165. Neuharth, D. et al. Evolution of rift systems and their fault networks in response to surface processes. Tectonics 41, e2021TC007166 (2022).

    Article  ADS  Google Scholar 

  166. Yuan, X. P., Braun, J., Guerit, L., Rouby, D. & Cordonnier, G. A new efficient method to solve the stream power law model taking into account sediment deposition. J. Geophys. Res. Earth Surf. 124, 1346–1365 (2019).

    Article  ADS  Google Scholar 

  167. Acevedo-Trejos, E., Braun, J., Kravitz, K., Raharinirina, N. A. & Bovy, B. AdaScape 1.0: a coupled modelling tool to investigate the links between tectonics, climate, and biodiversity. Geosci. Model Dev. 16, 6921–6941 (2023).

    Article  ADS  Google Scholar 

  168. Yuan, X. P., Jiao, R., Dupont‐Nivet, G. & Shen, X. Southeastern Tibetan Plateau growth revealed by inverse analysis of landscape evolution model. Geophys. Res. Lett. 49, e2021GL097623 (2022).

    Article  ADS  Google Scholar 

  169. Stokes, M. F. et al. Erosion of heterogeneous rock drives diversification of Appalachian fishes. Science 380, 855–859 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  170. Cook, K. L., Andermann, C., Gimbert, F., Adhikari, B. R. & Hovius, N. Glacial lake outburst floods as drivers of fluvial erosion in the Himalaya. Science 362, 53–57 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  171. Nie, Y. et al. Glacial change and hydrological implications in the Himalaya and Karakoram. Nat. Rev. Earth Environ. 2, 91–106 (2021).

    Article  ADS  Google Scholar 

  172. Compagno, L., Huss, M., Zekollari, H., Miles, E. S. & Farinotti, D. Future growth and decline of high mountain Asia’s ice-dammed lakes and associated risk. Commun. Earth Environ. 3, 191 (2022).

    Article  ADS  Google Scholar 

  173. Taylor, C., Robinson, T. R., Dunning, S., Rachel Carr, J. & Westoby, M. Glacial lake outburst floods threaten millions globally. Nat. Commun. 14, 487 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  174. Wang, W. et al. Abandonment of ancient cities near the Salawusu River valley, China, triggered by stream capture. Commun. Earth Environ. 3, 326 (2022).

    Article  ADS  Google Scholar 

  175. Bauer, P., Stevens, B. & Hazeleger, W. A digital twin of Earth for the green transition. Nat. Clim. Chang. 11, 80–83 (2021).

    Article  ADS  Google Scholar 

  176. Li, X. et al. Big Data in Earth system science and progress towards a digital twin. Nat. Rev. Earth Environ. 4, 319–332 (2023).

    Article  ADS  Google Scholar 

  177. Ramirez, R. M. & Craddock, R. A. The geological and climatological case for a warmer and wetter early Mars. Nat. Geosci. 11, 230–237 (2018).

    Article  ADS  CAS  Google Scholar 

  178. Galofre, A. G., Jellinek, A. M. & Osinski, G. R. Valley formation on early Mars by subglacial and fluvial erosion. Nat. Geosci. 13, 663–668 (2020).

    Article  ADS  Google Scholar 

  179. Stucky de Quay, G., Goudge, T. A., Kite, E. S., Fassett, C. I. & Guzewich, S. D. Limits on runoff episode duration for early Mars: integrating lake hydrology and climate models. Geophys. Res. Lett. 48, e2021GL093523 (2021).

    Article  ADS  Google Scholar 

  180. Bamber, E. R., Goudge, T. A., Fassett, C. I., Osinski, G. R. & Stucky de Quay, G. Paleolake inlet valley formation: factors controlling which craters breached on early Mars. Geophys. Res. Lett. 49, e2022GL101097 (2022).

    Article  ADS  Google Scholar 

  181. Mangold, N., Adeli, S., Conway, S., Ansan, V. & Langlais, B. A chronology of early Mars climatic evolution from impact crater degradation. J. Geophys. Res. Planets 117, E04003 (2012).

    Article  ADS  Google Scholar 

  182. Goudge, T. A., Fassett, C. I., Head, J. W., Mustard, J. F. & Aureli, K. L. Insights into surface runoff on early Mars from paleolake basin morphology and stratigraphy. Geology 44, 419–422 (2016).

    Article  ADS  Google Scholar 

  183. Goudge, T. A., Fassett, C. I. & Mohrig, D. Incision of paleolake outlet canyons on Mars from overflow flooding. Geology 47, 7–10 (2018).

    Article  ADS  Google Scholar 

  184. Wordsworth, R. D. The climate of early Mars. Annu. Rev. Earth Planet. Sci. 44, 381–408 (2016).

    Article  ADS  CAS  Google Scholar 

  185. de Haas, T., Conway, S. J. & Krautblatter, M. Recent (Late Amazonian) enhanced backweathering rates on Mars: paracratering evidence from gully alcoves. J. Geophys. Res. Planets 120, 2169–2189 (2015).

    Article  ADS  Google Scholar 

  186. Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys. 45, RG2004 (2007).

    Article  ADS  Google Scholar 

  187. He, C. et al. A global dataset of the shape of drainage systems. Preprint at https://doi.org/10.5194/essd-2023-363 (2023).

  188. He, C. Tectonic Control on the Migration of the Main Drainage Divide of a Mountain Belt: Constraints from Numerical Modeling and Topographic Analyses. PhD thesis, Zhejiang Univ. (2021).

  189. Karger, D. N. et al. Climatologies at high resolution for the Earth’s land surface areas. Sci. Data 4, 170122 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl. Acad. Sci. USA 110, E2602–E2610 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  191. Lehner, B. & Grill, G. Global river hydrography and network routing: baseline data and new approaches to study the world’s large river systems. Hydrol. Process. 27, 2171–2186 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank W. Schwanghart, M. F. Stokes and A. M. Forte for sharing the original data. The authors express their sincere gratitude to J. Turowski, E. Deal, L. Gourbet, H. Davies and A. Wild for their suggestions on the previous versions of this manuscript. The authors thank Y. Y. Wang and T. Ehlers for the discussions. Special thanks are extended to L. Becker for improving the English of the manuscript. C.H. acknowledges support from NSFC (National Natural Science Foundation of China) (grant 42201008), Helmholtz-OCPC Postdoc Program, and the Expedition Funding from German Research Centre for Geosciences (grant XP235501). J.B. and E.A-T. are supported by the German Research Foundation (grant 268236062) as part of the Collaborative Research Centre ‘Earth evolution at the dry limit’ (CRC-1211). X.Y. acknowledges funding from NSFC (grant 42272261).

Author information

Authors and Affiliations

Authors

Contributions

C.H. wrote the first draft and made the figures. All authors contributed to the conceptualization, discussion, data collection and editing of all manuscript components.

Corresponding author

Correspondence to Chuanqi He.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks S. Willett and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Base level

The regional lowest point above which a river can erode its channel, such as the ocean or a lake.

Biodiversity

The variety of lifeforms, including their genetic, phenotypic, functional, taxonomic and ecological variation in space and time.

Catchments

Geographical areas where surface water flows and converges into common drainage points.

Digital twin

A digital model that uses real-time data and simulation to replicate the behaviour of a physical system or process, enabling optimization and predictive maintenance.

Expanding catchment

Catchment that gains drainage area from their neighbours during divide migration.

Hillslopes

The sloping surfaces of hills located between river channels and drainage divides.

Horizontal tectonic advection

The movement of topography in a horizontal direction induced by tectonic deformation.

Impact crater rim

A raised boundary encircling an impact crater, often functioning as a drainage divide.

Knickpoint

A sharp change in the slope of river profile, such as a waterfall.

Main drainage divide

A drainage divide that separates multiple drainage basins.

Rift margin escarpments

Cliffs formed along the edge of rift valleys where the Earth’s crust pulls apart.

Shrinking catchment

Catchment that loses drainage area during divide migration.

Thermochronology

A geological dating technique that determines the temperature history of rocks, revealing the timing of tectonic and erosional events.

Wind gap

A drainage divide through which a waterway once flowed but is now dry owing to river capture.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, C., Braun, J., Tang, H. et al. Drainage divide migration and implications for climate and biodiversity. Nat Rev Earth Environ 5, 177–192 (2024). https://doi.org/10.1038/s43017-023-00511-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-023-00511-z

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene