Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Integrative knowledge-based nitrogen management practices can provide positive effects on ecosystem nitrogen retention

Abstract

Knowledge-based nitrogen (N) management provides better synchronization of crop N demand with N supply to enhance crop production while reducing N losses. Yet, how these N management practices contribute to reducing N losses globally is unclear. Here we compiled 5,448 paired observations from 336 publications representing 286 sites to assess the impacts of four common knowledge-based N management practices, including balanced fertilization, organic fertilization, co-application of synthetic and organic fertilizers, and nitrification inhibitors, on global ecosystem N cycling. We found that organic and balanced fertilization rather than N-only fertilization stimulated soil nitrate retention by enhancing microbial biomass, but also stimulated soil N leaching and emissions relative to no fertilizer addition. Nitrification inhibitors, however, stimulated soil ammonium retention and plant N uptake while reducing N leaching and emissions. Therefore, integrative application of knowledge-based N management practices is imperative to stimulate ecosystem N retention and minimize the risk of N loss globally.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global distribution of soil N transformation rates included in this study.
Fig. 2: Synthesized responses of soil N transformation rates and biogeochemical processes to knowledge-based N management practices relative to no fertilizer addition.
Fig. 3: The weighted effect sizes for soil biogeochemical processes in response to knowledge-based N management practices.
Fig. 4: Variable importance of environmental factors and response ratios of soil properties to the response of soil N transformations to fertilization.
Fig. 5: Variable importance of environmental factors and response ratios of soil properties to the response of soil N transformations to fertilization.
Fig. 6: Relationship of soil N transformations to environmental factors.
Fig. 7: Relationship of soil N transformations to environmental factors.
Fig. 8: Structural equation model depicting the multiple relations of soil gross N transformation rates with soil properties, N addition rate and environmental factors.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available on Figshare (https://doi.org/10.6084/m9.figshare.22729133). Source data are provided with this paper.

Code availability

The R (v.4.2.3) codes used to generate the results and figures reported in this study are available on Figshare (https://doi.org/10.6084/m9.figshare.22729133).

References

  1. Galloway, J. N. & Cowling, E. B. Reflections on 200 years of nitrogen, 20 years later. Ambio 50, 745–749 (2021).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  2. Butnariu, M. The nitrogen cycle in the soil, impact on the environment. Environ. Anal. Ecol. Stud. https://doi.org/10.31031/EAES.2018.04.000593 (2018).

    Article  Google Scholar 

  3. Ju, X.-T. et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc. Natl Acad. Sci. USA 106, 3041–3046 (2009).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  4. Xia, L. et al. Can knowledge‐based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta‐analysis. Glob. Change Biol. 23, 1917–1925 (2017).

    Article  ADS  Google Scholar 

  5. Dhawan, G., Dheri, G. S. & Gill, A. A. S. Long-term use of balanced fertilization decreases nitrogen losses in a maize–wheat system on Inceptisol of north India. Arch. Agron. Soil Sci. 68, 395–412 (2022).

    Article  CAS  Google Scholar 

  6. Timilsena, Y. P. et al. Enhanced efficiency fertilisers: a review of formulation and nutrient release patterns. J. Sci. Food Agric. 95, 1131–1142 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Murphy, D. et al. Gross nitrogen fluxes in soil: theory, measurement and application of 15N pool dilution techniques. Adv. Agron. 79, e118 (2003).

    Google Scholar 

  8. Hou, H. et al. N transformation mechanisms and N dynamics of organic fertilisers as partial substitutes for chemical fertilisers in paddy soils. J. Soils Sediments 22, 2516–2529 (2022).

  9. Ernfors, M. et al. The nitrification inhibitor dicyandiamide increases mineralization–immobilization turnover in slurry-amended grassland soil. J. Agric. Sci. 152, 137–149 (2014).

    Article  Google Scholar 

  10. Wang, J., Zhu, B., Zhang, J., Müller, C. & Cai, Z. Mechanisms of soil N dynamics following long-term application of organic fertilizers to subtropical rain-fed purple soil in China. Soil Biol. Biochem. 91, 222–231 (2015).

    Article  CAS  Google Scholar 

  11. Cheng, Y. et al. Phosphorus addition enhances gross microbial N cycling in phosphorus-poor soils: a 15N study from two long-term fertilization experiments. Biol. Fertil. Soils 54, 783–789 (2018).

    Article  CAS  Google Scholar 

  12. Zhang, J., Zhu, T., Cai, Z., Qin, S. & Müller, C. Effects of long‐term repeated mineral and organic fertilizer applications on soil nitrogen transformations. Eur. J. Soil Sci. 63, 75–85 (2012).

    Article  CAS  Google Scholar 

  13. Wang, S., Luo, S., Yue, S., Shen, Y. & Li, S. Fate of 15N fertilizer under different nitrogen split applications to plastic mulched maize in semiarid farmland. Nutr. Cycling Agroecosyst. 105, 129–140 (2016).

    Article  CAS  Google Scholar 

  14. Kader, M. A., Yeasmin, S., Solaiman, Z., De Neve, S. & Sleutel, S. Response of hydrolytic enzyme activities and nitrogen mineralization to fertilizer and organic matter application in subtropical paddy soils. Eur. J. Soil Biol. 80, 27–34 (2017).

    Article  CAS  Google Scholar 

  15. Elrys, A. S. et al. Global patterns of soil gross immobilization of ammonium and nitrate in terrestrial ecosystems. Glob. Change Biol. 28, 4472–4488 (2022).

    Article  CAS  Google Scholar 

  16. Vogel, C. et al. Effects of a nitrification inhibitor on nitrogen species in the soil and the yield and phosphorus uptake of maize. Sci. Total Environ. 715, 136895 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  17. Baldos, A. P., Corre, M. D. & Veldkamp, E. Response of N cycling to nutrient inputs in forest soils across a 1000–3000 m elevation gradient in the Ecuadorian Andes. Ecology 96, 749–761 (2015).

    Article  PubMed  Google Scholar 

  18. Tian, D. & Niu, S. A global analysis of soil acidification caused by nitrogen addition. Environ. Res. Lett. 10, 024019 (2015).

    Article  ADS  Google Scholar 

  19. Cheng, Y. et al. Global patterns and drivers of soil dissimilatory nitrate reduction to ammonium. Environ. Sci. Technol. 56, 3791–3800 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  20. Kim, H., Park, D. & Yoon, S. pH control enables simultaneous enhancement of nitrogen retention and N2O reduction in Shewanella loihica strain PV-4. Front. Microbiol. 8, 1820 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bai, R. et al. Greater promotion of DNRA rates and nrfA gene transcriptional activity by straw incorporation in alkaline than in acidic paddy soils. Soil Ecol. Lett. 2, 255–267 (2020).

    Article  CAS  Google Scholar 

  22. Welsh, A., Chee-Sanford, J. C., Connor, L. M., Löffler, F. E. & Sanford, R. A. Refined NrfA phylogeny improves PCR-based nrfA gene detection. Appl. Environ. Microbiol. 80, 2110–2119 (2014).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  23. Van Den Berg, E. M., Boleij, M., Kuenen, J. G., Kleerebezem, R. & Van Loosdrecht, M. C. DNRA and denitrification coexist over a broad range of acetate/N-NO3 ratios, in a chemostat enrichment culture. Front. Microbiol. 7, 1842 (2016).

    PubMed  PubMed Central  Google Scholar 

  24. Cheng, Y., Zhang, J.-B., Müller, C. & Wang, S.-Q. 15N tracing study to understand the N supply associated with organic amendments in a vineyard soil. Biol. Fertil. Soils 51, 983–993 (2015).

    Article  CAS  Google Scholar 

  25. Booth, M. S., Stark, J. M. & Rastetter, E. J. E. M. Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data. Ecol. Monogr. 75, 139–157 (2005).

    Article  Google Scholar 

  26. Elrys, A. S. et al. Expanding agroforestry can increase nitrate retention and mitigate the global impact of a leaky nitrogen cycle in croplands. Nat. Food 4, 109–121 (2023).

    Article  CAS  PubMed  Google Scholar 

  27. Hodge, A., Robinson, D. & Fitter, A. Are microorganisms more effective than plants at competing for nitrogen? Trends Plant Sci. 5, 304–308 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Adekiya, A. O. et al. Different organic manure sources and NPK fertilizer on soil chemical properties, growth, yield and quality of okra. Sci. Rep. 10, 16083 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  29. Galloway, J. N. et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320, 889–892 (2008).

    Article  CAS  PubMed  ADS  Google Scholar 

  30. McCarty, G. Modes of action of nitrification inhibitors. Biol. Fertil. Soils 29, 1–9 (1999).

    Article  CAS  Google Scholar 

  31. Raza, S. et al. Dicyandiamide application improved nitrogen use efficiency and decreased nitrogen losses in wheat–maize crop rotation in Loess Plateau. Arch. Agron. Soil Sci. 65, 450–464 (2019).

    Article  CAS  Google Scholar 

  32. Lan, T., Suter, H., Liu, R., Yuan, S. & Chen, D. Effects of nitrification inhibitors on gross N nitrification rate, ammonia oxidizers, and N2O production under different temperatures in two pasture soils. Environ. Sci. Pollut. Res. 25, 28344–28354 (2018).

    Article  CAS  Google Scholar 

  33. Palm, C. A., Gachengo, C. N., Delve, R. J., Cadisch, G. & Giller, K. E. Organic inputs for soil fertility management in tropical agroecosystems: application of an organic resource database. Agric. Ecosyst. Environ. 83, 27–42 (2001).

    Article  Google Scholar 

  34. Conant, R. T., Berdanier, A. B. & Grace, P. R. Patterns and trends in nitrogen use and nitrogen recovery efficiency in world agriculture. Glob. Biogeochem. Cycles 27, 558–566 (2013).

    Article  CAS  ADS  Google Scholar 

  35. Wang, L., Xin, J., Nai, H. & Zheng, X. Effects of different fertilizer applications on nitrogen leaching losses and the response in soil microbial community structure. Environ. Technol. Innov. 23, 101608 (2021).

    Article  CAS  Google Scholar 

  36. Silver, W. L., Thompson, A., Reich, A., Ewel, J. J. & Firestone, M. Nitrogen cycling in tropical plantation forests: potential controls on nitrogen retention. Ecol. Appl. 15, 1604–1614 (2005).

    Article  Google Scholar 

  37. van Groenigen, J. W., Kuikman, P. J., de Groot, W. J. & Velthof, G. L. Nitrous oxide emission from urine-treated soil as influenced by urine composition and soil physical conditions. Soil Biol. Biochem. 37, 463–473 (2005).

    Article  Google Scholar 

  38. Akiyama, H. & Tsuruta, H. Effect of organic matter application on N2O, NO, and NO2 fluxes from an Andisol field. Glob. Biogeochem. Cycles 17, 1100 (2003).

    Article  ADS  Google Scholar 

  39. Khalil, M. et al. Nitrous oxide production from an Ultisol of the humid tropics treated with different nitrogen sources and moisture regimes. Biol. Fertil. Soils 36, 59–65 (2002).

    Article  CAS  Google Scholar 

  40. Zhu, T., Zhang, J., Yang, W. & Cai, Z. Effects of organic material amendment and water content on NO, N2O, and N2 emissions in a nitrate-rich vegetable soil. Biol. Fertil. Soils 49, 153–163 (2013).

    Article  CAS  Google Scholar 

  41. Benbi, D. K. & Biswas, C. R. Nitrogen balance and N recovery after 22 years of maize–wheat–cowpea cropping in a long-term experiment. Nutr. Cycl. Agroecosyst. 47, 107–114 (1996).

    Article  Google Scholar 

  42. Recio, J. et al. The effect of nitrification inhibitors on NH3 and N2O emissions in highly N fertilized irrigated Mediterranean cropping systems. Sci. Total Environ. 636, 427–436 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  43. Ruser, R. & Schulz, R. The effect of nitrification inhibitors on the nitrous oxide (N2O) release from agricultural soils—a review. J. Plant Nutr. Soil Sci. 178, 171–188 (2015).

    Article  CAS  Google Scholar 

  44. Yang, M., Fang, Y., Sun, D. & Shi, Y. Efficiency of two nitrification inhibitors (dicyandiamide and 3, 4-dimethypyrazole phosphate) on soil nitrogen transformations and plant productivity: a meta-analysis. Sci. Rep. 6, 22075 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  45. Aber, J. et al. Nitrogen saturation in temperate forest ecosystems: hypotheses revisited. BioScience 48, 921–934 (1998).

    Article  Google Scholar 

  46. Zhang, Y. et al. Effect of soil microorganisms and labile C availability on soil respiration in response to litter inputs in forest ecosystems: a meta‐analysis. Ecol. Evol. 10, 13602–13612 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Elrys, A. S. et al. Do soil property variations affect dicyandiamide efficiency in inhibiting nitrification and minimizing carbon dioxide emissions? Ecotoxicol. Environ. Saf. 202, 110875 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Song, L., Li, Z. & Niu, S. Global soil gross nitrogen transformation under increasing nitrogen deposition. Glob. Biogeochem. Cycles 35, e2020GB006711 (2021).

    Article  CAS  ADS  Google Scholar 

  49. Wrage, N., Velthof, G. L., Van Beusichem, M. L. & Oenema, O. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol. Biochem. 33, 1723–1732 (2001).

    Article  CAS  Google Scholar 

  50. Elrys, A. S. et al. Global gross nitrification rates are dominantly driven by soil carbon‐to‐nitrogen stoichiometry and total nitrogen. Glob. Change Biol. 27, 6512–6524 (2021).

    Article  CAS  Google Scholar 

  51. Liu, H. et al. Autotrophic archaeal nitrification is preferentially stimulated by rice callus mineralization in a paddy soil. Plant Soil 445, 55–69 (2019).

    Article  CAS  Google Scholar 

  52. Geisseler, D., Horwath, W. R., Joergensen, R. G. & Ludwig, B. Pathways of nitrogen utilization by soil microorganisms–a review. Soil Biol. Biochem. 42, 2058–2067 (2010).

    Article  CAS  Google Scholar 

  53. Zhang, Y. et al. Soil N transformation mechanisms can effectively conserve N in soil under saturated conditions compared to unsaturated conditions in subtropical China. Biol. Fertil. Soils 54, 495–507 (2018).

    Article  CAS  Google Scholar 

  54. Minick, K., Pandey, C., Fox, T. & Subedi, S. Dissimilatory nitrate reduction to ammonium and N2O flux: effect of soil redox potential and N fertilization in loblolly pine forests. Biol. Fertil. Soils 52, 601–614 (2016).

    Article  CAS  Google Scholar 

  55. Huygens, D. et al. Mechanisms for retention of bioavailable nitrogen in volcanic rainforest soils. Nat. Geosci. 1, 543–548 (2008).

    Article  CAS  ADS  Google Scholar 

  56. Aponte, C., Marañón, T. & García, L. V. Microbial C, N and P in soils of Mediterranean oak forests: influence of season, canopy cover and soil depth. Biogeochemistry 101, 77–92 (2010).

    Article  CAS  Google Scholar 

  57. Singh, R. & Nye, P. The effect of soil pH and high urea concentrations on urease activity in soil. J. Soil Sci. 35, 519–527 (1984).

    Article  Google Scholar 

  58. Sinsabaugh, R. L. et al. Stoichiometry of soil enzyme activity at global scale. Ecol. Lett. 11, 1252–1264 (2008).

    Article  PubMed  Google Scholar 

  59. Homyak, P. M., Allison, S. D., Huxman, T. E., Goulden, M. L. & Treseder, K. K. Effects of drought manipulation on soil nitrogen cycling: a meta‐analysis. J. Geophys. Res. Biogeosci. 122, 3260–3272 (2017).

    Article  CAS  Google Scholar 

  60. Schimel, J. P., Bilbrough, C. & Welker, J. M. Increased snow depth affects microbial activity and nitrogen mineralization in two Arctic tundra communities. Soil Biol. Biochem. 36, 217–227 (2004).

    Article  CAS  Google Scholar 

  61. Nordin, A., Schmidt, I. K. & Shaver, G. R. Nitrogen uptake by Arctic soil microbes and plants in relation to soil nitrogen supply. Ecology 85, 955–962 (2004).

    Article  Google Scholar 

  62. Lawrence, J. et al. in Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H.-O. et al.) Ch. 11 (IPCC, Cambridge Univ. Press, 2022).

  63. Ren, F. et al. Responses of crop productivity and reactive nitrogen losses to the application of animal manure to China’s main crops: a meta-analysis. Sci. Total Environ. 850, 158064 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  64. Zhang, Y. et al. Cattle manure and straw have contrasting effects on organic nitrogen mineralization pathways in a subtropical paddy soil. Acta Agric. Scand. B 65, 619–628 (2015).

    Google Scholar 

  65. Cheng, Y., Wang, J., Wang, J., Chang, S. X. & Wang, S. The quality and quantity of exogenous organic carbon input control microbial NO3 immobilization: a meta-analysis. Soil Biol. Biochem. 115, 357–363 (2017).

    Article  CAS  Google Scholar 

  66. McGeough, K. et al. Evidence that the efficacy of the nitrification inhibitor dicyandiamide (DCD) is affected by soil properties in UK soils. Soil Biol. Biochem. 94, 222–232 (2016).

    Article  CAS  Google Scholar 

  67. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article  Google Scholar 

  68. Zomer, R. J., Xu, J. & Trabucco, A. Version 3 of the Global Aridity Index and Potential Evapotranspiration Database. Sci. Data 9, 409 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Hou, E. et al. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nat. Commun. 11, 637 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  70. Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta‐analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).

    Article  Google Scholar 

  71. Borenstein, M., Hedges, L. V., Higgins, J. P. & Rothstein, H. R. A basic introduction to fixed‐effect and random‐effects models for meta‐analysis. Res. Synth. Methods 1, 97–111 (2010).

    Article  PubMed  Google Scholar 

  72. Cook, R. D. & Weisberg, S. Residuals and Influence in Regression (Chapman and Hall, 1982).

  73. Su, J., Friess, D. A. & Gasparatos, A. A meta-analysis of the ecological and economic outcomes of mangrove restoration. Nat. Commun. 12, 5050 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  74. Altman, N. & Krzywinski, M. Correction: corrigendum: analyzing outliers: influential or nuisance? Nat. Methods 13, 535 (2016).

    Article  CAS  Google Scholar 

  75. Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).

    Article  Google Scholar 

  76. Elrys, A. S. et al. Integrative knowledge-based nitrogen management practices can provide positive effects on ecosystem nitrogen retention for sustainable agriculture. Figshare https://doi.org/10.6084/m9.figshare.22729133 (2023).

  77. Nakagawa, S., Noble, D. W., Senior, A. M. & Lagisz, M. Meta-evaluation of meta-analysis: ten appraisal questions for biologists. BMC Biol. 15, 18 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Graham, M. H. Confronting multicollinearity in ecological multiple regression. Ecology 84, 2809–2815 (2003).

    Article  Google Scholar 

  79. Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Kuhn, M. et al. Package ‘caret’. Github https://github.com/topepo/caret (2020).

  81. Lefcheck, J. S. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

We thank all the researchers whose data were used in this global synthesis. We also acknowledge the University of Berkeley, Museum of Vertebrate Zoology, the International Rice Research Institute, R. Hijmans, N. Garcia, J. Kapoor, A. Rala, A. Maunahan and J. Wieczorek for the world base map data. Financial support for this work was provided by the National Natural Science Foundation of China (grant nos. 42150410380 (A.S.E.), 42122055 (Y.C.), 41977081 (Y.C.), 41977032 (Z.C.) and 42067008 (L.M.)), and the 111 Program of China (grant no. D19002 (Nanjing Normal University, Nanjing, China)).

Author information

Authors and Affiliations

Authors

Contributions

A.S.E. and Y.C. designed the study. A.S.E., J.W. and L.M. gathered the data and performed the analysis. A.S.E. and Y.C. took the lead in writing the paper. All authors contributed to discussing the results and writing and editing the paper. A.S.E., J.W. and L.M. contributed equally to this work.

Corresponding author

Correspondence to Yi Cheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Food thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 The weighted effect sizes for soil biogeochemical processes in response to knowledge-based N management practices.

(a) The abundances of overall bacteria, AOA (ammonia-oxidizing archaea), and AOB (ammonia-oxidizing bacteria). (b) NH4+ (extractable ammonium), NO3¯ (extractable nitrate), and [H+] (soil hydrogen concentration). The values outside and inside the parentheses at the right side of the confidence intervals represent, respectively, the number of observations and the number of studies. Errors represent 95% confidence intervals (CIs) of weighted means of response ratios. The effect of fertilizers addition is significant if the CI of effect size does not cover zero. The dashed lines indicate the no-fertilization effect. N, synthetic N; NPK, synthetic N in combination with synthetic P and K; O, organic N-only fertilization (for example, manure and/or compost); ONPK, organic fertilizers in combination with NPK; SNPK, straw in combination with NPK; NI, nitrification inhibitors. Source data are provided as a Source Data file.

Source data

Supplementary information

Supplementary Information

Supplementary Discussion, Figs. 1–151, Tables 1–29, PRISMA checklist and list of publications used in this synthesis.

Reporting Summary

Supplementary Data 1

An Excel sheet containing all the data included in the paper.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Fig. 7

Statistical source data.

Source Data Fig. 8

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elrys, A.S., Wang, J., Meng, L. et al. Integrative knowledge-based nitrogen management practices can provide positive effects on ecosystem nitrogen retention. Nat Food 4, 1075–1089 (2023). https://doi.org/10.1038/s43016-023-00888-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-023-00888-6

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene