Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Scale up urban agriculture to leverage transformative food systems change, advance social–ecological resilience and improve sustainability

Abstract

Scaling up urban agriculture could leverage transformative change, to build and maintain resilient and sustainable urban systems. Current understanding of drivers, processes and pathways for scaling up urban agriculture, however, remains fragmentary and largely siloed in disparate disciplines and sectors. Here we draw on multiple disciplinary domains to present an integrated conceptual framework of urban agriculture and synthesize literature to reveal its social–ecological effects across scales. We demonstrate plausible multi-phase developmental pathways, including dynamics, accelerators and feedback associated with scaling up urban agriculture. Finally, we discuss key considerations for scaling up urban agriculture, including diversity, heterogeneity, connectivity, spatial synergies and trade-offs, nonlinearity, scale and polycentricity. Our framework provides a transdisciplinary roadmap for policy, planning and collaborative engagement to scale up urban agriculture and catalyse transformative change towards more robust urban resilience and sustainability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptual framework of urban agriculture across scales.
Fig. 2: Results of literature review of urban agriculture studies.
Fig. 3: Theoretical foundations of scaling up urban agriculture as transformative change.
Fig. 4: Developmental pathways for scaling up urban agriculture over time.
Fig. 5: Schematic diagram of key considerations relevant to research and practices of scaling up urban agriculture.

Similar content being viewed by others

Data availability

All data used in this manuscript are made publicly available and deposited into Figshare at https://doi.org/10.6084/m9.figshare.24449713.

Code availability

All code used in this manuscript is made publicly available and deposited into Figshare at https://doi.org/10.6084/m9.figshare.24449713.

References

  1. Elmqvist, T. et al. Urbanization in and for the Anthropocene. npj Urban Sustain. 1, 1–6 (2021).

    Article  Google Scholar 

  2. Forman, R. T. T. & Wu, J. Where to put the next billion people. Nature 537, 608–611 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Elmqvist, T. et al. Sustainability and resilience for transformation in the urban century. Nat. Sustain. 2, 267–273 (2019).

    Article  Google Scholar 

  4. Seto, K. C. & Satterthwaite, D. Interactions between urbanization and global environmental change. Curr. Opin. Environ. Sustain. 2, 127–128 (2010).

    Article  Google Scholar 

  5. Meerow, S., Newell, J. P. & Stults, M. Defining urban resilience: a review. Landsc. Urban Plan. 147, 38–49 (2016).

    Article  Google Scholar 

  6. Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).

    Article  PubMed  Google Scholar 

  7. O’Brien, K. Global environmental change II: from adaptation to deliberate transformation. Prog. Hum. Geogr. 36, 667–676 (2012).

    Article  Google Scholar 

  8. Chaffin, B. C. et al. Transformative environmental governance. Annu. Rev. Environ. Resour. 41, 399–423 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  9. McPhearson, T. et al. Radical changes are needed for transformations to a good Anthropocene. npj Urban Sustain. 1, 1–13 (2021).

    Article  Google Scholar 

  10. Alberti, M., McPhearson, T. & Gonzalez, A. Embracing urban complexity. in Urban Planet: Knowledge Towards Sustainable Cities 1st edn, 45–67 (Cambridge Univ. Press, 2018); https://doi.org/10.1017/9781316647554.004

  11. Hebinck, A. et al. A sustainability compass for policy navigation to sustainable food systems. Glob. Food Sec. 29, 100546 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Vermeulen, S. J., Dinesh, D., Howden, S. M., Cramer, L. & Thornton, P. K. Transformation in practice: a review of empirical cases of transformational adaptation in agriculture under climate change. Front. Sustain. Food Syst. 2, 65 (2018).

    Article  Google Scholar 

  13. Schell, C. J. et al. The ecological and evolutionary consequences of systemic racism in urban environments. Science 369 (2020).

  14. Schlosberg, D., Collins, L. B. & Niemeyer, S. Adaptation policy and community discourse: risk, vulnerability, and just transformation. Environ. Politics 26, 413–437 (2017).

    Article  Google Scholar 

  15. Zimmerer, K. S. et al. Grand challenges in urban agriculture: ecological and social approaches to transformative sustainability. Front. Sustain. Food Syst. 5, 101 (2021).

    Article  Google Scholar 

  16. Hebinck, A. et al. Exploring the transformative potential of urban food. npj Urban Sustain. 1, 9 (2021).

    Article  Google Scholar 

  17. Forman, R. T. Urban Regions: Ecology and Planning Beyond the City (Cambridge Univ. Press, 2008).

  18. Langemeyer, J., Madrid-Lopez, C., Mendoza Beltran, A. & Villalba Mendez, G. Urban agriculture—a necessary pathway towards urban resilience and global sustainability? Landsc. Urban Plan. 210, 104055 (2021).

    Article  Google Scholar 

  19. Lal, R. Home gardening and urban agriculture for advancing food and nutritional security in response to the COVID-19 pandemic. Food Secur. 12, 871–876 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Siegner, A., Sowerwine, J. & Acey, C. Does urban agriculture improve food security? Examining the nexus of food access and distribution of urban produced foods in the United States: a systematic review. Sustainability 10, 2988 (2018).

    Article  Google Scholar 

  21. Gerster-Bentaya, M. Urban agriculture’s contributions to urban food security and nutrition. in Cities and Agriculture: Developing Resilient Urban Food Systems 139–161 (2015).

  22. Payen, F. T. et al. How much food can we grow in urban areas? Food production and crop yields of urban agriculture: a meta‐analysis. Earth’s Future 10, e2022EF002748 (2022).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  23. Tornaghi, C. Critical geography of urban agriculture. Prog. Hum. Geogr. 38, 551–567 (2014).

    Article  Google Scholar 

  24. Hawes, J. K., Gounaridis, D. & Newell, J. P. Does urban agriculture lead to gentrification? Landsc. Urban Plan. 225, 104447 (2022).

    Article  Google Scholar 

  25. Tornaghi, C. Urban agriculture in the food‐disabling city: (re)defining urban food justice, reimagining a politics of empowerment. Antipode 49, 781–801 (2017).

    Article  Google Scholar 

  26. Campbell, C. G., Ruiz-Menjivar, J. & DeLong, A. Commercial urban agriculture in Florida: needs, opportunities, and barriers. Horttechnology 32, 331–341 (2022).

    Article  Google Scholar 

  27. Pearson, L. J., Pearson, L. & Pearson, C. J. Sustainable urban agriculture: stocktake and opportunities. Int. J. Agric. Sustain. 8, 7–19 (2010).

    Article  Google Scholar 

  28. Schneider, M. & McMichael, P. Deepening, and repairing, the metabolic rift. J. Peasant Stud. 37, 461–484 (2010).

    Article  PubMed  Google Scholar 

  29. Lukas, M., Rohn, H., Lettenmeier, M., Liedtke, C. & Wiesen, K. The nutritional footprint—integrated methodology using environmental and health indicators to indicate potential for absolute reduction of natural resource use in the field of food and nutrition. J. Clean. Prod. 132, 161–170 (2016).

    Article  Google Scholar 

  30. Harvey, J. & Jowsey, E. Urban Land Economics (Bloomsbury, 2019).

  31. Newell, J. P., Foster, A., Borgman, M. & Meerow, S. Ecosystem services of urban agriculture and prospects for scaling up production: a study of Detroit. Cities 125, 103664 (2022).

    Article  Google Scholar 

  32. Goldstein, B., Hauschild, M., Fernández, J. & Birkved, M. Urban versus conventional agriculture, taxonomy of resource profiles: a review. Agron. Sustain. Dev. 36, 9 (2016).

    Article  Google Scholar 

  33. Wilhelm, J. A. & Smith, R. G. Ecosystem services and land sparing potential of urban and peri-urban agriculture: a review. Renew. Agric. Food Syst. 33, 481–494 (2018).

    Article  Google Scholar 

  34. Lovell, S. T. Multifunctional urban agriculture for sustainable land use planning in the United States. Sustainability 2, 2499–2522 (2010).

    Article  Google Scholar 

  35. Evans, D. L. et al. Ecosystem service delivery by urban agriculture and green infrastructure—a systematic review. Ecosyst. Serv. 54, 101405 (2022).

    Article  Google Scholar 

  36. Ramaswami, A. et al. An urban systems framework to assess the trans-boundary food–energy–water nexus: implementation in Delhi, India. Environ. Res. Lett. 12, 025008 (2017).

    Article  ADS  Google Scholar 

  37. Hu, Y. et al. Transboundary environmental footprints of the urban food supply chain and mitigation strategies. Environ. Sci. Technol. 54, 10460–10471 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Chang, N.-B. et al. Integrative technology hubs for urban food–energy–water nexuses and cost–benefit–risk tradeoffs (II): design strategies for urban sustainability. Crit. Rev. Environ. Sci. Technol. 51, 1533–1583 (2021).

    Article  Google Scholar 

  39. Asseng, S. et al. Wheat yield potential in controlled-environment vertical farms. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2002655117 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Daigger, G. T. et al. Scaling Up Agriculture in City-Regions to Mitigate FEW System Impacts (2015).

  41. Zhang, S., Bi, X. T. & Clift, R. A life cycle assessment of integrated dairy farm–greenhouse systems in British Columbia. Bioresour. Technol. 150, 496–505 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Benis, K. & Ferrao, P. Potential mitigation of the environmental impacts of food systems through urban and peri-urban agriculture (UPA)—a life cycle assessment approach. J. Clean. Prod. 140, 784–795 (2017).

    Article  Google Scholar 

  43. Lwasa, S. et al. A meta-analysis of urban and peri-urban agriculture and forestry in mediating climate change. Curr. Opin. Environ. Sustain. 13, 68–73 (2015).

    Article  Google Scholar 

  44. Valencia, A., Qiu, J. & Chang, N.-B. Integrating sustainability indicators and governance structures via clustering analysis and multicriteria decision making for an urban agriculture network. Ecol. Indic. 142, 109237 (2022).

    Article  Google Scholar 

  45. Bryld, E. Potentials, problems, and policy implications for urban agriculture in developing countries. Agric. Human Values 20, 79–86 (2003).

    Article  Google Scholar 

  46. Wortman, S. E. & Lovell, S. T. Environmental challenges threatening the growth of urban agriculture in the United States. J. Environ. Qual. 42, 1283–1294 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Cinner, J. E. & Barnes, M. L. Social dimensions of resilience in social–ecological systems. One Earth 1, 51–56 (2019).

    Article  ADS  Google Scholar 

  48. Reyers, B., Folke, C., Moore, M.-L., Biggs, R. & Galaz, V. Social–ecological systems insights for navigating the dynamics of the Anthropocene. Annu. Rev. Environ. Resour. 43, 267–289 (2018).

    Article  Google Scholar 

  49. Eakin, H. & Lemos, M. C. Institutions and change: the challenge of building adaptive capacity in Latin America. Glob. Environ. Change 1, 1–3 (2010).

    Article  Google Scholar 

  50. Grothmann, T. & Patt, A. Adaptive capacity and human cognition: the process of individual adaptation to climate change. Glob. Environ. Change 15, 199–213 (2005).

    Article  Google Scholar 

  51. Boonstra, W. J., Björkvik, E., Haider, L. J. & Masterson, V. Human responses to social–ecological traps. Sustain. Sci. 11, 877–889 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Frank, E., Eakin, H. & López-Carr, D. Social identity, perception and motivation in adaptation to climate risk in the coffee sector of Chiapas, Mexico. Glob. Environ. Change 21, 66–76 (2011).

    Article  Google Scholar 

  53. Eakin, H. et al. Cognitive and institutional influences on farmers’ adaptive capacity: insights into barriers and opportunities for transformative change in central Arizona. Reg. Environ. Change 16, 801–814 (2016).

    Article  Google Scholar 

  54. Baggio, J. A. & Hillis, V. Managing ecological disturbances: learning and the structure of social–ecological networks. Environ. Model. Softw. 109, 32–40 (2018).

    Article  Google Scholar 

  55. Nyborg, K. et al. Social norms as solutions. Science 354, 42–43 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Horst, M., McClintock, N. & Hoey, L. The intersection of planning, urban agriculture, and food justice: a review of the literature. J. Am. Plann. Assoc. 83, 277–295 (2017).

    Article  Google Scholar 

  57. Loorbach, D., Frantzeskaki, N. & Avelino, F. Sustainability transitions research: transforming science and practice for societal change. Annu. Rev. Environ. Resour. 42, 599–626 (2017).

    Article  Google Scholar 

  58. Rostow, W. W. The stages of economic growth. Econ. Hist. Rev. 12, 1–16 (1959).

    Article  Google Scholar 

  59. Drescher, A. W., Isendahl, C., Cruz, M. C., Karg, H. & Menakanit, A. Urban and peri-urban agriculture in the Global South. in Urban Ecology in the Global South 293–324 (2021).

  60. de Zeeuw, H., Dubbeling, M., Wilbers, J. & van Veenhuizen, R. Courses of action for municipal policies on urban agriculture. Urban Agric. Mag. 16, 10–19 (2006).

    Google Scholar 

  61. Van Veenhuizen, R. & Danso, G. Profitability and Sustainability of Urban and Periurban Agriculture. vol. 19 (Food & Agriculture Org., 2007).

  62. O’Sullivan, C. A., Bonnett, G. D., McIntyre, C. L., Hochman, Z. & Wasson, A. P. Strategies to improve the productivity, product diversity and profitability of urban agriculture. Agric. Syst. 174, 133–144 (2019).

    Article  Google Scholar 

  63. McClintock, N. Radical, reformist, and garden-variety neoliberal: coming to terms with urban agriculture’s contradictions. Local Environ. 19, 147–171 (2014).

    Article  Google Scholar 

  64. Gliessman, S. R. Agroecology: roots of resistance to industrialized food systems. in Agroecology: A Transdisciplinary, Participatory and Action-oriented Approach 23–35 (2016).

  65. Dehaene, M., Tornaghi, C. & Sage, C. Mending the metabolic rift: placing the ‘urban’ in urban agriculture. in Urban Agriculture Europe 174–177 (Jovis, 2016).

  66. Rundgren, G. Food: from commodity to commons. J. Agric. Environ. Ethics 29, 103–121 (2016).

    Article  Google Scholar 

  67. Patel, R., Balakrishnan, R. & Narayan, U. Transgressing rights: La Via Campesina’s call for food sovereignty/Exploring collaborations: heterodox economics and an economic social rights framework/Workers in the informal sector: special challenges for economic human rights. Fem. Econ. 13, 87–116 (2007).

    Article  Google Scholar 

  68. MacKinnon, D. & Derickson, K. D. From resilience to resourcefulness: a critique of resilience policy and activism. Prog. Hum. Geogr. 37, 253–270 (2013).

    Article  Google Scholar 

  69. Hudson, R. Resilient regions in an uncertain world: wishful thinking or a practical reality? Camb. J. Reg. Econ. Soc. 3, 11–25 (2010).

    Article  Google Scholar 

  70. Qiu, J. et al. Evidence-based causal chains for linking health, development, and conservation actions. Bioscience 68, 182–193 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Zhou, W., Pickett, S. T. A. & McPhearson, T. Conceptual frameworks facilitate integration for transdisciplinary urban science. npj Urban Sustain. 1, 1–11 (2021).

    Article  Google Scholar 

  72. Tornaghi, C. & Dehaene, M. Resourcing an Agroecological Urbanism: Political, Transformational and Territorial Dimensions (Routledge, 2021).

  73. Dorr, E., Goldstein, B., Horvath, A., Aubry, C. & Gabrielle, B. Environmental impacts and resource use of urban agriculture: a systematic review and meta-analysis. Environ. Res. Lett. 16, 093002 (2021).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This study is funded by the National Science Foundation (ICER-1830036). J.Q. also acknowledges the US Department of Agriculture, National Institute of Food and Agriculture, Research Capacity Fund (FLA-FTL-006277) and McIntire–Stennis (FLA-FTL-006371), and University of Florida School of Natural Resources and Environment for partial financial support of this work.

Author information

Authors and Affiliations

Authors

Contributions

J.Q. led the initial conceptualization of this work, and all authors contributed to the development of ideas. J.Q. designed the analyses, developed the visualizations and led the writing of the original draft. H.Z. conducted the literature search and screening of relevant empirical urban agriculture studies. All co-authors contributed to editing and revision of the manuscript.

Corresponding author

Correspondence to Jiangxiao Qiu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Food thanks Manuel Bickel, Chiara Tornaghi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Schematic diagram to illustrate the concept and spatial scale of the ‘urban regions’, at which urban agriculture is defined.

Urban regions are essentially a large regional landscape encompassing a major central population center, a network of urban centers, and a mosaic of surrounding natural, rural, and production lands with internal heterogeneity and contrasting patterns. Different forms of urban agriculture practices can occur in locales (for example, as shown in arrows) along the spatial gradient of the urban regions.

Extended Data Fig. 2 Nascent real-world examples of scaling up urban agriculture across the globe.

Paris, France (A) has opened one of the world’s largest operating urban rooftop farms to feed its residents and foster climate resilience; New York City, United States (B) boasts the most extensive network of community gardens (>550) to improve food access and life quality of residents and local communities; and Shanghai, China (C) has implemented the masterplans (construction began in 2017) to develop Sunqiao Urban Agriculture District (100 hectare) with numerous large-scale vertical farming systems for feeding burgeoning urban populations and reducing external food dependency.

Extended Data Fig. 3 Dominant urban agriculture types along the infrastructure and technology, and size gradients, with typical commercial (purple colored) and non-commercial (green colored) types.

Size of the boxes is in relative terms, and approximates the common and representative range of each urban agriculture type along these two axes. The location of urban agriculture types along these gradients is determined based on qualitative notions of the authors after the comprehensive review of the contemporary literature, which may evolve over time.

Supplementary information

Supplementary Information

Combined PDF Supplementary Information with three sections.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, J., Zhao, H., Chang, NB. et al. Scale up urban agriculture to leverage transformative food systems change, advance social–ecological resilience and improve sustainability. Nat Food 5, 83–92 (2024). https://doi.org/10.1038/s43016-023-00902-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-023-00902-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing