Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Next-generation enhanced-efficiency fertilizers for sustained food security

Abstract

Nitrogen losses in agricultural systems can be reduced through enhanced-efficiency fertilizers (EEFs), which control the physicochemical release from fertilizers and biological nitrogen transformations in soils. The adoption of EEFs by farmers requires evidence of consistent performance across soils, crops and climates, paired with information on the economic advantages. Here we show that the benefits of EEFs due to avoided social costs of nitrogen pollution considerably outweigh their costs—and must be incorporated in fertilizer policies. We outline new approaches to the design of EEFs using enzyme inhibitors with modifiable chemical structures and engineered, biodegradable coatings that respond to plant rhizosphere signalling molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The potential of EEFs to reduce N losses from food production systems.
Fig. 2: Current and next-generation chemical inhibitors.
Fig. 3: Proposed scenarios that harness plant signals for designing new fertilizer coatings.

Similar content being viewed by others

Data availability

Data included are already published and publicly available, with those publications properly cited in the reference list.

References

  1. Searchinger, T. et al. Creating a Sustainable Food Future—A Menu of Solutions to Feed Nearly 10 Billion People by 2050 (World Resources Institute, 2018).

  2. Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z. & Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 1, 636–639 (2008).

    Article  CAS  ADS  Google Scholar 

  3. Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Galloway, J. et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320, 889–892 (2008).

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Sutton, M. A. et al. Too much of a good thing. Nature 472, 159–161 (2011).

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Soons, M. B. et al. Nitrogen effects on plant species richness in herbaceous communities are more widespread and stronger than those of phosphorus. Biol. Conserv. 212, 390–397 (2017).

    Article  Google Scholar 

  7. Erisman, J. W. et al. Consequences of human modification of the global nitrogen cycle. Phil. Trans. R. Soc. B 368, 20130116 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Johnston, A. M. & Bruulsema, T. W. 4R nutrient stewardship for improved nutrient use efficiency. Proc. Eng. 83, 365–370 (2014).

    Article  Google Scholar 

  9. Cantarella, H., Otto, R., Soares, J. R. & de Brito Silva, A. G. Agronomic efficiency of NBPT as a urease inhibitor: a review. J. Adv. Res. 13, 19–27 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hu, H.-W., Chen, D. & He, J.-Z. Microbial regulation of terrestrial nitrous oxide formation: understanding the biological pathways for prediction of emission rates. FEMS Microbiol. Rev. 39, 729–749 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Trenkel, M. E. Slow- and Controlled-Release and Stabilized Fertilizers: An Option for Enhancing Nutrient Efficiency in Agriculture (International Fertilizer Industry Association, 2010).

  12. Li, T. et al. Enhanced-efficiency fertilizers are not a panacea for resolving the nitrogen problem. Glob. Change Biol. 24, e511–e521 (2018).

    Article  Google Scholar 

  13. Zerulla, W. et al. 3,4-Dimethylpyrazole phosphate (DMPP)—a new nitrification inhibitor for agriculture and horticulture. Biol. Fertil. Soils 34, 79–84 (2001).

    Article  CAS  Google Scholar 

  14. Azeem, B., KuShaari, K., Man, Z. B., Basit, A. & Thanh, T. H. Review on materials & methods to produce controlled release coated urea fertilizer. J. Control. Release 181, 11–21 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Dimkpa, C. O., Fugice, J., Singh, U. & Lewis, T. D. Development of fertilizers for enhanced nitrogen use efficiency–trends and perspectives. Sci. Total Environ. 731, 139113 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  16. Dillon, J. L. & Anderson, J. R. The Analysis of Response in Crop and Livestock Production 3rd edn (Pergamon, 1990).

  17. Keeler, B. L. et al. The social costs of nitrogen. Sci. Adv. 2, e1600219 (2016).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  18. Sobota, D. J., Compton, J. E., McCrackin, M. L. & Singh, S. Cost of reactive nitrogen release from human activities to the environment in the United States. Environ. Res. Lett. 10, 025006 (2015).

    Article  ADS  CAS  Google Scholar 

  19. Sutton, M. A. et al. Our Nutrient World: The Challenge to Produce More Food and Energy with Less Pollution (Centre for Ecology and Hydrology, 2013)

  20. van Grinsven, H. J. et al. Costs and benefits of nitrogen for Europe and implications for mitigation. Environ. Sci. Technol. 47, 3571–3579 (2013).

    Article  PubMed  ADS  CAS  Google Scholar 

  21. Beeckman, F., Motte, H. & Beeckman, T. Nitrification in agricultural soils: impact, actors and mitigation. Curr. Opin. Biotechnol. 50, 166–173 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Hughes, J. P., Rees, S., Kalindjian, S. B. & Philpott, K. L. Principles of early drug discovery. Br. J. Pharmacol. 162, 1239–1249 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Blessy, M., Patel, R. D., Prajapaty, P. N. & Agrawal, Y. K. Development of forced degradation and stability of drugs–a review. J. Pharmaceut. Anal. 4, 159–165 (2014).

    CAS  Google Scholar 

  24. Ferreira, L. G., Dos Santos, R. N., Oliva, G. & Andricopulo, A. D. Molecular docking and structure-based drug design strategies. Molecules 20, 13384–13421 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rego, Y. F. et al. A review on the development of urease inhibitors as antimicrobial agents against pathogenic bacteria. J. Adv. Res. 13, 69–100 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Domínguez, M. J. et al. Design, synthesis, and biological evaluation of phosphoramide derivatives as urease inhibitors. J. Agric. Food Chem. 56, 3721–3731 (2008).

    Article  PubMed  CAS  Google Scholar 

  27. Brito, T. O. et al. Design, syntheses and evaluation of benzoylthioureas as urease inhibitors of agricultural interest. RSC Adv. 5, 44507–44515 (2015).

    Article  CAS  ADS  Google Scholar 

  28. Torralbo, F. et al. Dimethyl pyrazol-based nitrification inhibitors effect on nitrifying and denitrifying bacteria to mitigate N2O emission. Sci Rep. 7, 13810 (2017).

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  29. Irigoyen, I., Muro, J., Azpilikueta, M., Aparicio-Tejo, P. & Lamsfus, C. Ammonium oxidation kinetics in the presence of nitrification inhibitors DCD and DMPP at various temperatures. Aust. J. Soil Res. 41, 1177–1183 (2003).

    Article  CAS  Google Scholar 

  30. Doran, G. S., Condon, J. R. & Kaveney, B. F. Rapid analysis of the nitrification inhibitor 3,4-dimethylpyrazole phosphate in soil using LC-MS/MS. Int. J. Environ. Analyt. Chem. 98, 606–621 (2018).

    Article  CAS  Google Scholar 

  31. Sidhu, P., Taggert, B. I., Chen, D. & Wille, U. Degradation of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) in soils: indication of chemical pathways. ACS Agric. Sci. Technol. 1, 540–549 (2021).

    Article  CAS  Google Scholar 

  32. McCarty, G. Modes of action of nitrification inhibitors. Biol. Fertil. Soils 29, 1–9 (1999).

    Article  CAS  Google Scholar 

  33. Taggert, B. I., Walker, C., Chen, D. & Wille, U. Substituted 1,2,3-triazoles: a new class of nitrification inhibitors. Sci Rep. 11, 14980 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schmücker, C., Stevens, G. W. & Mumford, K. A. Liquid marble formation and solvent vapor treatment of the biodegradable polymers polylactic acid and polycaprolactone. J. Colloid Interf. Sci. 514, 349–356 (2018).

    Article  ADS  CAS  Google Scholar 

  35. Shen, Y., Du, C., Zhou, J. & Ma, F. Application of nano Fe III–tannic acid complexes in modifying aqueous acrylic latex for controlled-release coated urea. J. Agric. Food Chem. 65, 1030–1036 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Aussillous, P. & Quéré, D. Liquid marbles. Nature 411, 924–927 (2001).

    Article  CAS  PubMed  MATH  ADS  Google Scholar 

  37. Fujii, S., Yusa, S. & Nakamura, Y. Stimuli-responsive liquid marbles: controlling structure, shape, stability, and motion. Adv. Funct. Mater. 26, 7206–7223 (2016).

    Article  CAS  Google Scholar 

  38. Macabuhay, A. et al. Modulators or facilitators? Roles of lipids in plant root-microbe interactions. Trends Plant Sci. 27, 180–190 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Monreal, C. M. in Labile Organic Matter—Chemical Compositions, Function, and Significance in Soil and the Environment Special Publication 62 (eds He, Z. & Wu, F.) Ch. 9 (Soil Science Society of America, 2015).

  40. Yeoh, Y. K. et al. Evolutionary conservation of a core root microbiome across plant phyla along a tropical soil chronosequence. Nat. Commun. 8, 215 (2017).

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  41. Xiong, C. et al. Host selection shapes crop microbiome assembly and network complexity. New Phytol. 229, 1091–1104 (2020).

    Article  PubMed  CAS  Google Scholar 

  42. Toju, H. et al. Core microbiomes for sustainable agroecosystems. Nat. Plants 4, 247–257 (2018).

    Article  PubMed  Google Scholar 

  43. Trivedi, P., Mattupalli, C., Eversole, K. & Leach, J. E. Enabling sustainable agriculture through understanding and enhancement of microbiomes. New Phytol. 230, 2129–2147 (2021).

    Article  PubMed  Google Scholar 

  44. Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T. & Singh, B. K. Plant-microbiome interactions: from community assembly to plant health. Nat. Rev. Microbiol. 18, 607–621 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Kim, J. & Buell, C. R. A revolution in plant metabolism: genome-enabled pathway discovery. Plant Physiol. 169, 1532–1539 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. de Vries, F. T., Griffiths, R. I., Knight, C. G., Nicolitch, O. & Williams, A. Harnessing rhizosphere microbiomes for drought-resilient crop production. Science 368, 270–274 (2020).

    Article  PubMed  ADS  CAS  Google Scholar 

  47. Braguy, J. & Zurbriggen, M. D. Synthetic strategies for plant signalling studies: molecular toolbox and orthogonal platforms. Plant J. 87, 118–138 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Fitzpatrick, C. R. et al. The plant microbiome: from ecology to reductionism and beyond. Ann. Rev. Microbiol. 74, 81–100 (2020).

    Article  CAS  Google Scholar 

  49. Gent, L. & Forde, B. G. How do plants sense their nitrogen status? J. Exp. Bot. 68, 2531–2539 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Sun, C.-H., Yu, J.-Q. & Hu, D.-G. Nitrate: a crucial signal during lateral roots development. Front. Plant Sci. 8, 485 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Canarini, A., Merchant, C. K. A., Richter, A. & Wanek, W. Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli. Front. Plant Sci. 10, 157 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Coskun, D., Britto, D. T., Shi, W. & Kronzucker, H. J. Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition. Nat. Plants 3, 17074 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Zhang, X. N., Lu, Y. F., Yang, T., Kronzucker, H. J. & Shi, W. M. Factors influencing the release of the biological nitrification inhibitor 1,9-decanediol from rice (Oryza sativa L.) roots. Plant Soil 436, 253–265 (2019).

    Article  CAS  Google Scholar 

  54. Voges, M. J., Bai, Y., Schulze-Lefert, P. & Sattely, E. S. Plant-derived coumarins shape the composition of an Arabidopsis synthetic root microbiome. Proc. Natl Acad. Sci. USA 116, 12558–12565 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Wang, J. & Chai, J. Structural insights into the plant immune receptors PRRs and NLRs. Plant Physiol. 182, 1566–1581 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Xia, L. et al. Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis. Glob. Change Biol. 23, 1917–1925 (2017).

    Article  ADS  Google Scholar 

  57. Baumgart-Getz, A., Prokopy, L. S. & Floress, K. Why farmers adopt best management practice in the United States: a meta-analysis of the adoption literature. J. Environ. Manage. 96, 17–25 (2012).

    Article  PubMed  Google Scholar 

  58. Hasler, K., Bröring, S., Omta, O. W. F. & Olfs, H. Eco-innovations in the German fertilizer supply chain: impact on the carbon footprint of fertilizers. Plant Soil Environ. 63, 531–544 (2017).

    Article  CAS  Google Scholar 

  59. Qiao, C. et al. How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input. Glob. Change Biol. 21, 1249–1257 (2015).

    Article  ADS  Google Scholar 

  60. Kanter, D. R., Chodos, O., Nordland, O., Rutigliano, M. & Winiwarter, W. Gaps and opportunities in nitrogen pollution policies around the world. Nat. Sustain. 3, 956–963 (2020).

    Article  Google Scholar 

  61. Feeding Africa’s Soils: Fertilizers to Support Africa’s Agricultural Transformation (Alliance for a Green Revolution in Africa, 2019).

  62. Kanter, D. R. et al. Nitrogen pollution policy beyond the farm. Nat. Food 1, 27–32 (2020).

    Article  CAS  Google Scholar 

  63. Gu, B. et al. A credit system to solve agricultural nitrogen pollution. Innovation 2, 100079 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Leach, A. M. et al. Environmental impact food labels combining carbon, nitrogen, and water footprints. Food Policy 61, 213–223 (2016).

    Article  Google Scholar 

  65. Akiyama, H., Yan, X. & Yagi, K. Evaluation of effectiveness of enhanced-efficiency fertilizers as mitigation options for N2O and NO emissions from agricultural soils: meta-analysis. Glob. Change Biol. 16, 1837–1846 (2010).

    Article  ADS  Google Scholar 

  66. Cai, Y. & Akiyama, H. Effects of inhibitors and biochar on nitrous oxide emissions, nitrate leaching, and plant nitrogen uptake from urine patches of grazing animals on grasslands: a meta-analysis. Soil Sci. Plant Nutr. 63, 405–414 (2017).

    Article  CAS  Google Scholar 

  67. Decock, C. Mitigating nitrous oxide emissions from corn cropping systems in the Midwestern U.S.: potential and data gaps. Environ. Sci. Technol. 48, 4247–4256 (2014).

    Article  MathSciNet  CAS  PubMed  ADS  Google Scholar 

  68. Feng, J. et al. Integrated assessment of the impact of enhanced-efficiency nitrogen fertilizer on N2O emission and crop yield. Agric. Ecosyst. Environ. 231, 218–228 (2016).

    Article  CAS  Google Scholar 

  69. Gao, J. et al. Benefits and risks for the environment and crop production with application of nitrification inhibitors in China. J. Soil Sci. Plant Nutr. 21, 497–512 (2021).

    Article  CAS  Google Scholar 

  70. Gilsanz, C., Báez, D., Misselbrook, T. H., Dhanoa, M. S. & Cárdenas, L. M. Development of emission factors and efficiency of two nitrification inhibitors, DCD and DMPP. Agric. Ecosyst. Environ. 216, 1–8 (2016).

    Article  CAS  Google Scholar 

  71. Han, Z., Walter, M. T. & Drinkwater, L. E. N2O emissions from grain cropping systems: a meta-analysis of the impacts of fertilizer-based and ecologically-based nutrient management strategies. Nutr. Cycl. Agroecosyst. 107, 335–355 (2017).

    Article  CAS  Google Scholar 

  72. Huang, S. et al. Effects of fertilizer management practices on yield-scaled ammoniaemissions from croplands in China: a meta-analysis. Field Crops Res. 192, 118–125 (2016).

    Article  Google Scholar 

  73. Linquist, B. A., Adviento-Borbe, M. A., Pittelkow, C. M., van Kessel, C. & van Groenigen, K. J. Fertilizer management practices and greenhouse gas emissions from rice systems: a quantitative review and analysis. Field Crops Res. 135, 10–21 (2012).

    Article  Google Scholar 

  74. Pan, B., Lam, S. K., Mosier, A., Luo, Y. & Chen, D. Ammonia volatilization from synthetic fertilizers and its mitigation strategies: a global synthesis. Agric. Ecosyst. Environ. 232, 283–289 (2016).

    Article  CAS  Google Scholar 

  75. Quemada, M., Baranski, M., Nobel-de-Lange, M. N. J., Vallejo, A. & Cooper, J. M. Meta-analysis of strategies to control nitrate leaching in irrigated agricultural systems and their effects on crop yield. Agric. Ecosyst. Environ. 174, 1–10 (2013).

    Article  CAS  Google Scholar 

  76. Silva, A. G. B., Sequeira, C. H., Sermarini, R. A. & Otto, R. Urease inhibitor NBPT on ammonia volatilization and crop productivity: a meta-analysis. Agron. J. 109, 1–13 (2017).

    Article  CAS  Google Scholar 

  77. Thapa, R., Chatterjee, A., Awale, R., McGranahan, D. A. & Daigh, A. Effect of enhanced efficiency fertilizers on nitrous oxide emissions and crop yields: a meta-analysis. Soil Sci. Soc. Am. J. 80, 1121–1134 (2016).

    Article  CAS  ADS  Google Scholar 

  78. Ti, C., Xia, L., Chang, S. X. & Yan, X. Potential for mitigating global agricultural ammonia emission: a meta-analysis. Environ. Pollut. 245, 141–148 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. Wu, D. et al. The importance of ammonia volatilization in estimating the efficacy of nitrification inhibitors to reduce N2O emissions: a global meta-analysis. Environ. Pollut. 271, 116365 (2021).

    Article  CAS  PubMed  Google Scholar 

  80. Yang, M., Fang, Y., Sun, D. & Shi, Y. Efficiency of two nitrification inhibitors (dicyandiamide and 3, 4-dimethypyrazole phosphate) on soil nitrogen transformations and plant productivity: a meta-analysis. Sci. Rep. 6, 22075 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  81. Yang, M. et al. Coated controlled-release urea creates a win-win scenario for producing more staple grains and resolving N loss dilemma worldwide. J. Clean. Prod. 288, 125660 (2021).

    Article  CAS  Google Scholar 

  82. Zhang, W. et al. The effects of controlled release urea on maize productivity and reactive nitrogen losses: a meta-analysis. Environ. Pollut. 246, 559–565 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Australian Research Council through the Industrial Transformation Research Hub (grant number IH200100023) and Linkage (grant number LP160101417) Schemes.

Author information

Authors and Affiliations

Authors

Contributions

S.K.L. and D.C. designed the study. S.K.L., U.W., H.-W.H., F.C., K.M., X.L. and B.M. wrote the first draft and all authors contributed to discussions and revisions of the manuscript.

Corresponding author

Correspondence to Deli Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Food thanks Pamela Matson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This Supplementary Information document includes Supplementary Figs. 1–3 that show the variation in the performance of EEFs with soil texture, climate zone and crop species.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lam, S.K., Wille, U., Hu, HW. et al. Next-generation enhanced-efficiency fertilizers for sustained food security. Nat Food 3, 575–580 (2022). https://doi.org/10.1038/s43016-022-00542-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-022-00542-7

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene