Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Global food-miles account for nearly 20% of total food-systems emissions

Abstract

Food trade plays a key role in achieving global food security. With a growing consumer demand for diverse food products, transportation has emerged as a key link in food supply chains. We estimate the carbon footprint of food-miles by using a global multi-region accounting framework. We calculate food-miles based on the countries and sectors of origin and the destination countries, and distinguish the relevant international and domestic transport distances and commodity masses. When the entire upstream food supply chain is considered, global food-miles correspond to about 3.0 GtCO2e (3.5–7.5 times higher than previously estimated), indicating that transport accounts for about 19% of total food-system emissions (stemming from transport, production and land-use change). Global freight transport associated with vegetable and fruit consumption contributes 36% of food-miles emissions—almost twice the amount of greenhouse gases released during their production. To mitigate the environmental impact of food, a shift towards plant-based foods must be coupled with more locally produced items, mainly in affluent countries.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Overview of domestic, international and global food-miles, food-miles emissions and food-production emissions by sectors.
Fig. 2: Top bilateral flows of international trade flows associated with global food consumption.
Fig. 3: Examples of supply chains terminating in red meat consumption by households in China.
Fig. 4: Global food-miles emissions broken down by countries/regions.
Fig. 5: Sectoral breakdown of food-miles and the related emissions resulting from international and domestic trade.
Fig. 6: Production layer decomposition (PLD) of food-miles emissions.

Data availability

Data supporting the findings of this study are available within the article and its Supplementary Information files, or are available from the corresponding author upon reasonable request. Source data are provided with this paper.

Code availability

The codes developed for the analyses and to generate results are available from the corresponding author on reasonable request.

References

  1. The State of Agricultural Commodity Markets 2020. Agricultural Markets and Sustainable Development: Global Value Chains, Smallholder Farmers and Digital Innovations (FAO, 2020).

  2. Martin, W. & Laborde Debucquet, D. in 2018 Global Food Policy Report, Ch. 3 (IFPRI, 2018); https://doi.org/10.2499/9780896292970_03

  3. Porkka, M., Kummu, M., Siebert, S. & Varis, O. From food insufficiency towards trade dependency: a historical analysis of global food availability. PLoS ONE 8, e82714 (2013).

    ADS  PubMed  PubMed Central  Google Scholar 

  4. Porkka, M., Guillaume, J. H., Siebert, S., Schaphoff, S. & Kummu, M. The use of food imports to overcome local limits to growth. Earth’s Future 5, 393–407 (2017).

    ADS  Google Scholar 

  5. MacDonald, G. K. et al. Rethinking agricultural trade relationships in an era of globalization. BioScience 65, 275–289 (2015).

    Google Scholar 

  6. D’Odorico, P., Carr, J. A., Laio, F., Ridolfi, L. & Vandoni, S. Feeding humanity through global food trade. Earth’s Future 2, 458–469 (2014).

    ADS  Google Scholar 

  7. Kissinger, M. International trade related food miles—the case of Canada. Food Policy 37, 171–178 (2012).

    Google Scholar 

  8. Food Miles (DEFRA, 2011); http://adlib.everysite.co.uk/adlib/defra/content.aspx?id=000HK277ZX.0C90163GX9GA35

  9. Andersson, K., Ohlsson, T. & Olsson, P. Screening life cycle assessment (LCA) of tomato ketchup: a case study. J. Clean. Prod. 6, 277–288 (1998).

    Google Scholar 

  10. Marletto, G. & Sillig, C. Environmental impact of Italian canned tomato logistics: national vs. regional supply chains. J. Transp. Geogr. 34, 131–141 (2014).

    Google Scholar 

  11. Wiedemann, S. et al. Environmental impacts and resource use of Australian beef and lamb exported to the USA determined using life cycle assessment. J. Clean. Prod. 94, 67–75 (2015).

    Google Scholar 

  12. Meisterling, K., Samaras, C. & Schweizer, V. Decisions to reduce greenhouse gases from agriculture and product transport: LCA case study of organic and conventional wheat. J. Clean. Prod. 17, 222–230 (2009).

    CAS  Google Scholar 

  13. Denham, F. C., Biswas, W. K., Solah, V. A. & Howieson, J. R. Greenhouse gas emissions from a Western Australian finfish supply chain. J. Clean. Prod. 112, 2079–2087 (2016).

    CAS  Google Scholar 

  14. Lenzen, M. Errors in conventional and input–output-based life-cycle inventories. J. Ind. Ecol. 4, 127–148 (2000).

    Google Scholar 

  15. Tobarra, M. A., Lopez, L. A., Cadarso, M. A., Gomez, N. & Cazcarro, I. Is seasonal households’ consumption good for the nexus carbon/water footprint? The Spanish fruits and vegetables case. Environ. Sci. Technol. 52, 12066–12077 (2018).

    ADS  CAS  PubMed  Google Scholar 

  16. Smith, A., Watkiss, P., Tweddle, G. & McKinnon, A. C. The Validity of Food Miles as an Indicator of Sustainable Development (DEFRA, 2005).

  17. Kissinger, M. International trade related food miles—the case of Canada. Food Policy 37, 171–178 (2012).

    Google Scholar 

  18. Neira, D. P., Fernandez, X. S., Rodriguez, D. C., Montiel, M. S. & Cabeza, M. D. Analysis of the transport of imported food in Spain and its contribution to global warming. Renew. Agric. Food Syst. 31, 37–48 (2016).

    Google Scholar 

  19. Mosammam, H. M., Sarrafi, M., Nia, J. T. & Mosammam, A. M. Analyzing the international trade-related food miles in Iran. Outlook Agric. 47, 36–43 (2018).

    Google Scholar 

  20. Pradhan, P. et al. Urban food systems: how regionalization can contribute to climate change mitigation. Environ. Sci. Technol. 54, 10551–10560 (2020).

    ADS  CAS  PubMed  Google Scholar 

  21. Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).

    ADS  CAS  PubMed  Google Scholar 

  22. Crippa, M. et al. Food systems are responsible for a third of global anthropogenic GHG emissions. Nature Food 2, 198–209 (2021).

    CAS  Google Scholar 

  23. Rosenzweig, C. et al. Climate change responses benefit from a global food system approach. Nat. Food 1, 94–97 (2020).

    Google Scholar 

  24. Clark, M. A. et al. Global food system emissions could preclude achieving the 1.5° and 2 °C climate change targets. Science 370, 705–708 (2020).

    ADS  CAS  PubMed  Google Scholar 

  25. Lenzen, M. et al. International trade drives biodiversity threats in developing nations. Nature 486, 109–112 (2012).

    ADS  CAS  PubMed  Google Scholar 

  26. Oita, A. et al. Substantial nitrogen pollution embedded in international trade. Nat. Geosci. 9, 111–115 (2016).

    ADS  CAS  Google Scholar 

  27. Lenzen, M. et al. The carbon footprint of global tourism. Nat. Clim. Change 8, 522 (2018).

    ADS  Google Scholar 

  28. Janssens-Maenhout, G. et al. EDGAR v4.3.2 global atlas of the three major greenhouse gas emissions for the period 1970–2012. Earth Syst. Sci. Data Discuss. 2017, 1–55 (2017).

    Google Scholar 

  29. ITF Transport Outlook 2019 (ITF, 2019).

  30. The Carbon Footprint of Global Trade (ITF, 2015).

  31. Lenzen, M., Li, M. & Murray, S. A. Impacts of harmful algal blooms on marine aquaculture in a low-carbon future. Harmful Algae 110, 102143 (2021).

    CAS  PubMed  Google Scholar 

  32. The Future of Food and Agriculture: Trends and Challenges (FAO, 2017).

  33. Food Product Environmental Footprint Literature Summary: Food Transportation (State of Oregon, Department of Environmental Quality, 2017).

  34. Wakeland, W., Cholette, S. & Venkat, K. in Green Technologies in Food Production and Processing (eds Boye, J. I. & Arcand, Y.) 211–236 (Springer, 2012).

  35. Kreidenweis, U., Lautenbach, S. & Koellner, T. Regional or global? The question of low-emission food sourcing addressed with spatial optimization modelling. Environ. Modelling Softw. 82, 128–141 (2016).

    Google Scholar 

  36. Born, B. & Purcell, M. Avoiding the local trap: scale and food systems in planning research. J. Plan. Educ. Res. 26, 195–207 (2006).

    Google Scholar 

  37. Webb, J., Williams, A. G., Hope, E., Evans, D. & Moorhouse, E. Do foods imported into the UK have a greater environmental impact than the same foods produced within the UK? Int. J. Life Cycle Assess. 18, 1325–1343 (2013).

    Google Scholar 

  38. Pretty, J. N., Ball, A. S., Lang, T. & Morison, J. I. Farm costs and food miles: an assessment of the full cost of the UK weekly food basket. Food Policy 30, 1–19 (2005).

    Google Scholar 

  39. Lopez, L. A., Cadarso, M. A., Gomez, N. & Tobarra, M. A. Food miles, carbon footprint and global value chains for Spanish agriculture: assessing the impact of a carbon border tax. J. Clean. Prod. 103, 423–436 (2015).

    Google Scholar 

  40. Weber, C. L. & Matthews, H. S. Food-miles and the relative climate impacts of food choices in the United States. Environ. Sci. Technol. 42, 3508–3513 (2008).

    ADS  CAS  PubMed  Google Scholar 

  41. Kinnunen, P. et al. Local food crop production can fulfil demand for less than one-third of the population. Nat. Food 1, 229–237 (2020).

    Google Scholar 

  42. Wood, S. A., Smith, M. R., Fanzo, J., Remans, R. & DeFries, R. S. Trade and the equitability of global food nutrient distribution. Nat. Sustain. 1, 34–37 (2018).

    Google Scholar 

  43. Cornwell, A. Reducing carbon dioxide emissions in Australia: a minimum disruption approach. Aust. Econ. Rev. 29, 65–81 (1996).

    Google Scholar 

  44. Creedy, J. & Sleeman, C. Carbon dioxide emissions reductions in New Zealand: a minimum disruption approach. Aust. Econ. Pap. 44, 199–220 (2005).

    Google Scholar 

  45. To Transform the Global Food System and Feed the World Sustainably, Start at the Local Level (IFPRI, 2019).

  46. Pradhan, P., Lüdeke, M. K. B., Reusser, D. E. & Kropp, J. P. Food self-sufficiency across scales: how local can we go? Environ. Sci. Technol. 48, 9463–9470 (2014).

    ADS  CAS  PubMed  Google Scholar 

  47. Kriewald, S., Pradhan, P., Costa, L., Ros, A. G. C. & Kropp, J. P. Hungry cities: how local food self-sufficiency relates to climate change, diets, and urbanisation. Environ. Res. Lett. 14, 094007 (2019).

    ADS  CAS  Google Scholar 

  48. Smith, A. et al. The Validity of Food Miles as an Indicator of Sustainable Development (DEFRA, 2005).

  49. Godfray, H. C. J. et al. The future of the global food system. Philos. Trans. R. Soc. B Biol. Sci. 365, 2769–2777 (2010).

    Google Scholar 

  50. Food Systems Hold Key to Ending World Hunger (United Nations Environment Programme, 2021).

  51. Tackling Climate Change through Livestock (FAO, 2014).

  52. Food Loss and Waste Must Be Reduced for Greater Food Security and Environmental Sustainability (United Nations Environment Programme, 2020).

  53. Fischedick, M. et al. Industry. In Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2014).

  54. The Global Food System: An Analysis (World Wide Fund for Nature, 2017).

  55. Spencer, S. & Kneebone, M. FoodMap: A Comparative Analysis of Australian Food Distribution Channels (Australian Government Department of Agriculture, Fisheries and Forestry, 2007).

  56. Abate-Kassa, G. & Peterson, H. C. Market access for local food through the conventional food supply chain. Int. Food Agribus. Manage. Rev. 14, 63–82 (2011).

    Google Scholar 

  57. Sustainable Food Systems: Concept and Framework (FAO, 2018).

  58. Mbow, C., et al. in Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (eds Shukla, P. R. et al.) Ch. 5 (2019).

  59. Leontief, W. Input–Output Economics (Oxford University Press, 1966).

  60. Lenzen, M., Moran, D., Kanemoto, K. & Geschke, A. Building Eora: a global multi-region input–output database at high country and sector resolution. Econ. Syst. Res. 25, 20–49 (2013).

    Google Scholar 

  61. Lenzen, M., Kanemoto, K., Moran, D. & Geschke, A. Mapping the structure of the world economy. Environ. Sci. Technol. 46, 8374–8381 (2012).

    ADS  CAS  PubMed  Google Scholar 

  62. Lenzen, M. et al. The Global MRIO Lab—charting the world economy. Econ. Syst. Res. 29, 158–186 (2017).

    Google Scholar 

  63. National Accounts Main Aggregates Database (United Nations Statistics Division, 2020); https://unstats.un.org/unsd/snaama/

  64. National Accounts Official Data (United Nations Statistics Division, 2019); http://data.un.org/Browse.aspx?d=SNA

  65. Industrial Statistics Database at the 4-digit Level of ISIC (INDSTAT4) (UNIDO, 2019); http://www.unido.org/resources/statistics/statistical-databases.html

  66. UN Comtrade—United Nations Commodity Trade Statistics Database (United Nations Statistics Division, 2019); http://comtrade.un.org

  67. UN ServiceTrade (United Nations Statistics Division, 2019); https://unstats.un.org/unsd/servicetrade/default.aspx

  68. FishStat—Software for Fishery and Aquaculture Statistical Time Series (FAO, 2017).

  69. Geschke, A., Ugon, J., Lenzen, M., Kanemoto, K. & Moran, D. D. Balancing and reconciling large multi-regional input–output databases using parallel optimisation and high-performance computing. J. Econ. Struct. 8, 2 (2019).

    Google Scholar 

  70. Lenzen, M., Gallego, B. & Wood, R. Matrix balancing under conflicting information. Econ. Syst. Res. 21, 23–44 (2009).

    Google Scholar 

  71. Food Products Imports by World 2018 (WITS, 2018); https://wits.worldbank.org/CountryProfile/en/Country/WLD/Year/2018/TradeFlow/Import/Partner/all/Product/16-24_FoodProd

  72. FAOSTAT Database (FAO, 2018).

  73. Hall, O., Bustos, M. F. A., Olén, N. B. & Niedomysl, T. Population centroids of the world administrative units from nighttime lights 1992−2013. Sci. Data 6, 235 (2019).

    PubMed  PubMed Central  Google Scholar 

  74. Goods Transport (ITF, 2017); https://www.oecd-ilibrary.org/content/data/g2g5557d-en

  75. Elvidge, C. D. et al. Relation between satellite observed visible-near infrared emissions, population, economic activity and electric power consumption. Int. J. Remote Sens. 18, 1373–1379 (1997).

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Australian Research Council (projects DP0985522, DP130101293, DP190102277, LE160100066, DP200102585, DP200103005, LP200100311, IH190100009) and the National eResearch Collaboration Tools and Resources project, through the Industrial Ecology Virtual Laboratory infrastructure VL 201. We thank S. Juraszek for expertly managing the Global IELab’s advanced computation requirements, and C. Jarabak for help with collecting data

Author information

Authors and Affiliations

Authors

Contributions

M. Lenzen designed the study. M. Li conducted the analyses. M. Li, L.W., N.J. and Y.J. contributed to data collection. M. Li, D.R., M. Lenzen and A.M. wrote the paper. All authors contributed to data interpretation and manuscript editing.

Corresponding author

Correspondence to Arunima Malik.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Food thanks Prajal Pradhan, Pekka Kinnunen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–6 and Figs. 1–12.

Reporting Summary

Supplementary Data

Australian National Accounts: Input–Output Tables

Source data

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 4

Source data for Fig. 4.

Source Data Fig. 5

Source data for Fig. 5.

Source Data Fig. 6

Source data for Fig. 6.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, M., Jia, N., Lenzen, M. et al. Global food-miles account for nearly 20% of total food-systems emissions. Nat Food 3, 445–453 (2022). https://doi.org/10.1038/s43016-022-00531-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-022-00531-w

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing