Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

The untapped potential of legacy soil phosphorus

Resource constraints and environmental impacts associated with current phosphorus fertilizer manufacture and use highlight considerable risks within global food production systems. Research portfolios targeted at existing soil phosphorus reserves might offer a solution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Approaches to phosphorus fertilization.

References

  1. Brownlie, W. J. et al. (eds) Our Phosphorus Future, Towards global phosphorus sustainability (UK Centre for Ecology and Hydrology, 2022).

  2. Nadarajan, S. & Sukumaran, S. in Controlled Release Fertilizers for Sustainable Agriculture Ch. 12 (eds Lewu, F. B., Volova, T., Thomas, S. & Rakhimol, K. R.) 195–229 (Academic Press, 2021).

  3. Nedelciu, C. E. et al. Glob. Food Sec. 26, 100426 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ritchie, H., Roser, M. & Rosado, P. Fertilizers. Our World in Data (2022); https://ourworldindata.org/fertilizers

  5. Li, B. et al. Environ. Sci. Pollut. Res. 29, 73461–73479 (2022).

    Article  CAS  Google Scholar 

  6. Day, S., Alexander, P. & Maslin, M. Nat. Food 4, 442–444 (2023).

    Article  PubMed  Google Scholar 

  7. He, X. et al. Earth Syst. Sci. Data 13, 5831–5846 (2021).

    Article  ADS  Google Scholar 

  8. Gocke, M. I. et al. J. Plant Nutr. Soil Sci. 184, 51–64 (2021).

    Article  CAS  Google Scholar 

  9. Menezes-Blackburn, D. et al. Plant Soil 427, 5–16 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Barrow, N. J. & Lambers, H. Plant Soil 476, 397–402 (2022).

    Article  CAS  Google Scholar 

  11. Raymond, N. S. et al. New Phytol. 229, 1268–1277 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Schneider, F. & Haderlein, S. B. Geoderma 277, 83–90 (2016).

    Article  CAS  ADS  Google Scholar 

  13. Mondal, M. et al. Agronomy 11, 448 (2021).

    Article  CAS  Google Scholar 

  14. McDowell, R. W. et al. Sci. Data 10, 125 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tóth, G. et al. Eur. J. Agron. 55, 42–52 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to conceiving the idea and preparing the manuscript.

Corresponding author

Correspondence to Christopher Pratt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pratt, C., El Hanandeh, A. The untapped potential of legacy soil phosphorus. Nat Food 4, 1024–1026 (2023). https://doi.org/10.1038/s43016-023-00890-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-023-00890-y

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene