Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Biofortification’s contribution to mitigating micronutrient deficiencies

Abstract

Biofortification was first proposed in the early 1990s as a low-cost, sustainable strategy to enhance the mineral and vitamin contents of staple food crops to address micronutrient malnutrition. Since then, the concept and remit of biofortification has burgeoned beyond staples and solutions for low- and middle-income economies. Here we discuss what biofortification has achieved in its original manifestation and the main factors limiting the ability of biofortified crops to improve micronutrient status. We highlight the case for biofortified crops with key micronutrients, such as provitamin D3/vitamin D3, vitamin B12 and iron, for recognition of new demographics of need. Finally, we examine where and how biofortification can be integrated into the global food system to help overcome hidden hunger, improve nutrition and achieve sustainable agriculture.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global map of biofortified crops released or under testing at the end of 2020.
Fig. 2: Projected percentage of population aged 70 and over in 2050.
Fig. 3: Global map of vitamin D status in adults.
Fig. 4: Typical examples of three different types of meal and their nutrient contents compared with recommended intake.

Similar content being viewed by others

References

  1. Healthy diet. WHO https://www.who.int/news-room/fact-sheets/detail/healthy-diet (2020).

  2. Sendai Framework for Disaster Risk Reduction 2015–2030 (Asian Disaster Reduction Center, 2015).

  3. Van Der Straeten, D. et al. Multiplying the efficiency and impact of biofortification through metabolic engineering. Nat. Commun. 11, 5203 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pingali, P. L. Green revolution: impacts, limits, and the path ahead. Proc. Natl Acad. Sci. USA 109, 12302–12308 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bouis, H. E., Hotz, C., McClafferty, B., Meenakshi, J. V. & Pfeiffer, W. H. Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr. Bull. 32, S31–S40 (2011).

    Article  PubMed  Google Scholar 

  6. Siddique, K. H. M., Li, X. & Gruber, K. Rediscovering Asia’s forgotten crops to fight chronic and hidden hunger. Nat. Plants 7, 116–122 (2021).

    Article  PubMed  Google Scholar 

  7. Qaim, M., Stein, A. J. & Meenakshi, J. Economics of biofortification. Agric. Econ. 37, 119–133 (2007).

    Article  Google Scholar 

  8. Petry, N. et al. The proportion of anemia associated with iron deficiency in low, medium, and high human development index countries: a systematic analysis of national surveys. Nutrients 8, 693 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bourassa, M. W., Atkin, R., Gorstein, J. & Osendarp, S. Aligning the epidemiology of malnutrition with food fortification: grasp versus reach. Nutrients 15, 2021 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pfeiffer, W. H. & McClafferty, B. HarvestPlus: breeding crops for better nutrition. Crop Sci. 47, S-88–S-105 (2007).

    Article  Google Scholar 

  11. Bhardwaj, A. K. et al. Agronomic biofortification of food crops: an emerging opportunity for global food and nutritional security. Front. Plant Sci. 13, 1055278 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kumar, S. et al. Breeding and adoption of biofortified crops and their nutritional impact on human health. Ann. N. Y. Acad. Sci. https://doi.org/10.1111/nyas.14936 (2022).

    Article  PubMed  Google Scholar 

  13. Jiang, L., Strobbe, S., Van Der Straeten, D. & Zhang, C. Regulation of plant vitamin metabolism: backbone of biofortification for the alleviation of hidden hunger. Mol. Plant 14, 40–60 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Strobbe, S. & Van Der Straeten, D. Toward eradication of B-vitamin deficiencies: considerations for crop biofortification. Front. Plant Sci. 9, 443 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Beyer, P. Golden Rice and ‘Golden’ crops for human nutrition. New Biotechnol. 27, 478–481 (2010).

    Article  CAS  Google Scholar 

  16. Harjes, C. E. et al. Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 319, 330–333 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zheng, X., Giuliano, G. & Al-Babili, S. Carotenoid biofortification in crop plants: citius, altius, fortius. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1865, 158664 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Bouis, H. E. & Saltzman, A. Improving nutrition through biofortification: a review of evidence from HarvestPlus, 2003 through 2016. Glob. Food Sec. 12, 49–58 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Low, J. W., Mwanga, R. M., Andrade, M., Carey, E. & Ball, A.-M. Tackling vitamin A deficiency with biofortified sweetpotato in sub-Saharan Africa. Glob. Food Sec. https://doi.org/10.1016/j.gfs.2017.01.004 (2017).

  20. Glahn, R. P., Wiesinger, J. A. & Lung’aho, M. G. Iron concentrations in biofortified beans and nonbiofortified marketplace varieties in East Africa are similar. J. Nutr. 150, 3013–3023 (2020).

    Article  PubMed  Google Scholar 

  21. Zhao, T. et al. Global burden of vitamin A deficiency in 204 countries and territories from 1990–2019. Nutrients 14, 950 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lockyer, S., White, A. & Buttriss, J. Biofortified crops for tackling micronutrient deficiencies—what impact are these having in developing countries and could they be of relevance within Europe? Nutr. Bull. 43, 319–357 (2018).

    Article  Google Scholar 

  23. Stevens, G. A. et al. Trends and mortality effects of vitamin A deficiency in children in 138 low-income and middle-income countries between 1991 and 2013: a pooled analysis of population-based surveys. Lancet Glob. Health 3, e528–e536 (2015).

    Article  PubMed  Google Scholar 

  24. Martin, C. & Li, J. Medicine is not health care, food is health care: plant metabolic engineering, diet and human health. New Phytol. 216, 699–719 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Martin, C., Zhang, Y., Tonelli, C. & Petroni, K. Plants, diet, and health. Ann. Rev. Plant Biol. 64, 19–46 (2013).

    Article  CAS  Google Scholar 

  26. Titcomb, T. J. & Tanumihardjo, S. A. Global concerns with B vitamin statuses: biofortification, fortification, hidden hunger, interactions, and toxicity. Compr. Rev. Food Sci. Food Saf. 18, 1968–1984 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Pollard, C. M. & Booth, S. Food insecurity and hunger in rich countries—it is time for action against inequality. Int. J. Environ. Res. Public Health 16, 1804 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fortenberry, M., Rucker, H. & Gaines, K. Pediatric scurvy: how an old disease is becoming a new problem. J. Pediatric Pharmacol. Ther. 25, 735–741 (2020).

    Google Scholar 

  29. Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

    Article  PubMed  Google Scholar 

  30. McCollum, E. V., Simmonds, N., Becker, J. E. & Shipley, P. Studies on experimental rickets: XXI. An experimental demonstration of the existence of a vitamin which promotes calcium deposition. J. Biol. Chem. 53, 293–312 (1922).

    Article  CAS  Google Scholar 

  31. Holick, M. F. et al. Photosynthesis of previtamin D3 in human skin and the physiologic consequences. Science 210, 203–205 (1980).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Jäpelt, R. B. & Jakobsen, J. Vitamin D in plants: a review of occurrence, analysis, and biosynthesis. Front. Plant Sci. 4, 136 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  33. van Schoor, N. M. & Lips, P. Worldwide vitamin D status. Best Pract. Res. Clin. Endocrinol. Metab. 25, 671–680 (2011).

    Article  PubMed  Google Scholar 

  34. Li, J. et al. Biofortified tomatoes provide a new route to vitamin D sufficiency. Nat. Plants 8, 611–616 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Simkin, A. J. Genetic engineering for global food security: photosynthesis and biofortification. Plants 8, 586 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kumari, M. et al. Vitamin B12 biofortification of soymilk through optimized fermentation with extracellular B12 producing Lactobacillus isolates of human fecal origin. Curr. Res. Food Sci. 4, 646–654 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hurrell, R. & Egli, I. Iron bioavailability and dietary reference values. Am. J. Clin. Nutr. 91, 1461S–1467S (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Lockyer, S., White, A., Walton, J. & Buttriss, J. Proceedings of the ‘Working together to consider the role of biofortification in the global food chain’ workshop. Nutr. Bull. 43, 416–427 (2018).

    Article  Google Scholar 

  39. Gupta, R. K., Gangoliya, S. S. & Singh, N. K. Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. J. Food Sci. Technol. 52, 676–684 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Campion, B. et al. Isolation and characterisation of an lpa (low phytic acid) mutant in common bean (Phaseolus vulgaris L.). Theor. Appl. Genet. 118, 1211–1221 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Campion, B. et al. Genetic reduction of antinutrients in common bean (Phaseolus vulgaris L.) seed, increases nutrients and in vitro iron bioavailability without depressing main agronomic traits. Field Crops Res. 141, 27–37 (2013).

    Article  Google Scholar 

  42. Petry, N., Egli, I., Campion, B., Nielsen, E. & Hurrell, R. Genetic reduction of phytate in common bean (Phaseolus vulgaris L.) seeds increases iron absorption in young women. J. Nutr. 143, 1219–1224 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Wiesinger, J. A., Osorno, J. M., McClean, P. E., Hart, J. J. & Glahn, R. P. Faster cooking times and improved iron bioavailability are associated with the down regulation of procyanidin synthesis in slow-darkening pinto beans (Phaseolus vulgaris L.). J. Funct. Foods 82, 104444 (2021).

    Article  CAS  Google Scholar 

  44. Sharma, D. C. & Mathur, R. Correction of anemia and iron deficiency in vegetarians by administration of ascorbic acid. Indian J. Physiol. Pharmacol. 39, 403–406 (1995).

    CAS  PubMed  Google Scholar 

  45. Macknight, R. C. et al. Increasing ascorbate levels in crops to enhance human nutrition and plant abiotic stress tolerance. Curr. Opin. Biotechnol. 44, 153–160 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, H. et al. Genome editing of upstream open reading frames enables translational control in plants. Nat. Biotechnol. 36, 894–898 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Waltz, E. GABA-enriched tomato is first CRISPR-edited food to enter market. Nat. Biotechnol. 40, 9–11 (2022).

    Article  CAS  PubMed  Google Scholar 

  48. Nagamine, A., Takayama, M. & Ezura, H. Genetic improvement of tomato using gene editing technologies. J. Hortic. Sci. Biotechnol. 98, 1–9 (2023).

    Article  CAS  Google Scholar 

  49. Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on the production and marketing of plant reproductive material in the Union, amending Regulations (EU) 2016/2031, 2017/625 and 2018/848 of the European Parliament and of the Council, and repealing Council Directives 66/401/EEC, 66/402/EEC, 68/193/EEC, 2002/53/EC, 2002/54/EC, 2002/55/EC, 2002/56/EC, 2002/57/EC, 2008/72/EC and 2008/90/EC (Regulation on plant reproductive material) (European Commission, 2023); https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2023:414:FIN

  50. Sashidhar, N., Harloff, H. J., Potgieter, L. & Jung, C. Gene editing of three BnITPK genes in tetraploid oilseed rape leads to significant reduction of phytic acid in seeds. Plant Biotechnol. J. 18, 2241–2250 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ibrahim, S. et al. CRISPR/Cas9 mediated disruption of inositol pentakisphosphate 2-kinase 1 (TaIPK1) reduces phytic acid and improves iron and zinc accumulation in wheat grains. J. Adv. Res. 37, 33–41 (2022).

    Article  CAS  PubMed  Google Scholar 

  52. Zheng, Z. et al. Editing sterol side chain reductase 2 gene (StSSR2) via CRISPR/Cas9 reduces the total steroidal glycoalkaloids in potato. All Life 14, 401–413 (2021).

    Article  CAS  Google Scholar 

  53. Zheng, X., Kuijer, H. N. J. & Al-Babili, S. Carotenoid biofortification of crops in the CRISPR era. Trends Biotechnol. 39, 857–860 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. Sun, Y. et al. Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Fronti. Plant Scie. 8, 298 (2017).

    Google Scholar 

  55. Zeng, Z. et al. Functional dissection of HGGT and HPT in barley vitamin E biosynthesis via CRISPR/Cas9-enabled genome editing. Ann. Bot. 126, 929–942 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nakayasu, M. et al. Generation of α-solanine-free hairy roots of potato by CRISPR/Cas9 mediated genome editing of the St16DOX gene. Plant Physiol. Biochem. 131, 70–77 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Molla, K. A., Sretenovic, S., Bansal, K. C. & Qi, Y. Precise plant genome editing using base editors and prime editors. Nat. Plants 7, 1166–1187 (2021).

    Article  CAS  PubMed  Google Scholar 

  58. Food as medicine: translating the evidence. Nat. Med. 29, 753–754 (2023).

  59. Department of Economic and Social Affairs, Population Division World Population Prospects: The 2022 Revision (United Nations, 2022).

  60. Lips, P. et al. Current vitamin D status in European and Middle East countries and strategies to prevent vitamin D deficiency: a position statement of the European Calcified Tissue Society. Eur. J. Endocrinol. 180, P23–P54 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. van Schoor, N. & Lips, P. Global overview of vitamin D status. Endocrinol. Metab. Clin. North Am. 46, 845–870 (2017).

    Article  PubMed  Google Scholar 

  62. Siddiqee, M. H., Bhattacharjee, B., Siddiqi, U. R. & MeshbahurRahman, M. High prevalence of vitamin D deficiency among the South Asian adults: a systematic review and meta-analysis. BMC Public Health 21, 1823 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Brito, A. et al. Less than adequate vitamin D status and intake in Latin America and the Caribbean:a problem of unknown magnitude. Food Nutr. Bull. 34, 52–64 (2013).

    Article  PubMed  Google Scholar 

  64. Hussein, D. A. et al. Pattern of vitamin D deficiency in a Middle Eastern population: a cross‑sectional study. Int. J. Funct. Nutr. 3, 7 (2022).

    Article  Google Scholar 

  65. Zhumina, A. G. et al. Plasma 25-hydroxyvitamin D levels and VDR gene expression in peripheral blood mononuclear cells of leukemia patients and healthy subjects in central Kazakhstan. Nutrients 12, 1229 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mogire, R. M. et al. Prevalence of vitamin D deficiency in Africa: a systematic review and meta-analysis. Lancet Glob. Health 8, e134–e142 (2020).

    Article  PubMed  Google Scholar 

  67. Bi, X., Tey, S. L., Leong, C., Quek, R. & Henry, C. J. Prevalence of vitamin D deficiency in Singapore: its implications to cardiovascular risk factors. PLoS ONE 11, e0147616 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Otani, S. et al. Spatial epidemiology of vitamin D status in Mongolia. Environ. Epidemiol. 3, 298 (2019).

    Article  Google Scholar 

  69. Hilger, J. et al. A systematic review of vitamin D status in populations worldwide. Br. J. Nutr. 111, 23–45 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Hernando, V. U., Andry, M. M., María Virginia, P. F. & Valentina, A. Vitamin D nutritional status in the adult population in Colombia—an analytical cross-sectional study. Heliyon 6, e03479 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Shchubelka, K. Vitamin D status in adults and children in Transcarpathia, Ukraine in 2019. BMC Nutr. 6, 48 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Angeles-Agdeppa, I., Perlas, L. A. & Capanzana, M. V. Vitamin D status of Filipino adults: evidence from the 8th National Nutrition Survey 2013. Mal. J. Nutr. 24, 395–406 (2018).

    Google Scholar 

  73. Vitamin D status of New Zealand Adults: Findings from the 2008/09 New Zealand Adult Nutrition Survey (Ministry of Health, 2012).

  74. Daniels, L. UK Food Standard Agency Example Menus for Care Homes Contract Reference NUB 246 (2007).

  75. Minimum Expenditure Basket (MEB) Analysis (World Food Programme, 2020).

  76. McCance, R. A. & Widdowson, E. M. McCance and Widdowson’s The Composition of Foods 7th summary edn (Royal Society of Chemistry, 2015).

  77. Government Dietary Recommendations. Government Recommendations for Energy and Nutrients for Males and Females Aged 1–18 Years and 19+ Years. (Public Health England, 2016).

  78. Vitamin and Mineral Nutrition Information System (VMNIS) (WHO, 2023); https://www.who.int/teams/nutrition-and-food-safety/databases/vitamin-and-mineral-nutrition-information-system

  79. Joint FAO/WHO Expert Consultation on Human Vitamin and Mineral Requirements: Vitamin and Mineral Requirements for Human Nutrition (WHO, 2004).

  80. Allen, L., De Benoist, B., Dary, O. & Hurrell, R. World Health Organization Guidelines on Food Fortification with Micronutrients (ed. Allen, A.) (WHO, 2006).

Download references

Acknowledgements

C.M. and J.L. gratefully acknowledge support from the Institute Strategic Programmes ‘Understanding and Exploiting Plant and Microbial Secondary Metabolism’ (BB/J004596/1) and ‘Molecules from Nature’ (BB/P012523/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cathie Martin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Food thanks Erick Boy, Qiaoquan Liu, Pierdomenico Perata and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text, Table 1, and Figs. 1 and 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Martin, C. & Fernie, A. Biofortification’s contribution to mitigating micronutrient deficiencies. Nat Food 5, 19–27 (2024). https://doi.org/10.1038/s43016-023-00905-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-023-00905-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing