Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Low-opportunity-cost feed can reduce land-use-related environmental impacts by about one-third in China

Abstract

Feeding animals more low-opportunity-cost feed products (LCFs), such as food waste and by-products, may decrease food–feed competition for cropland. Using a feed allocation optimization model that considers the availability of feed sources and animal requirements for protein and energy, we explored the perspectives of feeding more LCFs to animals in China. We found that about one-third of the animal feed consisted of human-edible products, while only 23% of the available LCFs were used as feed during 2009–2013. An increased utilization of LCFs (45–90 Mt) could potentially save 25–32% of feed-producing cropland area without impairing livestock productivity. Parallelly, about one-third of feed-related irrigation water, synthetic fertilizer and greenhouse gas emissions would be saved. Re-allocating the saved cropland could sustain the food energy demand of 30–185 million people. Achieving the potentials of increased LCF use requires improved technology and coordination among stakeholders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Current (2009–2013) use of feeds in China’s livestock sector.
Fig. 2: Land area needed for the production of different feed crops, and for different animal categories under four scenarios.
Fig. 3: Absolute changes of the FCR and eFCR for animals under scenarios S1, S2 and S3, compared with the BAU scenario.
Fig. 4: Resource use and emissions associated with the production and use of feedstuffs in the BAU and S1, S2 and S3 scenarios.

Data availability

Data supporting the findings of this study, including key model parameters of environmental pressure, optimization constraints, food waste and losses, and feed nutrient and ration, are available within the article and Supplementary Information files. Other activity data such as animal number and production, and feed supply are available from the corresponding author upon reasonable request. Source data are provided with this paper.

Code availability

The statistical code is available from the corresponding author on reasonable request.

References

  1. Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353, 288–291 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Uwizeye, A. et al. Nitrogen emissions from global livestock supply chains. Nat. Food 1, 437–446 (2020).

    Article  CAS  Google Scholar 

  4. Alexander, P. et al. Drivers for global agricultural land use change: the nexus of diet, population, yield and bioenergy. Glob. Environ. Chang. 35, 138–147 (2015).

    Article  Google Scholar 

  5. Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gao, L. & Bryan, B. A. Finding pathways to national-scale land-sector sustainability. Nature 544, 217–222 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Statistics database. Food and Agriculture Organization http://faostat.fao.org/ (2019).

  8. Bai, Z. et al. China’s livestock transition: driving forces, impacts, and consequences. Sci. Adv. 4, 1–12 (2018).

    Article  Google Scholar 

  9. Röös, E. et al. Greedy or needy? Land use and climate impacts of food in 2050 under different livestock futures. Glob. Environ. Change 47, 1–12 (2017).

    Article  Google Scholar 

  10. Van Zanten, H. H. E. et al. Defining a land boundary for sustainable livestock consumption. Glob. Change Biol. 24, 4185–4194 (2018).

    Article  ADS  Google Scholar 

  11. Kim, B. F. et al. Country-specific dietary shifts to mitigate climate and water crises. Glob. Environ. Change 62, 101926 (2020).

    Article  Google Scholar 

  12. Macdiarmid, J. I., Douglas, F. & Campbell, J. Eating like there’s no tomorrow: public awareness of the environmental impact of food and reluctance to eat less meat as part of a sustainable diet. Appetite 96, 487–493 (2016).

    Article  PubMed  Google Scholar 

  13. Ma, L. et al. Exploring future food provision scenarios for China. Environ. Sci. Technol. 53, 1385–1393 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Van Zanten, H. H. E., Van Ittersum, M. K. & De Boer, I. J. M. The role of farm animals in a circular food system. Glob. Food Sec. 21, 18–22 (2019).

    Article  Google Scholar 

  15. zu Ermgassen, E. K. H. J., Phalan, B., Green, R. E. & Balmford, A. Reducing the land use of EU pork production: where there’s swill, there’s a way. Food Policy 58, 35–48 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cheng, S., Jin, Z. & Liu, G. China urban food and drink waste report (in Chinese). World Wide Fund Nat. 53, 1689–1699 (2018).

    Google Scholar 

  17. Wilkinson, J. M. Re-defining efficiency of feed use by livestock. Animal 5, 1014–1022 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Schader, C. et al. Impacts of feeding less food-competing feedstuffs to livestock on global food system sustainability. J. R. Soc. Interface 12, 20150891 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gustavsson, J., Cederberg, C., Sonesson, U., van Otterdijk, R. & Meybeck, A. Global food losses and food waste: extent, causes and prevention. Int. Congr. Save Food! 38 (2011).

  20. Dou, Z., Toth, J. D. & Westendorf, M. L. Food waste for livestock feeding: feasibility, safety, and sustainability implications. Glob. Food Sec. 17, 154–161 (2018).

    Article  Google Scholar 

  21. Shurson, G. C. ‘What a waste’—can we improve sustainability of food animal production systems by recycling food waste streams into animal feed in an era of health, climate, and economic crises? Sustainability 12, 7071 (2020).

    Article  CAS  Google Scholar 

  22. Dou, Z. Leveraging livestock to promote a circular food system. Front. Agric. Sci. Eng. 8, 188–192 (2021).

    Article  ADS  Google Scholar 

  23. Röös, E., Patel, M., Spångberg, J., Carlsson, G. & Rydhmer, L. Limiting livestock production to pasture and by-products in a search for sustainable diets. Food Policy 58, 1–13 (2016).

    Article  Google Scholar 

  24. Food waste and food waste prevention—estimates—Statistics Explained. eurostats https://ec.europa.eu/eurostat/statistics-explained/index.php?oldid=578564 (2023).

  25. Zhao, H. et al. China’s future food demand and its implications for trade and environment. Nat. Sustain. 4, 1042–1051 (2021).

    Article  Google Scholar 

  26. Xue, L. et al. China’s food loss and waste embodies increasing environmental impacts. Nat. Food 2, 519–528 (2021).

    Article  PubMed  Google Scholar 

  27. Taherzadeh, O. & Caro, D. Drivers of water and land use embodied in international soybean trade. J. Clean. Prod. 223, 83–93 (2019).

    Article  Google Scholar 

  28. Xu, J. et al. Double cropping and cropland expansion boost grain production in Brazil. Nat. Food 2, 264–273 (2021).

    Article  PubMed  Google Scholar 

  29. Wang, Y., Yuan, Z. & Tang, Y. Enhancing food security and environmental sustainability: a critical review of food loss and waste management. Resour. Environ. Sustain. 4, 100023 (2021).

    Google Scholar 

  30. Thi, N. B. D., Kumar, G. & Lin, C. Y. An overview of food waste management in developing countries: current status and future perspective. J. Environ. Manage. 157, 220–229 (2015).

    Article  PubMed  Google Scholar 

  31. Müller, C. Anaerobic digestion of biodegradable solid waste in low- and middle-income countries. Eawag Aquat. Res. Switzerland 63 (2007).

  32. Cobo, S., Dominguez-Ramos, A. & Irabien, A. Trade-offs between nutrient circularity and environmental impacts in the management of organic waste. Environ. Sci. Technol. 52, 10923–10933 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Kim, M. H., Song, Y. E., Song, H. B., Kim, J. W. & Hwang, S. J. Evaluation of food waste disposal options by LCC analysis from the perspective of global warming: Jungnang case, South Korea. Waste Manag. 31, 2112–2120 (2011).

    Article  PubMed  Google Scholar 

  34. Salemdeeb, R., zu Ermgassen, E. K. H. J., Kim, M. H., Balmford, A. & Al-Tabbaa, A. Environmental and health impacts of using food waste as animal feed: a comparative analysis of food waste management options. J. Clean. Prod. 140, 871–880 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Muscat, A. et al. Principles, drivers and opportunities of a circular bioeconomy. Nat. Food 2, 561–566 (2021).

    Article  PubMed  Google Scholar 

  36. Vázquez-Rowe, I., Ziegler-Rodriguez, K., Margallo, M., Kahhat, R. & Aldaco, R. Climate action and food security: strategies to reduce GHG emissions from food loss and waste in emerging economies. Resour. Conserv. Recycl. 170, 105562 (2021).

    Article  Google Scholar 

  37. Cha, E., Toribio, J. A. L. M. L., Thomson, P. C. & Holyoake, P. K. Biosecurity practices and the potential for exhibited pigs to consume swill at agricultural shows in Australia. Prev. Vet. Med. 91, 122–129 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Sugiura, K., Yamatani, S., Watahara, M. & Onodera, T. Ecofeed, animal feed produced from recycled food waste. Vet. Ital. 45, 397–404 (2009).

    PubMed  Google Scholar 

  39. Javourez, U., O’Donohue, M. & Hamelin, L. Waste-to-nutrition: a review of current and emerging conversion pathways. Biotechnol. Adv. 53, 107857 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Parodi, A. et al. The potential of future foods for sustainable and healthy diets. Nat. Sustain. 1, 782–789 (2018).

    Article  Google Scholar 

  41. Larson, C. Losing arable land, China faces stark choice: adapt or go hungry. Science 339, 644–645 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562, 519–525 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Hu, Y. et al. Food production in China requires intensified measures to be consistent with national and provincial environmental boundaries. Nat. Food 1, 572–582 (2020).

    Article  PubMed  Google Scholar 

  44. Eshel, G. et al. A model for ‘sustainable’ US beef production. Nat. Ecol. Evol. 2, 81–85 (2018).

    Article  PubMed  Google Scholar 

  45. Brandt, P., Yesuf, G., Herold, M. & Rufino, M. C. Intensification of dairy production can increase the GHG mitigation potential of the land use sector in East Africa. Glob. Change Biol. 26, 568–585 (2020).

    Article  ADS  Google Scholar 

  46. Food balances (-2013, old methodology and population). Food and Agriculture Organization https://www.fao.org/faostat/en/#data/FBSH (2013).

  47. Miao, D. & Zhang, Y. National Grassland Monitoring Report (China Animal Husbandry, 2012).

  48. Ma, L. et al. Modeling nutrient flows in the food chain of China. J. Environ. Qual. 39, 1279–1289 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. China Statistical Yearbook. National Bureau of Statistics of China http://www.stats.gov.cn/english/Statisticaldata/AnnualData/ (2013).

  50. Technical Conversion Factors for Agricultural Commodities (FAO, 1997).

  51. Gustavsson, J., Cederberg, C., Sonesson, U. & Emanuelsson, A. The methodology of the FAO study: “Global Food Losses and Food Wasteextent, causes and prevention”— FAO, 2011 (The Swedish Institute for Food and Biotechnology, 2013).

  52. Hou, Y. et al. Feed use and nitrogen excretion of livestock in EU-27. Agric. Ecosyst. Environ. 218, 232–244 (2016).

    Article  CAS  Google Scholar 

  53. Ministry of Agriculture (MOA) of the P.R.C. China Livestock Yearbook (China Agricultural Press, 2013).

  54. van Hal, O. et al. Upcycling food leftovers and grass resources through livestock: Impact of livestock system and productivity. J. Clean. Prod. 219, 485–496 (2019).

    Article  Google Scholar 

  55. van Selm, B. et al. Circularity in animal production requires a change in the EAT-Lancet diet in Europe. Nat. Food 3, 66–73 (2022).

    Article  PubMed  Google Scholar 

  56. National Development and Reform Committee (NDRC) of the P.R.C. China Agricultural Products Cost-Benefit Yearbook (China Statistics Press, 2013).

  57. Song, G., Li, M., Semakula, H. M. & Zhang, S. Food consumption and waste and the embedded carbon, water and ecological footprints of households in China. Sci. Total Environ. 529, 191–197 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Clune, S., Crossin, E. & Verghese, K. Systematic review of greenhouse gas emissions for different fresh food categories. J. Clean. Prod. 140, 766–783 (2017).

    Article  CAS  Google Scholar 

  59. van Hal, O., Weijenberg, A. A. A., de Boer, I. J. M. & van Zanten, H. H. E. Accounting for feed–food competition in environmental impact assessment: towards a resource efficient food-system. J. Clean. Prod. 240, 118241 (2019).

    Article  Google Scholar 

  60. Mottet, A. et al. Livestock: On our plates or eating at our table? A new analysis of the feed/food debate. Glob. Food Sec. 14, 1–8 (2017).

    Article  Google Scholar 

  61. Hennessy, D. et al. The net contribution of livestock to the supply of human edible protein: the case of Ireland. J. Agric. Sci. 159, 463–471 (2021).

    Article  CAS  Google Scholar 

  62. Sustainable Development Goals 2030. United Nations https://sustainabledevelopment.un.org (2015).

Download references

Acknowledgements

We acknowledge support from the National Science Foundation in China (32272814, Y.H. and Q.F.), the High-level Team Project of China Agricultural University (Y.H.), the 2115 Talent Development Program of China Agricultural University (Y.H.) and the Program of Advanced Discipline Construction in Beijing (Agriculture Green Development) (Y.H. and Q.F.).

Author information

Authors and Affiliations

Authors

Contributions

Q.F. and Y.H. designed the study. Q.F. performed the research. Q.F., G.D. and X.Z. collected and analysed the data. Q.F. wrote the paper with contributions from Y.H., O.O., H.H.E.Z., H.W., P.G. and B.T. All authors contributed to the interpretation of the results and commented on the manuscript.

Corresponding author

Correspondence to Yong Hou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Food thanks Shuai Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–5, Figs. 1–11 and Tables 1–12.

Reporting Summary

Source data

Source Data Fig. 1

Source data for Fig. 1.

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 3

Source data for Fig. 3.

Source Data Fig. 4

Source data for Fig. 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Q., Zhang, X., Dai, G. et al. Low-opportunity-cost feed can reduce land-use-related environmental impacts by about one-third in China. Nat Food 4, 677–685 (2023). https://doi.org/10.1038/s43016-023-00813-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-023-00813-x

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene