Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Greenhouse gas emissions and mitigation in rice agriculture

Abstract

Rice paddies supply half the global population with staple food, but also account for ~48% of greenhouse gas (GHG) emissions from croplands. In this Review, we outline the characteristics of GHG emissions (CH4 and N2O) from paddy soils, focusing on climate change effects and mitigation strategies. Global mean annual area-scaled and yield-scaled GHG emissions are ~7,870 kg CO2e ha−1 and 0.9 kg CO2e kg1, respectively, with 94% from CH4. However, emissions vary markedly, primarily reflecting the impact of management practices. In particular, organic matter additions and continuous flooding of paddies both stimulate CH4 emissions, whereas fertilizer N application rate is the most important driver of N2O emissions. Although contemporary changes in emissions are uncertain, future elevated [CO2] and warming are projected to increase CH4 emissions by 4–40% and 15–23%, respectively. Yet, integrated agronomic management strategies — including cultivar, organic matter, water, tillage and nitrogen management — offer GHG mitigation potential. In particular, new rice variety selection, non-continuous flooding and straw removal strategies reduce GHG emissions by 24%, 44% and 46% on average, respectively. However, approaches need to be optimized on the basis of seasonal CH4 emission patterns, necessitating improved quantification and reduced uncertainty in regional and global GHG estimates, especially in low latitudes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: In situ greenhouse gas flux measurements in rice paddies.
Fig. 2: CH4 emission patterns throughout the rice-growing season.
Fig. 3: Effects of elevated CO2 and warming on CH4 and N2O emissions.
Fig. 4: CH4 emissions as affected by breeding strategies to increase rice yield.
Fig. 5: Potential mitigation strategies.

Similar content being viewed by others

Data availability

Data used are available in Supplementary Data 1 and 2.

References

  1. Liu, Y. et al. Rice paddy soils are a quantitatively important carbon store according to a global synthesis. Commun. Earth Environ. 2, 154 (2021).

    Article  Google Scholar 

  2. Yuan, S. et al. Sustainable intensification for a larger global rice bowl. Nat. Commun. 12, 7163 (2021).

    Article  Google Scholar 

  3. USDA. USDA ERS — Rice Yearbook. Economic Research Service (U.S. Department of Agriculture) https://www.ers.usda.gov/data-products/rice-yearbook/ (2023).

  4. IRRI. Global Rice Science Partnership. Rice Agri-Food System CRP, RICE (2016).

  5. FAO. Food and Agriculture Organization of the United Nations: FAOSTAT-Food and agriculture. https://www.fao.org/faostat/en/#home (2022).

  6. IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. https://doi.org/10.1017/9781009157896 (Cambridge Univ. Press, 2021).

  7. EPA. Non-CO2 Greenhouse Gas Data Tool | US EPA. A Data Exploration Tool for Viewing Non-CO2 GHG Projections and Mitigation Assessments as Compiled in the EPA Non-CO2 Greenhouse Emission Projections & Mitigation Potential Reports (2019 & 2022). https://cfpub.epa.gov/ghgdata/nonco2/ (2022).

  8. Linquist, B., Groenigen, K. J., Adviento-Borbe, M. A., Pittelkow, C. & Kessel, C. An agronomic assessment of greenhouse gas emissions from major cereal crops. Glob. Change Biol. 18, 194–209 (2012).

    Article  Google Scholar 

  9. Carlson, K. M. et al. Greenhouse gas emissions intensity of global croplands. Nat. Clim. Change 7, 63–68 (2017).

    Article  Google Scholar 

  10. Lee, J. H. et al. Straw recycling in rice paddy: trade-off between greenhouse gas emission and soil carbon stock increase. Soil. Tillage Res. 199, 104598 (2020).

    Article  Google Scholar 

  11. Belenguer-Manzanedo, M. et al. Effect of post-harvest practices on greenhouse gas emissions in rice paddies: flooding regime and straw management. Plant Soil 474, 77–98 (2022).

    Article  Google Scholar 

  12. Mandal, U. K. et al. Net ecosystem exchange of carbon, greenhouse gases, and energy budget in coastal lowland double cropped rice ecology. Soil Tillage Res. 212, 105076 (2021).

    Article  Google Scholar 

  13. Yan, X., Yagi, K., Akiyama, H. & Akimoto, H. Statistical analysis of the major variables controlling methane emission from rice fields. Glob. Change Biol. 11, 1131–1141 (2005).

    Article  Google Scholar 

  14. Cui, X. et al. Global mapping of crop-specific emission factors highlights hotspots of nitrous oxide mitigation. Nat. Food 2, 886–893 (2021).

    Article  Google Scholar 

  15. Wang, C. et al. An additive effect of elevated atmospheric CO2 and rising temperature on methane emissions related to methanogenic community in rice paddies. Agric. Ecosyst. Environ. 257, 165–174 (2018).

    Article  Google Scholar 

  16. Liu, Y. et al. Responses of methanogenic and methanotrophic communities to elevated atmospheric CO2 and temperature in a paddy field. Front. Microbiol. 7, 1895 (2016).

    Article  Google Scholar 

  17. Yvon-Durocher, G. et al. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature 507, 488–491 (2014).

    Article  Google Scholar 

  18. Liu, S. et al. Increased soil release of greenhouse gases shrinks terrestrial carbon uptake enhancement under warming. Glob. Change Biol. 26, 4601–4613 (2020).

    Article  Google Scholar 

  19. Qian, H. et al. Unexpected parabolic temperature dependency of CH4 emissions from rice paddies. Environ. Sci. Technol. 56, 4871–4881 (2022).

    Article  Google Scholar 

  20. Gao, H., Tian, H., Zhang, Z. & Xia, X. Warming-induced greenhouse gas fluxes from global croplands modified by agricultural practices: a meta-analysis. Sci. Total Environ. 820, 153288 (2022).

    Article  Google Scholar 

  21. Wang, H. et al. Effects of free-air temperature increase on grain yield and greenhouse gas emissions in a double rice cropping system. Field Crop. Res. 281, 108489 (2022).

    Article  Google Scholar 

  22. Jiang, Y. et al. Higher yields and lower methane emissions with new rice cultivars. Glob. Change Biol. 23, 4728–4738 (2017).

    Article  Google Scholar 

  23. Jiang, Y. et al. Water management to mitigate the global warming potential of rice systems: a global meta-analysis. Field Crop. Res. 234, 47–54 (2019).

    Article  Google Scholar 

  24. Wang, J. et al. The role of rice cultivation in changes in atmospheric methane concentration and the Global Methane Pledge. Glob. Change Biol. 29, 2776–2789 (2023).

    Article  Google Scholar 

  25. EDGAR v7.0. Global Greenhouse Gas Emissions (2022).

  26. Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 123, 1–22 (2004).

    Article  Google Scholar 

  27. Xia, L., Lam, S. K., Yan, X. & Chen, D. How does recycling of livestock manure in agroecosystems affect crop productivity, reactive nitrogen losses, and soil carbon balance? Environ. Sci. Technol. 51, 7450–7457 (2017).

    Article  Google Scholar 

  28. Zhu, X. et al. Manure amendment can reduce rice yield loss under extreme temperatures. Commun. Earth Environ. 3, 147 (2022).

    Article  Google Scholar 

  29. Jiang, Y. et al. Acclimation of methane emissions from rice paddy fields to straw addition. Sci. Adv. 5, eqqu9038 (2019).

    Article  Google Scholar 

  30. Zhao, X. et al. Management-induced greenhouse gases emission mitigation in global rice production. Sci. Total Environ. 649, 1299–1306 (2019).

    Article  Google Scholar 

  31. Zhang, W. et al. Effects of continuous manure application on methanogenic and methanotrophic communities and methane production potentials in rice paddy soil. Agric. Ecosyst. Environ. 258, 121–128 (2018).

    Article  Google Scholar 

  32. Kong, D. et al. Linking methane emissions to methanogenic and methanotrophic communities under different fertilization strategies in rice paddies. Geoderma 347, 233–243 (2019).

    Article  Google Scholar 

  33. Raheem, A. et al. Leguminous green manure mitigates methane emissions in paddy field by regulating acetoclastic and hydrogenotrophic methanogens. Eur. J. Soil Biol. 108, 103380 (2022).

    Article  Google Scholar 

  34. Yang, Y. et al. Long-term incorporation of wheat straw changes the methane oxidation potential, abundance and community composition of methanotrophs in a paddy ecosystem. Appl. Soil Ecol. 173, 104384 (2022).

    Article  Google Scholar 

  35. Minamikawa, K., Yamaguchi, T. & Tokida, T. Dissemination of Water Management in Rice Paddies in Asia. https://km.fftc.org.tw/article/443 (2018).

  36. Jiao, Z. et al. Water management influencing methane and nitrous oxide emissions from rice field in relation to soil redox and microbial community. Commun. Soil Sci. Plant Anal. 37, 1889–1903 (2006).

    Article  Google Scholar 

  37. Ma, K. & Lu, Y. Regulation of microbial methane production and oxidation by intermittent drainage in rice field soil: methanogens and methanotrophs in paddy soil. FEMS Microbiol. Ecol. 75, 446–456 (2011).

    Article  Google Scholar 

  38. Islam, S. F., van Groenigen, J. W., Jensen, L. S., Sander, B. O. & de Neergaard, A. The effective mitigation of greenhouse gas emissions from rice paddies without compromising yield by early-season drainage. Sci. Total Environ. 612, 1329–1339 (2018).

    Article  Google Scholar 

  39. Martínez-Eixarch, M., Beltrán-Miralles, M., Guéry, S. & Alcaraz, C. Extended methane mitigation capacity of a mid-season drainage beyond the rice growing season: a case in Spain. Environ. Monit. Assess. 194, 648 (2022).

    Article  Google Scholar 

  40. Liao, P. et al. Identifying agronomic practices with higher yield and lower global warming potential in rice paddies: a global meta-analysis. Agric. Ecosyst. Environ. 322, 107663 (2021).

    Article  Google Scholar 

  41. Linquist, B. A., Adviento-Borbe, M. A., Pittelkow, C. M., van Kessel, C. & van Groenigen, K. J. Fertilizer management practices and greenhouse gas emissions from rice systems: a quantitative review and analysis. Field Crop. Res. 135, 10–21 (2012).

    Article  Google Scholar 

  42. Guo, J. H. et al. Significant acidification in major Chinese croplands. Science 327, 1008–1010 (2010).

    Article  Google Scholar 

  43. Prosser, J. I., Hink, L., Gubry‐Rangin, C. & Nicol, G. W. Nitrous oxide production by ammonia oxidizers: physiological diversity, niche differentiation and potential mitigation strategies. Glob. Change Biol. 26, 103–118 (2020).

    Article  Google Scholar 

  44. IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. https://www.ipcc.ch/report/2019-refinement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/ (2019).

  45. Feng, J. et al. Impacts of cropping practices on yield-scaled greenhouse gas emissions from rice fields in China: a meta-analysis. Agric. Ecosyst. Environ. 164, 220–228 (2013).

    Article  Google Scholar 

  46. Zou, J., Huang, Y., Jiang, J., Zheng, X. & Sass, R. L. A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China: effects of water regime, crop residue, and fertilizer application. Glob. Biogeochem. Cycles 19, B2021 (2005).

    Article  Google Scholar 

  47. Sander, B. O., Samson, M. & Buresh, R. J. Methane and nitrous oxide emissions from flooded rice fields as affected by water and straw management between rice crops. Geoderma 235–236, 355–362 (2014).

    Article  Google Scholar 

  48. Kritee, K. et al. High nitrous oxide fluxes from rice indicate the need to manage water for both long- and short-term climate impacts. Proc. Natl Acad. Sci. USA 115, 9720–9725 (2018).

    Article  Google Scholar 

  49. Lu, W. F. et al. Methane emissions and mitigation options in irrigated rice fields in southeast China. Nutr. Cycl. Agroecosyst. 58, 65–73 (2000).

    Article  Google Scholar 

  50. Vo, T. B. T. et al. Methane emission from rice cultivation in different agro-ecological zones of the Mekong river delta: seasonal patterns and emission factors for baseline water management. Soil Sci. Plant Nutr. 64, 47–58 (2018).

    Article  Google Scholar 

  51. Hang, X. et al. Differences in rice yield and CH4 and N2O emissions among mechanical planting methods with straw incorporation in Jianghuai area, China. Soil. Tillage Res. 144, 205–210 (2014).

    Article  Google Scholar 

  52. Haque, M. M., Kim, G. W., Kim, P. J. & Kim, S. Y. Comparison of net global warming potential between continuous flooding and midseason drainage in monsoon region paddy during rice cropping. Field Crop. Res. 193, 133–142 (2016).

    Article  Google Scholar 

  53. Simmonds, M. B. et al. Seasonal methane and nitrous oxide emissions of several rice cultivars in direct-seeded systems. J. Environ. Qual. 44, 103–114 (2015).

    Article  Google Scholar 

  54. Takakai, F. et al. Effect of the long-term application of organic matter on soil carbon accumulation and GHG emissions from a rice paddy field in a cool-temperate region, Japan-II. Effect of different compost applications. Soil Sci. Plant Nutr. 66, 96–105 (2020).

    Article  Google Scholar 

  55. Alberto, M. C. R. et al. Straw incorporated after mechanized harvesting of irrigated rice affects net emissions of CH4 and CO2 based on eddy covariance measurements. Field Crop. Res. 184, 162–175 (2015).

    Article  Google Scholar 

  56. Dash, P. K. et al. Mitigation of greenhouse gases emission through value-added straw amendments in rice–green gram system. Int. J. Environ. Sci. Technol. 20, 1019–1036 (2023).

    Article  Google Scholar 

  57. Martínez-Eixarch, M. et al. Neglecting the fallow season can significantly underestimate annual methane emissions in Mediterranean rice fields. PLoS ONE 13, e0198081 (2018).

    Article  Google Scholar 

  58. Cai, Z., Tsuruta, H., Gao, M., Xu, H. & Wei, C. Options for mitigating methane emission from a permanently flooded rice field. Glob. Change Biol. 9, 37–45 (2003).

    Article  Google Scholar 

  59. Zhang, Y. et al. Contribution of rice variety renewal and agronomic innovations to yield improvement and greenhouse gas mitigation in China. Environ. Res. Lett. 14, 114020 (2019).

    Article  Google Scholar 

  60. Bouwman, A. F. et al. Lessons from temporal and spatial patterns in global use of N and P fertilizer on cropland. Sci. Rep. 7, 40366 (2017).

    Article  Google Scholar 

  61. Shcherbak, I., Millar, N. & Robertson, G. P. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc. Natl Acad. Sci. USA 111, 9199–9204 (2014).

    Article  Google Scholar 

  62. van Groenigen, K. J., van Kessel, C. & Hungate, B. A. Increased greenhouse-gas intensity of rice production under future atmospheric conditions. Nat. Clim. Change 3, 288–291 (2013).

    Article  Google Scholar 

  63. Liu, S. et al. Climatic role of terrestrial ecosystem under elevated CO2: a bottom-up greenhouse gases budget. Ecol. Lett. 21, 1108–1118 (2018).

    Article  Google Scholar 

  64. Kuzyakov, Y., Horwath, W. R., Dorodnikov, M. & Blagodatskaya, E. Review and synthesis of the effects of elevated atmospheric CO2 on soil processes: no changes in pools, but increased fluxes and accelerated cycles. Soil Biol. Biochem. 128, 66–78 (2019).

    Article  Google Scholar 

  65. Ainsworth, E. A. & Long, S. P. 30 years of free‐air carbon dioxide enrichment (FACE): what have we learned about future crop productivity and its potential for adaptation? Glob. Change Biol. 27, 27–49 (2021).

    Article  Google Scholar 

  66. Inubushi, K. et al. Effects of free-air CO2 enrichment (FACE) on CH4 emission from a rice paddy field. Glob. Change Biol. 9, 1458–1464 (2003).

    Article  Google Scholar 

  67. Qian, H. et al. Acclimation of CH4 emissions from paddy soil to atmospheric CO2 enrichment in a growth chamber experiment. Crop J. 10, 140–146 (2022).

    Article  Google Scholar 

  68. Yu, H. et al. Elevated CO2 does not necessarily enhance greenhouse gas emissions from rice paddies. Sci. Total Environ. 810, 152363 (2022).

    Article  Google Scholar 

  69. Zheng, X. et al. Nitrogen-regulated effects of free-air CO2 enrichment on methane emissions from paddy rice fields. Glob. Change Biol. 12, 1717–1732 (2006).

    Article  Google Scholar 

  70. Liu, Y. et al. Carbon input and allocation by rice into paddy soils: a review. Soil Biol. Biochem. 133, 97–107 (2019).

    Article  Google Scholar 

  71. Xiao, M. et al. Effect of nitrogen fertilizer on rice photosynthate allocation and carbon input in paddy soil. Eur. J. Soil Sci. 70, 786–795 (2019).

    Article  Google Scholar 

  72. Qian, H. et al. Intermittent flooding lowers the impact of elevated atmospheric CO2 on CH4 emissions from rice paddies. Agric. Ecosyst. Environ. 329, 107872 (2022).

    Article  Google Scholar 

  73. Qian, H. et al. Lower‐than‐expected CH4 emissions from rice paddies with rising CO2 concentrations. Glob. Change Biol. 26, 2368–2376 (2020).

    Article  Google Scholar 

  74. Yu, H. et al. Effects of elevated CO2 concentration on CH4 and N2O emissions from paddy fields: a meta-analysis. Sci. China Earth Sci. 65, 96–106 (2022).

    Article  Google Scholar 

  75. Bhattacharyya, P. et al. Impact of elevated CO2 and temperature on soil C and N dynamics in relation to CH4 and N2O emissions from tropical flooded rice (Oryza sativa L.). Sci. Total Environ. 461–462, 601–611 (2013).

    Article  Google Scholar 

  76. Yao, Z. et al. Elevated atmospheric CO2 reduces yield‐scaled N2O fluxes from subtropical rice systems: six site‐years field experiments. Glob. Change Biol. 27, 327–339 (2021).

    Article  Google Scholar 

  77. Wang, B. et al. Responses of yield, CH4 and N2O emissions to elevated atmospheric temperature and CO2 concentration in a double rice cropping system. Eur. J. Agron. 96, 60–69 (2018).

    Article  Google Scholar 

  78. Wei, L. et al. Comparing carbon and nitrogen stocks in paddy and upland soils: accumulation, stabilization mechanisms, and environmental drivers. Geoderma 398, 115121 (2021).

    Article  Google Scholar 

  79. Gaihre, Y. K. et al. Effects of increased temperatures and rice straw incorporation on methane and nitrous oxide emissions in a greenhouse experiment with rice: greenhouse gas emissions under elevated temperatures. Eur. J. Soil Sci. 67, 868–880 (2016).

    Article  Google Scholar 

  80. Li, L. et al. Terrestrial N2O emissions and related functional genes under climate change: a global meta‐analysis. Glob. Change Biol. 26, 931–943 (2020).

    Article  Google Scholar 

  81. Bai, E. et al. A meta‐analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. N. Phytol. 199, 441–451 (2013).

    Article  Google Scholar 

  82. Wassmann, R. et al. Regional vulnerability of climate change impacts on Asian rice production and scope for adaptation. in Advances in Agronomy, Vol. 102, Ch. 3, 91–133 (Academic Press, 2009).

  83. Jägermeyr, J. et al. Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nat. Food 2, 873–885 (2021).

    Article  Google Scholar 

  84. Cavicchioli, R. et al. Scientists’ warning to humanity: microorganisms and climate change. Nat. Rev. Microbiol. 17, 569–586 (2019).

    Article  Google Scholar 

  85. Neubauer, S. C. Ecosystem responses of a tidal freshwater marsh experiencing saltwater intrusion and altered hydrology. Estuaries Coasts 36, 491–507 (2013).

    Article  Google Scholar 

  86. Syvitski, J. P. M. et al. Sinking deltas due to human activities. Nat. Geosci. 2, 681–686 (2009).

    Article  Google Scholar 

  87. Wassmann, R., Hien, N. X., Hoanh, C. T. & Tuong, T. P. Sea level rise affecting the Vietnamese Mekong Delta: water elevation in the flood season and implications for rice production. Clim. Change 66, 89–107 (2004).

    Article  Google Scholar 

  88. Wassmann, R. et al. High-resolution mapping of flood and salinity risks for rice production in the Vietnamese Mekong Delta. Field Crop. Res. 236, 111–120 (2019).

    Article  Google Scholar 

  89. Wassmann, R. et al. Climate change affecting rice production: the physiological and agronomic basis for possible adaptation strategies. in Advances in Agronomy, Vol. 101 (ed. Sparks, D. L.) Ch. 2, 59–122 (Academic Press, 2009).

  90. Wassmann, R. et al. Characterization of methane emissions from rice fields in Asia. III. Mitigation options and future research needs. Nutr. Cycl. Agroecosyst. 58, 23–36 (2000).

    Article  Google Scholar 

  91. Watanabe, A., Takeda, T. & Kimura, M. Evaluation of origins of CH4 carbon emitted from rice paddies. J. Geophys. Res. Atmos. 104, 23623–23629 (1999).

    Article  Google Scholar 

  92. Tokida, T. et al. Methane and soil CO2 production from current-season photosynthates in a rice paddy exposed to elevated CO2 concentration and soil temperature. Glob. Change Biol. 17, 3327–3337 (2011).

    Article  Google Scholar 

  93. Yuan, Q., Pump, J. & Conrad, R. Partitioning of CH4 and CO2 production originating from rice straw, soil and root organic carbon in rice microcosms. PLoS ONE 7, e49073 (2012).

    Article  Google Scholar 

  94. Ding, H. et al. Effect of microbial community structures and metabolite profile on greenhouse gas emissions in rice varieties. Environ. Pollut. 306, 119365 (2022).

    Article  Google Scholar 

  95. Conrad, R. Microbial ecology of methanogens and methanotrophs. in Advances in Agronomy, Vol. 96, 1–63 (Elsevier, 2007).

  96. Groot, T. T., Bodegom, P. M. V. & Harren, F. J. M. Quantification of methane oxidation in the rice rhizosphere using 13C-labelled methane. Biogeochemistry 64, 355–372 (2003).

    Article  Google Scholar 

  97. Kim, W.-J., Bui, L. T., Chun, J.-B., McClung, A. M. & Barnaby, J. Y. Correlation between methane (CH4) emissions and root aerenchyma of rice varieties. Plant Breed. Biotechnol. 6, 381–390 (2018).

    Article  Google Scholar 

  98. Gutierrez, J., Atulba, S. L., Kim, G. & Kim, P. J. Importance of rice root oxidation potential as a regulator of CH4 production under waterlogged conditions. Biol. Fertil. Soils 50, 861–868 (2014).

    Article  Google Scholar 

  99. Zheng, H., Fu, Z., Zhong, J. & Long, W. Low methane emission in rice cultivars with high radial oxygen loss. Plant Soil 431, 119–128 (2018).

    Article  Google Scholar 

  100. Aulakh, M. S., Wassmann, R., Rennenberg, H. & Fink, A. S. Pattern and amount of aerenchyma relate to variable methane transport capacity of different rice cultivars. Plant Biol. 2, 182–194 (2000).

    Article  Google Scholar 

  101. Denier van der Gon, H. A. C. et al. Optimizing grain yields reduces CH4 emissions from rice paddy fields. Proc. Natl Acad. Sci. USA 99, 12021–12024 (2002).

    Article  Google Scholar 

  102. Su, J. et al. Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice. Nature 523, 602–606 (2015).

    Article  Google Scholar 

  103. Jiang, Y. et al. Limited potential of harvest index improvement to reduce methane emissions from rice paddies. Glob. Change Biol. 25, 686–698 (2019).

    Article  Google Scholar 

  104. Ma, K., Qiu, Q. & Lu, Y. Microbial mechanism for rice variety control on methane emission from rice field soil. Glob. Change Biol. 16, 3085–3095 (2009).

    Google Scholar 

  105. Huang, Y., Sass, R. & Fisher, F. Methane emission from Texas rice paddy soils. 2. Seasonal contribution of rice biomass production to CH4 emission. Glob. Change Biol. 3, 491–500 (1997).

    Article  Google Scholar 

  106. Zhang, Y. et al. Aboveground morphological traits do not predict rice variety effects on CH4 emissions. Agric. Ecosyst. Environ. 208, 86–93 (2015).

    Article  Google Scholar 

  107. Yuan, L. P. The prospect of Chinese super hybrid rice breeding techniques. Chin. Rural Discov. 30, 18–21 (2015).

    Google Scholar 

  108. Richards, R. A. Selectable traits to increase crop photosynthesis and yield of grain crops. J. Exp. Bot. 51, 447–458 (2000).

    Article  Google Scholar 

  109. Peng, S., Khush, G. S., Virk, P., Tang, Q. & Zou, Y. Progress in ideotype breeding to increase rice yield potential. Field Crop. Res. 108, 32–38 (2008).

    Article  Google Scholar 

  110. Cheng, S.-H. et al. Super hybrid rice breeding in China: achievements and prospects. J. Integr. Plant Biol. 49, 805–810 (2007).

    Article  Google Scholar 

  111. Gogoi, N., Baruah, K. K. & Gupta, P. K. Selection of rice genotypes for lower methane emission. Agron. Sustain. Dev. 28, 181–186 (2008).

    Article  Google Scholar 

  112. Jiang, Y. et al. Optimizing rice plant photosynthate allocation reduces N2O emissions from paddy fields. Sci. Rep. 6, 29333 (2016).

    Article  Google Scholar 

  113. Perry, H., Carrijo, D. & Linquist, B. Single midseason drainage events decrease global warming potential without sacrificing grain yield in flooded rice systems. Field Crop. Res. 276, 108312 (2022).

    Article  Google Scholar 

  114. Souza, R., Yin, J. & Calabrese, S. Optimal drainage timing for mitigating methane emissions from rice paddy fields. Geoderma 394, 114986 (2021).

    Article  Google Scholar 

  115. Bouwman, A. F. Nitrogen oxides and tropical agriculture. Nature 392, 866–867 (1998).

    Article  Google Scholar 

  116. Livsey, J. et al. Do alternative irrigation strategies for rice cultivation decrease water footprints at the cost of long-term soil health? Environ. Res. Lett. 14, 074011 (2019).

    Article  Google Scholar 

  117. Lagomarsino, A. et al. Alternate wetting and drying of rice reduced CH4 emissions but triggered N2O peaks in a clayey soil of central Italy. Pedosphere 26, 533–548 (2016).

    Article  Google Scholar 

  118. Karki, S., Adviento-Borbe, M. A. A., Massey, J. H. & Reba, M. L. Assessing seasonal methane and nitrous oxide emissions from furrow-irrigated rice with cover crops. Agriculture 11, 261 (2021).

    Article  Google Scholar 

  119. Wassmann, R. et al. New records of very high nitrous oxide fluxes from rice cannot be generalized for water management and climate impacts. Proc. Natl Acad. Sci. USA 116, 1464–1465 (2019).

    Article  Google Scholar 

  120. Bo, Y. et al. Global benefits of non‐continuous flooding to reduce greenhouse gases and irrigation water use without rice yield penalty. Glob. Change Biol. 28, 3636–3650 (2022).

    Article  Google Scholar 

  121. Yan, X., Akiyama, H., Yagi, K. & Akimoto, H. Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change Guidelines. Glob. Biogeochem. Cycles 23, GB2002 (2009).

    Article  Google Scholar 

  122. Massey, J. H. et al. Early cascade rice irrigation shutoff (ECIS) conserves water: implications for cascade flood automation. Irrig. Sci. 41, 355–364 (2022).

    Article  Google Scholar 

  123. Sander, B. O., Wassmann, R., Palao, L. K. & Nelson, A. Climate-based suitability assessment for alternate wetting and drying water management in the Philippines: a novel approach for mapping methane mitigation potential in rice production. Carbon Manag. 8, 331–342 (2017).

    Article  Google Scholar 

  124. Kraehmer, H., Thomas, C. & Vidotto, F. Rice production in Europe. in Rice Production Worldwide (eds Chauhan, B. S., Jabran, K. & Mahajan, G.) 93–116 (Springer International Publishing, 2017).

  125. Peyron, M. et al. Greenhouse gas emissions as affected by different water management practices in temperate rice paddies. Agric. Ecosyst. Environ. 232, 17–28 (2016).

    Article  Google Scholar 

  126. Monaco, S. et al. Effects of the application of a moderate alternate wetting and drying technique on the performance of different European varieties in Northern Italy rice system. Field Crop. Res. 270, 108220 (2021).

    Article  Google Scholar 

  127. Martínez-Eixarch, M. et al. Multiple environmental benefits of alternate wetting and drying irrigation system with limited yield impact on European rice cultivation: the Ebre Delta case. Agric. Water Manag. 258, 107164 (2021).

    Article  Google Scholar 

  128. Shang, Q. et al. Net annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems: a 3-year field measurement in long-term fertilizer experiments. Glob. Change Biol. 17, 2196–2210 (2011).

    Article  Google Scholar 

  129. Xia, L., Wang, S. & Yan, X. Effects of long-term straw incorporation on the net global warming potential and the net economic benefit in a rice–wheat cropping system in China. Agric. Ecosyst. Environ. 197, 118–127 (2014).

    Article  Google Scholar 

  130. Liu, C., Lu, M., Cui, J., Li, B. & Fang, C. Effects of straw carbon input on carbon dynamics in agricultural soils: a meta-analysis. Glob. Change Biol. 20, 1366–1381 (2014).

    Article  Google Scholar 

  131. Oldfield, E. E. et al. Positive associations of soil organic matter and crop yields across a regional network of working farms. Soil Sci. Soc. Am. J. 86, 384–397 (2022).

    Article  Google Scholar 

  132. Song, H. J., Lee, J. H., Canatoy, R. C., Lee, J. G. & Kim, P. J. Strong mitigation of greenhouse gas emission impact via aerobic short pre-digestion of green manure amended soils during rice cropping. Sci. Total Environ. 761, 143193 (2021).

    Article  Google Scholar 

  133. Cai, Z. C., Tsuruta, H. & Minami, K. Methane emission from rice fields in China: measurements and influencing factors. J. Geophys. Res. Atmospheres 105, 17231–17242 (2000).

    Article  Google Scholar 

  134. Zhang, B. et al. Rice straw incorporation in winter with fertilizer-N application improves soil fertility and reduces global warming potential from a double rice paddy field. Biol. Fertil. Soils 49, 1039–1052 (2013).

    Article  Google Scholar 

  135. He, T. et al. Combined application of biochar with urease and nitrification inhibitors have synergistic effects on mitigating CH4 emissions in rice field: a three-year study. Sci. Total Environ. 743, 140500 (2020).

    Article  Google Scholar 

  136. Nan, Q., Wang, C., Wang, H., Yi, Q. & Wu, W. Mitigating methane emission via annual biochar amendment pyrolyzed with rice straw from the same paddy field. Sci. Total Environ. 746, 141351 (2020).

    Article  Google Scholar 

  137. Feng, Y., Xu, Y., Yu, Y., Xie, Z. & Lin, X. Mechanisms of biochar decreasing methane emission from Chinese paddy soils. Soil Biol. Biochem. 46, 80–88 (2012).

    Article  Google Scholar 

  138. Qi, L. et al. Biochar decreases methanogenic archaea abundance and methane emissions in a flooded paddy soil. Sci. Total Environ. 752, 141958 (2021).

    Article  Google Scholar 

  139. Song, K. et al. Influence of tillage practices and straw incorporation on soil aggregates, organic carbon, and crop yields in a rice–wheat rotation system. Sci. Rep. 6, 36602 (2016).

    Article  Google Scholar 

  140. Cayuela, M. L. et al. Biochar’s role in mitigating soil nitrous oxide emissions: a review and meta-analysis. Agric. Ecosyst. Environ. 191, 5–16 (2014).

    Article  Google Scholar 

  141. Xia, L. et al. Integrated biochar solutions can achieve carbon-neutral staple crop production. Nat. Food 4, 236–246 (2023).

    Article  Google Scholar 

  142. Schroeder, J. I. et al. Using membrane transporters to improve crops for sustainable food production. Nature 497, 60–66 (2013).

    Article  Google Scholar 

  143. Schimel, J. Rice, microbes and methane. Nature 403, 375–377 (2000).

    Article  Google Scholar 

  144. Gulledge, J. & Schimel, J. P. Low-concentration kinetics of atmospheric CH4 oxidation in soil and mechanism of NH4+ inhibition. Appl. Environ. Microbiol. 64, 4291–4298 (1998).

    Article  Google Scholar 

  145. Bodelier, P. L. E., Roslev, P., Henckel, T. & Frenzel, P. Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots. Nature 403, 421–424 (2000).

    Article  Google Scholar 

  146. Mohanty, S. et al. Impact of integrated nutrient management options on GHG emission, N loss and N use efficiency of low land rice. Soil Tillage Res. 200, 104616 (2020).

    Article  Google Scholar 

  147. Yao, Z. et al. Benefits of integrated nutrient management on N2O and NO mitigations in water-saving ground cover rice production systems. Sci. Total Environ. 646, 1155–1163 (2019).

    Article  Google Scholar 

  148. Pittelkow, C. M., Adviento-Borbe, M. A., van Kessel, C., Hill, J. E. & Linquist, B. A. Optimizing rice yields while minimizing yield-scaled global warming potential. Glob. Change Biol. 20, 1382–1393 (2014).

    Article  Google Scholar 

  149. Minamikawa, K., Sakai, N. & Hayashi, H. The effects of ammonium sulfate application on methane emission and soil carbon content of a paddy field in Japan. Agric. Ecosyst. Environ. 107, 371–379 (2005).

    Article  Google Scholar 

  150. Shrestha, M., Shrestha, P. M., Frenzel, P. & Conrad, R. Effect of nitrogen fertilization on methane oxidation, abundance, community structure, and gene expression of methanotrophs in the rice rhizosphere. ISME J. 4, 1545–1556 (2010).

    Article  Google Scholar 

  151. Mohanty, S. et al. Crop establishment and nitrogen management affect greenhouse gas emission and biological activity in tropical rice production. Ecol. Eng. 104, 80–98 (2017).

    Article  Google Scholar 

  152. Datta, A. & Adhya, T. K. Effects of organic nitrification inhibitors on methane and nitrous oxide emission from tropical rice paddy. Atmos. Environ. 92, 533–545 (2014).

    Article  Google Scholar 

  153. Boeckx, P., Xu, X. & Van Cleemput, O. Mitigation of N2O and CH4 emission from rice and wheat cropping systems using dicyandiamide and hydroquinone. Nutr. Cycl. Agroecosyst. 72, 41–49 (2005).

    Article  Google Scholar 

  154. Xu, X. et al. Methane emission from a simulated rice field ecosystem as influenced by hydroquinone and dicyandiamide. Sci. Total Environ. 263, 243–253 (2000).

    Article  Google Scholar 

  155. Xia, L. et al. Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis. Glob. Change Biol. 23, 1917–1925 (2017).

    Article  Google Scholar 

  156. Fan, D. et al. Global evaluation of inhibitor impacts on ammonia and nitrous oxide emissions from agricultural soils: a meta‐analysis. Glob. Change Biol. 28, 5121–5141 (2022).

    Article  Google Scholar 

  157. Meng, X. et al. Nitrification and urease inhibitors improve rice nitrogen uptake and prevent denitrification in alkaline paddy soil. Appl. Soil Ecol. 154, 103665 (2020).

    Article  Google Scholar 

  158. Akiyama, H., Yan, X. & Yagi, K. Evaluation of effectiveness of enhanced-efficiency fertilizers as mitigation options for N2O and NO emissions from agricultural soils: meta-analysis. Glob. Change Biol. 16, 1837–1846 (2010).

    Article  Google Scholar 

  159. Islam, S. M. M. et al. Mitigating greenhouse gas emissions from irrigated rice cultivation through improved fertilizer and water management. J. Environ. Manage. 307, 114520 (2022).

    Article  Google Scholar 

  160. Liu, T. Q. et al. Advantages of nitrogen fertilizer deep placement in greenhouse gas emissions and net ecosystem economic benefits from no-tillage paddy fields. J. Clean. Prod. 263, 121322 (2020).

    Article  Google Scholar 

  161. Fan, D. J. et al. Nitrogen deep placement mitigates methane emissions by regulating methanogens and methanotrophs in no-tillage paddy fields. Biol. Fertil. Soils 56, 711–727 (2020).

    Article  Google Scholar 

  162. Bhuiyan, M. S. I., Rahman, A., Loladze, I., Das, S. & Kim, P. J. Subsurface fertilization boosts crop yields and lowers greenhouse gas emissions: a global meta-analysis. Sci. Total Environ. 876, 162712 (2023).

    Article  Google Scholar 

  163. Gaihre, Y. K. et al. Impacts of urea deep placement on nitrous oxide and nitric oxide emissions from rice fields in Bangladesh. Geoderma 259–260, 370–379 (2015).

    Article  Google Scholar 

  164. Busari, M. A., Kukal, S. S., Kaur, A., Bhatt, R. & Dulazi, A. A. Conservation tillage impacts on soil, crop and the environment. Int. Soil Water Conserv. Res. 3, 119–129 (2015).

    Article  Google Scholar 

  165. Zhao, X. et al. Methane and nitrous oxide emissions under no-till farming in China: a meta-analysis. Glob. Change Biol. 22, 1372–1384 (2016).

    Article  Google Scholar 

  166. Ali, M. A., Lee, C. H., Lee, Y. B. & Kim, P. J. Silicate fertilization in no-tillage rice farming for mitigation of methane emission and increasing rice productivity. Agric. Ecosyst. Environ. 132, 16–22 (2009).

    Article  Google Scholar 

  167. Kim, S. Y., Gutierrez, J. & Kim, P. J. Unexpected stimulation of CH4 emissions under continuous no-tillage system in mono-rice paddy soils during cultivation. Geoderma 267, 34–40 (2016).

    Article  Google Scholar 

  168. Zhang, Z.-S., Cao, C.-G., Guo, L.-J. & Li, C.-F. Emissions of CH4 and CO2 from paddy fields as affected by tillage practices and crop residues in central China. Paddy Water Env. 14, 85–92 (2016).

    Article  Google Scholar 

  169. Yang, Y. et al. Winter tillage with the incorporation of stubble reduces the net global warming potential and greenhouse gas intensity of double-cropping rice fields. Soil Tillage Res. 183, 19–27 (2018).

    Article  Google Scholar 

  170. Kumar, V. & Ladha, J. K. Direct seeding of rice. in Advances in Agronomy Vol. 111, 297–413 (Elsevier, 2011).

  171. Rao, A. N., Wani, S. P., Ramesha, M. S. & Ladha, J. K. Rice production systems. in Rice Production Worldwide 185–205 (Springer, Cham, 2017).

  172. Chakraborty, D. et al. A global analysis of alternative tillage and crop establishment practices for economically and environmentally efficient rice production. Sci. Rep. 7, 9342 (2017).

    Article  Google Scholar 

  173. Pittelkow, C. M. et al. Nitrogen management and methane emissions in direct‐seeded rice systems. Agron. J. 106, 968–980 (2014).

    Article  Google Scholar 

  174. LaHue, G. T., Chaney, R. L., Adviento-Borbe, M. A. & Linquist, B. A. Alternate wetting and drying in high yielding direct-seeded rice systems accomplishes multiple environmental and agronomic objectives. Agric. Ecosyst. Environ. 229, 30–39 (2016).

    Article  Google Scholar 

  175. Zhang, Y. et al. Differences in CH4 and N2O emissions between rice nurseries in Chinese major rice cropping areas. Atmos. Environ. 96, 220–228 (2014).

    Article  Google Scholar 

  176. Wang, Y., Li, X., Lee, T., Peng, S. & Dou, F. Effects of nitrogen management on the ratoon crop yield and head rice yield in South USA. J. Integr. Agric. 20, 1457–1464 (2021).

    Article  Google Scholar 

  177. Linquist, B. A. et al. Greenhouse gas emissions and management practices that affect emissions in US rice systems. J. Environ. Qual. 47, 395–409 (2018).

    Article  Google Scholar 

  178. Song, K. et al. Evaluation of methane and nitrous oxide emissions in a three-year case study on single rice and ratoon rice paddy fields. J. Clean. Prod. 297, 126650 (2021).

    Article  Google Scholar 

  179. Xu, Y. et al. Conversion from double-season rice to ratoon rice paddy fields reduces carbon footprint and enhances net ecosystem economic benefit. Sci. Total Environ. 813, 152550 (2022).

    Article  Google Scholar 

  180. Wang, T. et al. Garlic–rice system increases net economic benefits and reduces greenhouse gas emission intensity. Agric. Ecosyst. Environ. 326, 107778 (2022).

    Article  Google Scholar 

  181. Jiang, M. et al. Methane emission, methanogenic and methanotrophic communities during rice-growing seasons differ in diversified rice rotation systems. Sci. Total Environ. 842, 156781 (2022).

    Article  Google Scholar 

  182. Huang, J. et al. Exploration of feasible rice-based crop rotation systems to coordinate productivity, resource use efficiency and carbon footprint in central China. Eur. J. Agron. 141, 126633 (2022).

    Article  Google Scholar 

  183. Nishimura, S. et al. Combined emission of CH4 and N2O from a paddy field was reduced by preceding upland crop cultivation. Soil Sci. Plant Nutr. 57, 167–178 (2011).

    Article  Google Scholar 

  184. Bolan, N. S., Adriano, D. C. & Curtin, D. Soil acidification and liming interactions with nutrient and heavy metal transformation and bioavailability. in Advances in Agronomy Vol. 78, 215–272 (Elsevier, 2003).

  185. Goulding, K. W. T. Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil. Use Manag. 32, 390–399 (2016).

    Article  Google Scholar 

  186. Raza, S. et al. Inorganic carbon losses by soil acidification jeopardize global efforts on carbon sequestration and climate change mitigation. J. Clean. Prod. 315, 128036 (2021).

    Article  Google Scholar 

  187. Wang, Y. et al. Potential benefits of liming to acid soils on climate change mitigation and food security. Glob. Change Biol. 27, 2807–2821 (2021).

    Article  Google Scholar 

  188. Holland, J. E. et al. Liming impacts on soils, crops and biodiversity in the UK: a review. Sci. Total Environ. 610–611, 316–332 (2018).

    Article  Google Scholar 

  189. Liao, P. et al. Liming and straw retention interact to increase nitrogen uptake and grain yield in a double rice-cropping system. Field Crop. Res. 216, 217–224 (2018).

    Article  Google Scholar 

  190. Khaliq, M. A., Khan Tarin, M. W., Jingxia, G., Yanhui, C. & Guo, W. Soil liming effects on CH4, N2O emission and Cd, Pb accumulation in upland and paddy rice. Environ. Pollut. 248, 408–420 (2019).

    Article  Google Scholar 

  191. Paradelo, R., Virto, I. & Chenu, C. Net effect of liming on soil organic carbon stocks: a review. Agric. Ecosyst. Environ. 202, 98–107 (2015).

    Article  Google Scholar 

  192. Royer-Tardif, S., Whalen, J. & Rivest, D. Can alkaline residuals from the pulp and paper industry neutralize acidity in forest soils without increasing greenhouse gas emissions? Sci. Total Environ. 663, 537–547 (2019).

    Article  Google Scholar 

  193. Zhang, H.-M. et al. Liming modifies greenhouse gas fluxes from soils: a meta-analysis of biological drivers. Agric. Ecosyst. Environ. 340, 108182 (2022).

    Article  Google Scholar 

  194. Jiang, Y. et al. Lime application lowers the global warming potential of a double rice cropping system. Geoderma 325, 1–8 (2018).

    Article  Google Scholar 

  195. O’Connor, J. et al. Production, characterisation, utilisation, and beneficial soil application of steel slag: a review. J. Hazard. Mater. 419, 126478 (2021).

    Article  Google Scholar 

  196. Susilawati, H. L. et al. Effects of steel slag applications on CH4, N2O and the yields of Indonesian rice fields: a case study during two consecutive rice-growing seasons at two sites. Soil Sci. Plant Nutr. 61, 704–718 (2015).

    Article  Google Scholar 

  197. Liao, P. et al. Liming increases yield and reduces grain cadmium concentration in rice paddies: a meta-analysis. Plant Soil 465, 157–169 (2021).

    Article  Google Scholar 

  198. Minamikawa, K., Takahashi, M., Makino, T., Tago, K. & Hayatsu, M. Irrigation with oxygen-nanobubble water can reduce methane emission and arsenic dissolution in a flooded rice paddy. Environ. Res. Lett. 10, 084012 (2015).

    Article  Google Scholar 

  199. Minamikawa, K. & Makino, T. Oxidation of flooded paddy soil through irrigation with water containing bulk oxygen nanobubbles. Sci. Total Environ. 709, 136323 (2020).

    Article  Google Scholar 

  200. Malyan, S. K. et al. Plummeting global warming potential by chemicals interventions in irrigated rice: a lab to field assessment. Agric. Ecosyst. Environ. 319, 107545 (2021).

    Article  Google Scholar 

  201. Malyan, S. K. et al. Mitigation of yield-scaled greenhouse gas emissions from irrigated rice through Azolla, blue-green algae, and plant growth-promoting bacteria. Environ. Sci. Pollut. Res. 28, 51425–51439 (2021).

    Article  Google Scholar 

  202. Kimani, S. M. et al. Influence of Azolla incorporation and/or dual cropping on CH4 and N2O emission from a paddy field. Soil Sci. Plant Nutr. 68, 246–255 (2022).

    Article  Google Scholar 

  203. Liu, S., Zhang, L., Liu, Q. & Zou, J. Fe(III) fertilization mitigating net global warming potential and greenhouse gas intensity in paddy rice–wheat rotation systems in China. Environ. Pollut. 164, 73–80 (2012).

    Article  Google Scholar 

  204. Borah, L. & Baruah, K. K. Effects of foliar application of plant growth hormone on methane emission from tropical rice paddy. Agric. Ecosyst. Environ. 233, 75–84 (2016).

    Article  Google Scholar 

  205. Cho, S. R. et al. A new approach to suppress methane emissions from rice cropping systems using ethephon. Sci. Total Environ. 804, 150159 (2022).

    Article  Google Scholar 

  206. Scholz, V. V., Meckenstock, R. U., Nielsen, L. P. & Risgaard-Petersen, N. Cable bacteria reduce methane emissions from rice-vegetated soils. Nat. Commun. 11, 1878 (2020).

    Article  Google Scholar 

  207. Rani, V., Bhatia, A. & Kaushik, R. Inoculation of plant growth promoting-methane utilizing bacteria in different N-fertilizer regime influences methane emission and crop growth of flooded paddy. Sci. Total Environ. 775, 145826 (2021).

    Article  Google Scholar 

  208. Zhang, X., Wang, L., Ma, F. & Shan, D. Effects of arbuscular mycorrhizal fungi on N2O emissions from rice paddies. Water Air Soil Pollut. 226, 222 (2015).

    Article  Google Scholar 

  209. Itakura, M. et al. Mitigation of nitrous oxide emissions from soils by Bradyrhizobium japonicum inoculation. Nat. Clim. Change 3, 208–212 (2013).

    Article  Google Scholar 

  210. Wu, S. et al. Mitigation of nitrous oxide emissions from acidic soils by Bacillus amyloliquefaciens, a plant growth-promoting bacterium. Glob. Change Biol. 24, 2352–2365 (2018).

    Article  Google Scholar 

  211. Tirol-Padre, A., Minamikawa, K., Tokida, T., Wassmann, R. & Yagi, K. Site-specific feasibility of alternate wetting and drying as a greenhouse gas mitigation option in irrigated rice fields in Southeast Asia: a synthesis. Soil Sci. Plant. Nutr 64, 2–13 (2018).

    Article  Google Scholar 

  212. Huang, Y., Zhang, W. & Zheng, X. H. Modeling methane emission from rice paddies with various agricultural practices. J. Geophys. Res. 109, D08113 (2004).

    Google Scholar 

  213. Li, C. et al. Modeling greenhouse gas emissions from rice-based production systems: sensitivity and upscaling. Glob. Biogeochem. Cycles 18, GB1043 (2004).

    Article  Google Scholar 

  214. Cheng, K., Ogle, S. M., Parton, W. J. & Pan, G. Predicting methanogenesis from rice paddies using the DAYCENT ecosystem model. Ecol. Model. 261–262, 19–31 (2013).

    Article  Google Scholar 

  215. Katayanagi, N. et al. Estimation of total CH4 emission from Japanese rice paddies using a new estimation method based on the DNDC-Rice simulation model. Sci. Total Environ. 601–602, 346–355 (2017).

    Article  Google Scholar 

  216. Wang, X. et al. Emergent constraint on crop yield response to warmer temperature from field experiments. Nat. Sustain. 3, 908–916 (2020).

    Article  Google Scholar 

  217. Terrer, C. et al. A trade-off between plant and soil carbon storage under elevated CO2. Nature 591, 599–603 (2021).

    Article  Google Scholar 

  218. Ma, Y. C. et al. Net global warming potential and greenhouse gas intensity of annual rice–wheat rotations with integrated soil–crop system management. Agric. Ecosyst. Environ. 164, 209–219 (2013).

    Article  Google Scholar 

  219. Suryavanshi, P., Singh, Y. V., Prasanna, R., Bhatia, A. & Shivay, Y. S. Pattern of methane emission and water productivity under different methods of rice crop establishment. Paddy Water Environ. 11, 321–329 (2013).

    Article  Google Scholar 

  220. Banger, K., Tian, H. & Lu, C. Do nitrogen fertilizers stimulate or inhibit methane emissions from rice fields? Glob. Change Biol. 18, 3259–3267 (2012).

    Article  Google Scholar 

  221. Pathak, H. et al. Methane emission from rice–wheat cropping system in the Indo-Gangetic plain in relation to irrigation, farmyard manure and dicyandiamide application. Agric. Ecosyst. Environ. 97, 309–316 (2003).

    Article  Google Scholar 

  222. Cowan, N. et al. Experimental comparison of continuous and intermittent flooding of rice in relation to methane, nitrous oxide and ammonia emissions and the implications for nitrogen use efficiency and yield. Agric. Ecosyst. Environ. 319, 107571 (2021).

    Article  Google Scholar 

  223. Huang, X. et al. Quantification for carbon footprint of agricultural inputs of grains cultivation in China since 1978. J. Clean. Prod. 142, 1629–1637 (2017).

    Article  Google Scholar 

  224. Jeong, S. T., Kim, G. W., Hwang, H. Y., Kim, P. J. & Kim, S. Y. Beneficial effect of compost utilization on reducing greenhouse gas emissions in a rice cultivation system through the overall management chain. Sci. Total Environ. 613–614, 115–122 (2018).

    Article  Google Scholar 

  225. Hungate, B. A. et al. Assessing the effect of elevated carbon dioxide on soil carbon: a comparison of four meta-analyses. Glob. Change Biol. 15, 2020–2034 (2009).

    Article  Google Scholar 

  226. Philibert, A., Loyce, C. & Makowski, D. Assessment of the quality of meta-analysis in agronomy. Agric. Ecosyst. Environ. 148, 72–82 (2012).

    Article  Google Scholar 

  227. Fohrafellner, J., Zechmeister-Boltenstern, S., Murugan, R. & Valkama, E. Quality assessment of meta-analyses on soil organic carbon. Soil 9, 117–140 (2023).

    Article  Google Scholar 

  228. Haddaway, N. R. et al. Eight problems with literature reviews and how to fix them. Nat. Ecol. Evol. 4, 1582–1589 (2020).

    Article  Google Scholar 

  229. Grados, D. et al. Synthesizing the evidence of nitrous oxide mitigation practices in agroecosystems. Environ. Res. Lett. 17, 114024 (2022).

    Article  Google Scholar 

  230. Lu, Y., Wassmann, R., Neue, H. U., Huang, C. & Bueno, C. S. Methanogenic responses to exogenous substrates in anaerobic rice soils. Soil Biol. Biochem. 32, 1683–1690 (2000).

    Article  Google Scholar 

  231. Wassmann, R. et al. Spatial and seasonal distribution of organic amendments affecting methane emission from Chinese rice fields. Biol. Fertil. Soils 22, 191–195 (1996).

    Article  Google Scholar 

  232. Fan, L. et al. Active metabolic pathways of anaerobic methane oxidation in paddy soils. Soil Biol. Biochem. 156, 108215 (2021).

    Article  Google Scholar 

  233. Thauer, R. K. Functionalization of methane in anaerobic microorganisms. Angew. Chem. Int. Ed. Engl. 49, 6712–6713 (2010).

    Article  Google Scholar 

  234. Kuypers, M. M. M., Marchant, H. K. & Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 16, 263–276 (2018).

    Article  Google Scholar 

  235. Qu, Z., Wang, J., Almøy, T. & Bakken, L. R. Excessive use of nitrogen in Chinese agriculture results in high N2O/(N2O+N2) product ratio of denitrification, primarily due to acidification of the soils. Glob. Change Biol. 20, 1685–1698 (2014).

    Article  Google Scholar 

  236. Yan, X., Shi, S., Du, L. & Xing, G. Pathways of N2O emission from rice paddy soil. Soil Biol. Biochem. 32, 437–440 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

Y.J. discloses support from the National Key R&D Program of China (2022YFD2300400) and National Natural Science Foundation of China (32022061, 32271635). H.Q. discloses support from the China Postdoctoral Science Foundation (BX20220154, 2021M701746) and Jiangsu Funding Program for Excellent Postdoctoral Talent (2022ZB350). F.Z. was supported by the National Natural Science Foundation of China (42225102).

Author information

Authors and Affiliations

Authors

Contributions

Y.J. designed the concept for this Review. H.Q. and X.Z. collected the data. Y.J., H.Q., X.Z., Y.D. and K.J.v.G. wrote the first draft. All authors contributed to the manuscript content.

Corresponding authors

Correspondence to Yanfeng Ding, Kees Jan van Groenigen or Yu Jiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Shen Yuan, Arti Bhatia and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, H., Zhu, X., Huang, S. et al. Greenhouse gas emissions and mitigation in rice agriculture. Nat Rev Earth Environ 4, 716–732 (2023). https://doi.org/10.1038/s43017-023-00482-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-023-00482-1

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology