Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Space controlled environment agriculture offers pathways to improve the sustainability of controlled environmental agriculture on Earth

Abstract

Terrestrial controlled environment agriculture (CEA) will have an increasingly important role in food production. However, present CEA systems are energy- and resource-hungry and rarely profitable, requiring a step change in design and optimization. Here we argue that the unique nature of space controlled environment agriculture (SpaCEA), which needs to be both highly resource efficient and circular in design, presents an opportunity to develop intrinsically circular CEA systems. Life-cycle analysis tools should be used to optimize the provision and use of natural or electrical light, power, nutrients and infrastructure in CEA and/or SpaCEA systems, and to guide research and development into subsystems that bring strong environmental advantages. We suggest that SpaCEA public outreach can also be used to improve the perception of terrestrial CEA on Earth by using space as a gateway for exhibiting CEA food growing technologies. A substantial focus on SpaCEA development should be viewed as an efficient contribution to addressing major current CEA challenges.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Technical framework for the design of a CEA or SpaCEA system.

Similar content being viewed by others

References

  1. NASA’s Lunar Exploration Program Overview (NASA, 2020); https://www.nasa.gov/sites/default/files/atoms/files/artemis_plan-20200921.pdf

  2. Douglas, G. L., Wheeler, R. M. & Fritsche, R. F. Sustaining astronauts: resource limitations, technology needs, and parallels between spaceflight food systems and those on earth. Sustainability 13, 9424 (2021).

    Article  Google Scholar 

  3. Monje, O. et al. New frontiers in food production beyond LEO. In 49th Int. Conference on Environmental Systems (ICES, 2019).

  4. Poulet, L. et al. Crew time in a space greenhouse using data from analog missions and Veggie. Life Sci. Space Res. 31, 101–112 (2021).

    Article  ADS  Google Scholar 

  5. Sercel, J. C. et al. in Primitive Meteorites and Asteroids 477–524 (Elsevier, 2018).

  6. Kalmbach, J. A. & Ralston, J. J. Sights on Mars: continuity and change in support for space policy. Space Policy 57, 101446 (2021).

    Article  Google Scholar 

  7. Platt, C. A., Jason, M. & Sullivan, C. J. Public perceptions of private space initiatives: how young adults view the SpaceX plan to colonize mars. Space Policy 51, 101358 (2020).

    Article  Google Scholar 

  8. Steinberg, A. Space policy responsiveness: the relationship between public opinion and NASA funding. Space Policy 27, 240–246 (2011).

    Article  ADS  Google Scholar 

  9. Hewett, E. W. & Warrington, I. J. Creation of harvesting the sun: a profile of world horticulture. Acta Hortic. 1051, 15–22 (2014).

    Article  Google Scholar 

  10. Asseng, S. et al. Wheat yield potential in controlled-environment vertical farms. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2002655117 (2020).

  11. Orsini, F., Pennisi, G., Zulfiqar, F. & Gianquinto, G. Sustainable use of resources in plant factories with artificial lighting (PFALs). Eur. J. Hortic. Sci. 85, 297–309 (2020).

    Article  Google Scholar 

  12. van Delden, S. H. et al. Current status and future challenges in implementing and upscaling vertical farming systems. Nat. Food 2, 944–956 (2021).

    Article  PubMed  Google Scholar 

  13. Sandison, F., Yeluripati, J. & Stewart, D. Does green vertical farming offer a sustainable alternative to conventional methods of production? A case study from Scotland. Food Energy Secur. https://doi.org/10.1002/fes3.438 (2022).

  14. Bamsey, M. et al. Developing strategies for automated remote plant production systems: environmental control and monitoring of the Arthur Clarke Mars Greenhouse in the Canadian High Arctic. Adv. Sp. Res. 44, 1367–1381 (2016).

    Article  ADS  Google Scholar 

  15. Tachikawa, S., Nagano, H., Ohnishi, A. & Nagasaka, Y. Advanced passive thermal control materials and devices for spacecraft: a review. Int. J. Thermophys. 43, 91 (2022).

    Article  ADS  CAS  Google Scholar 

  16. Miyakita, T., Hatakenaka, R., Sugita, H., Saitoh, M. & Hirai, T. Development of a new multi-layer insulation blanket with non-interlayer-contact spacer for space cryogenic mission. Cryogenics 64, 112–120 (2014).

    Article  ADS  CAS  Google Scholar 

  17. Dye, S., Kopelove, A. & Mills, G. L. Novel load responsive multilayer insulation with high in-atmosphere and on-orbit thermal performance. Cryogenics 52, 243–247 (2012).

    Article  ADS  CAS  Google Scholar 

  18. Torres Pineda, I., Lee, Y. D., Kim, Y. S., Lee, S. M. & Park, K. S. Review of inventory data in life cycle assessment applied in production of fresh tomato in greenhouse. J. Clean. Prod. 282, 124395 (2021).

    Article  Google Scholar 

  19. Kikuchi, Y., Kanematsu, Y., Yoshikawa, N., Okubo, T. & Takagaki, M. Environmental and resource use analysis of plant factories with energy technology options: a case study in Japan. J. Clean. Prod. 186, 703–717 (2018).

    Article  Google Scholar 

  20. Torrellas, M. et al. LCA of a tomato crop in a multi-tunnel greenhouse in Almeria. Int. J. Life Cycle Assess. 17, 863–875 (2012).

    Article  CAS  Google Scholar 

  21. Avgoustaki, D. D. & Xydis, G. Indoor vertical farming in the urban nexus context: business growth and resource savings. Sustainability 12, 1965 (2020).

    Article  Google Scholar 

  22. Valle de Souza, S., Peterson, H. C. & Seong, J. in Plant Factory Basics, Applications and Advances Vol. 4, 251–270 (Elsevier, 2022).

  23. Net Cash Farm Income of the Operations and Producers: 2017 and 2012 (USDA, 2018); https://www.nass.usda.gov/Publications/AgCensus/2017/Full_Report/Volume_1,_Chapter_1_US/st99_1_0005_0006.pdf

  24. Farm Business Income by Type of Farm in England 2021/22 (UK Government, 2022); https://www.gov.uk/government/statistics/farm-business-income/farm-business-income-by-type-of-farm-in-england-202122

  25. Perambalam, L. et al. How young consumers perceive vertical farming in the Nordics. Is the market ready for the coming boom? Agronomy 11, 2128 (2021).

    Article  Google Scholar 

  26. Specht, K. et al. How will we eat and produce in the cities of the future? From edible insects to vertical farming: a study on the perception and acceptability of new approaches. Sustainability 11, 4315 (2019).

    Article  Google Scholar 

  27. Jürkenbeck, K., Heumann, A. & Spiller, A. Sustainability matters: consumer acceptance of different vertical farming systems. Sustainability 11, 4052 (2019).

    Article  Google Scholar 

  28. Ryan, S. F. et al. The role of citizen science in addressing grand challenges in food and agriculture research. Proc. R. Soc. B 285, 20181977 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Raymond, C., Litzinger, M., Wen, Y., Padolf, A. & Lewis, C. Growing Beyond Earth Evaluation Results Summary: 2016–2020 (Reimagining Equity and Values in Informal STEM Education, 2020); https://www.informalscience.org/growing-beyond-earth-evaluation-results-summary-2016-2020

  30. Anderson, M. S. et al. Key gaps for enabling plant growth in future missions. AIAA Space and Astronautics Forum Exposition 2017 https://doi.org/10.2514/6.2017-5142 (AIAA, 2017).

  31. Alexander, C., Fritsche, R. F. & Massa, G. D. Gaps List KSC Space Crop Production Project Scientist: Interview Evaluation (NASA NTRS, 2021); https://ntrs.nasa.gov/citations/20210019414

  32. SharathKumar, M., Heuvelink, E. & Marcelis, L. F. M. Vertical farming: moving from genetic to environmental modification. Trends Plant Sci. 25, 724–727 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Lee, S. & Lee, J. Beneficial bacteria and fungi in hydroponic systems: types and characteristics of hydroponic food production methods. Sci. Hortic. 195, 206–215 (2015).

    Article  CAS  Google Scholar 

  34. French, E., Kaplan, I., Iyer-Pascuzzi, A., Nakatsu, C. H. & Enders, L. Emerging strategies for precision microbiome management in diverse agroecosystems. Nat. Plants 7, 256–267 (2021).

    Article  PubMed  Google Scholar 

  35. Khodadad, C. L. M. et al. Microbiological and nutritional analysis of lettuce crops grown on the International Space Station. Front. Plant Sci. 11, 206–215 (2020).

    Article  Google Scholar 

  36. Hendrickx, L. et al. Microbial ecology of the closed artificial ecosystem MELiSSA (Micro-Ecological Life Support System Alternative): reinventing and compartmentalizing the Earth’s food and oxygen regeneration system for long-haul space exploration missions. Res. Microbiol. 157, 77–86 (2006).

    Article  PubMed  Google Scholar 

  37. Berliner, A. J. et al. Space bioprocess engineering on the horizon. Commun. Eng. 1, 13 (2022).

    Article  Google Scholar 

  38. Chen, D. et al. Prospects of improving efficiency of fertiliser nitrogen in Australian agriculture: a review of enhanced efficiency fertilisers. Aust. J. Soil Res. 46, 289–301 (2008).

    Article  CAS  Google Scholar 

  39. Cowan, N. et al. CEA systems: the means to achieve future food security and environmental sustainability? Front. Sustain. Food Syst. 6, 891256 (2022).

    Article  Google Scholar 

  40. Anand, M. et al. A brief review of chemical and mineralogical resources on the Moon and likely initial in situ resource utilization (ISRU) applications. Planet. Space Sci. 74, 42–48 (2012).

    Article  ADS  CAS  Google Scholar 

  41. Volger, R. et al. Mining moon & mars with microbes: biological approaches to extract iron from Lunar and Martian regolith. Planet. Space Sci. 184, 104850 (2020).

    Article  CAS  Google Scholar 

  42. Roberts, A. D. et al. Blood, sweat, and tears: extraterrestrial regolith biocomposites with in vivo binders. Mater. Today Bio 12, 100136 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Menezes, A. A., Cumbers, J., Hogan, J. A. & Arkin, A. P. Towards synthetic biological approaches to resource utilization on space missions. J. R. Soc. Interf. 12, 20140715 (2015).

    Article  Google Scholar 

  44. Pilehvar, S., Arnhof, M., Pamies, R., Valentini, L. & Kjøniksen, A. L. Utilization of urea as an accessible superplasticizer on the moon for lunar geopolymer mixtures. J. Clean. Prod. 247, 119177 (2020).

    Article  CAS  Google Scholar 

  45. Hetherington, A. C., Borrion, A. L., Griffiths, O. G. & McManus, M. C. Use of LCA as a development tool within early research: challenges and issues across different sectors. Int. J. Life Cycle Assess. 19, 130–143 (2014).

    Article  Google Scholar 

  46. ISO 14040 Environmental Management — Life Cycle Assessment — Principles and Framework (ISO, 2006); https://www.iso.org/standard/37456.html

  47. ISO 14044 Environmental Management — Life Cycle Assessment — Requirements and Guidelines (ISO, 2006); https://www.iso.org/standard/38498.html

  48. Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  49. ISO/TR 14062 Environmental Management — Integrating Environmental Aspects into Product Design and Development (ISO, 2002); https://www.iso.org/standard/33020.html

  50. Maury, T., Loubet, P., Serrano, S. M., Gallice, A. & Sonnemann, G. Application of environmental life cycle assessment (LCA) within the space sector: a state of the art. Acta Astronaut. 170, 122–135 (2020).

    Article  ADS  Google Scholar 

  51. Cucurachi, S., Scherer, L., Guinée, J. & Tukker, A. Life cycle assessment of food systems. One Earth 1, 292–297 (2019).

    Article  ADS  Google Scholar 

  52. Horton, P. et al. An agenda for integrated system-wide interdisciplinary agri-food research. Food Secur. 9, 195–210 (2017).

    Article  Google Scholar 

  53. Wheeler, R. M. Agriculture for space: people and places paving the way. Open Agric. 2, 14–32 (2017).

    Article  Google Scholar 

  54. Vermeulen, A. C. J., Hubers, C., de Vries, L. & Brazier, F. What horticulture and space exploration can learn from each other: the Mission to Mars initiative in the Netherlands. Acta Astronaut. 177, 421–424 (2020).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the Institute of Sustainable Food at the University of Sheffield for funding this work. We also thank K. Ostojic from RAL Space for inputs in the early discussions on this Perspective.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry C. Wright.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Food thanks Andrew Beacham and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wright, H.C., Fountain, L., Moschopoulos, A. et al. Space controlled environment agriculture offers pathways to improve the sustainability of controlled environmental agriculture on Earth. Nat Food 4, 648–653 (2023). https://doi.org/10.1038/s43016-023-00819-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-023-00819-5

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene