Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Global nutrient equity for people and the planet

Abstract

The industrial world has converted inert soil and atmospheric nutrients into reactive fertilizer flows that endanger water quality, biodiversity and climate. Simultaneously, poor nations starve because of the shortage of these nutrients in agricultural soils. Here we propose a redistribution of accumulated nutrients to enhance food security while counteracting the current degradation of critical Earth system processes. Residue and sediment nutrients could be processed and transported to food-insecure regions through the opposite logistics used to ship rock phosphate across the globe. Financing through trading accumulated rights could trigger the required innovations in processing, logistics and thinking. Such a socially just ‘one Earth currency’ could leverage a transformation towards resilience, equity and dignity across the critical Earth system processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Inequity creates wastage and instability.
Fig. 2: Redistribution of nutrients for food security and resilience.
Fig. 3: Synergetic sustainability in the use of nutrients as a global commons.
Fig. 4: Trading fair nutrient rights.

Similar content being viewed by others

References

  1. Steffen, W. & Stafford Smith, M. Planetary boundaries, equity and global sustainability: why wealthy countries could benefit from more equity. Curr. Opin. Environ. Sustain. 5, 403–408 (2013).

    Article  Google Scholar 

  2. Kahiluoto, H., Kuisma, M., Kuokkanen, A., Mikkilä, M. & Linnanen, L. Local and social facets of planetary boundaries: right to nutrients. Environ. Res. Lett. 10, 104013 (2015).

    Article  ADS  Google Scholar 

  3. Kahiluoto, H., Kuisma, M., Kuokkanen, A., Mikkilä, M. & Linnanen, L. Taking planetary nutrient boundaries seriously: can we feed the people? Glob. Food Sec. 3, 16–21 (2014).

    Article  Google Scholar 

  4. Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science Express (15 March 2015).

  5. Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359, 6371 (2018).

    Article  Google Scholar 

  6. Thompson, R. L. et al. Acceleration of global N2O emissions seen from two decades of atmospheric inversion. Nat. Clim. Change 9, 993–998 (2019).

    Article  ADS  CAS  Google Scholar 

  7. Sanchez, P. A. & Swaminathan, M. S. Hunger in Africa: the link between unhealthy people and unhealthy soils. Lancet 365, 442–444 (2005).

    Article  PubMed  Google Scholar 

  8. Lagi, M., Bertrand, K. Z. & Bar-Yam, Y. in Conflict and Complexity: Understanding Complex Systems (eds Fellman, P. V. et al.) 249–259 (Springer, 2015).

  9. Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Geels, F. W. Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study. Res. Policy 31, 1257–1274 (2002).

    Article  Google Scholar 

  11. Potter, P., Ramankutty, N., Bennett, E. M. & Donner, S. D. Characterizing the spatial patterns of global fertilizer application and manure production. Earth Interact. 14, 002 (2010).

    Article  Google Scholar 

  12. Liu, J. et al. A high-resolution assessment on nitrogen flows in cropland. Proc. Natl Acad. Sci. USA 107, 8035–8040 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. MacDonald, G. K., Bennett, E. M., Potter, P. A. & Ramankutty, N. Agronomic phosphorus imbalances across the world’s croplands. Proc. Natl Acad. Sci. USA 108, 3086–3091 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Sanchez, P. A. et al. in Replenishing Soil Fertility in Africa (eds Buresh, R. J. et al.) 1–46 (SSSA Special, 1997).

  16. Van Meter, K. J., Basu, N. B., Veenstra, J. J. & Burras, C. L. The nitrogen legacy: emerging evidence of nitrogen accumulation in anthropogenic landscapes. Environ. Res. Lett. 11, 035014 (2016).

    Article  ADS  Google Scholar 

  17. Bouwman, A. F. et al. Lessons from temporal and spatial patterns in global use of N and P fertilizer on cropland. Sci. Rep. 7, 40366 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sattari, S. Z., Bouwman, A. F., Giller, K. E. & van Ittersum, M. K. Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle. Proc. Natl Acad. Sci. USA 109, 6348–6353 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. MacDonald, G. K. & Bennett, E. M. Phosphorus accumulation in Saint Lawrence River watershed soils: a century-long perspective. Ecosystems 12, 621–635 (2010).

    Article  Google Scholar 

  20. Tan, Z. X., Lal, R. & Wiebe, K. D. Global soil nutrient depletion and yield reduction. J. Sustain. Agric. 26, 123–146 (2005).

    Article  Google Scholar 

  21. Meier, H. E. et al. Impact of climate change on ecological quality indicators and biogeochemical fluxes in the Baltic Sea: a multi-model ensemble study. Ambio 41, 558–573 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ekholm, P. & Mitikka, S. Agricultural lakes in Finland: current water quality and trends. Environ. Monit. Assess. 116, 111–135 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Savchuk, O. P. & Wulff, F. Long-term modeling of large-scale nutrient cycles in the entire Baltic Sea. Hydrobiologia 629, 209–224 (2009).

    Article  CAS  Google Scholar 

  24. Carpenter, S. R. Eutrophication of aquatic ecosystems: bistability and soil phosphorus. Proc. Natl Acad. Sci. USA 102, 10002–10005 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stocking, M. A. Tropical soils and food security: the next fifty years. Science 302, 1356–1359 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. The State of Food Security and Nutrition in the World 2020: Building Climate Resilience for Food Security and Nutrition (FAO, IFAD, UNICEF, WFP, WHO, 2020).

  27. World Population Prospects 2019 Highlights (UN Department of Economic and Social Affairs, 2019).

  28. Jasinski, S. M. Mineral Commodity Summaries: Phosphate Rock (US Geological Survey, 2021).

  29. Agbahey, J. U. I., Luckmann, J., Grethe, H. & Alemub, B. A. How do domestic policies affect the integration of Ethiopian fertiliser markets with world markets? J. Agric. Rural Dev. Trop. Subtrop. 116, 213–226 (2015).

    Google Scholar 

  30. Rimhanen, K. & Kahiluoto, H. Management of harvested carbon in smallholder mixed farming in Ethiopia. Agric. Syst. 130, 13–22 (2014).

    Article  Google Scholar 

  31. Lassaletta, L. et al. Food and feed trade as a driver in the global nitrogen cycle: 50-year trends. Biogeochemistry 118, 225–241 (2014).

    Article  Google Scholar 

  32. Sillman, J. et al. A life cycle environmental sustainability analysis of microbial protein production via power-to-food approaches. Int. J. Life Cycle Assess. 25, 2190–2203 (2020).

    Article  CAS  Google Scholar 

  33. Van Dijk, K. C., Lesschen, J. P. & Oenema, O. Phosphorus flows and balances of the European Union member states. Sci. Total Environ. 542, 1078–1093 (2016).

    Article  ADS  PubMed  Google Scholar 

  34. Kahiluoto, H. et al. Potential of agrifood wastes in mitigation of climate change and eutrophication—two case regions. Biomass Bioenergy 35, 1983–1994 (2011).

    Article  CAS  Google Scholar 

  35. Hedley, C. The role of precision agriculture for improved nutrient management on farms. J. Sci. Food Agric. 95, 12–19 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Conley, D. J. et al. Tackling hypoxia in the Baltic Sea: is engineering a solution? Environ. Sci. Technol. 43, 3407–3411 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Van Loon, M. P. et al. Impacts of intensifying or expanding cereal cropping in sub-Saharan Africa in coming decades on greenhouse gas emissions and food security. Glob. Change Biol. 25, 3720–3730 (2019).

    Article  ADS  Google Scholar 

  38. Wilkinson, R. G. & Pickett, K. E. Income inequality and social dysfunction. Annu. Rev. Sociol. 35, 493–511 (2009).

    Article  Google Scholar 

  39. Raworth, K. Oxfam Discussion Paper (Oxfam, 2012).

  40. van den Berg, N. J. et al. Implications of various effort-sharing approaches for national carbon budgets and emission pathways. Climatic Change 162, 1805–1822 (2020).

    Article  ADS  CAS  Google Scholar 

  41. McDermott, M., Mahanty, S. & Schreckenberg, K. Examining equity: a multidimensional framework for assessing equity in payments for ecosystem services. Environ. Sci. Policy 33, 416–427 (2013).

    Article  Google Scholar 

  42. Ostrom, E. Polycentric systems for coping with collective action and global environmental change. Glob. Environ. Change 20, 550–557 (2010).

    Article  Google Scholar 

  43. Rawls, J. A Theory of Justice (Belknap, 1971).

  44. McCrudden, C. Human dignity and judicial interpretation of human rights. Eur. J. Int. Law 19, 655–724 (2008).

    Article  Google Scholar 

  45. Ayala, A. & Meier, B. M. A human rights approach to the health implications of food and nutrition security. Public Health Rev. 38, 10 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Erisman, J. W. et al. in The European Nitrogen Assessment (eds Sutton, M. A. et al.) 9–31 (Cambridge Univ. Press, 2011).

  47. Abiven, S., Schmidt, M. W. I. & Lehmann, J. Biochar by design. Nat. Geosci. 7, 324–327 (2014).

    Article  ADS  Google Scholar 

  48. Ridder, M., de Jong, S., Polchar, J. & Lingemann, S. Risks and Opportunities in the Global Phosphate Rock Market: Robust Strategies in Times of Uncertainty (Hague Centre for Strategic Studies, 2013).

  49. Sutton, M. A. et al. Too much of a good thing. Nature 472, 159–161 (2016).

    Article  ADS  Google Scholar 

  50. Sobota, D. J., Compton, J. E., McCrackin, M. L. & Singh, S. Cost of reactive nitrogen release from human activities to the environment in the United States. Environ. Res. Lett. 10, 025006 (2015).

    Article  ADS  Google Scholar 

  51. Goulder, L. H. & Schein, L. R. Carbon taxes versus cap and trade: a critical review. Clim. Change Econ. 4, 1350010 (2013).

    Article  Google Scholar 

  52. Tradeable Permits: Policy Evaluation, Design and Reform (OECD, 2004).

  53. Chen, Y., Wang, C., Nie, P. & Chen, Z. A clean innovation comparison between carbon tax and cap-and-trade system. Energy Strategy Rev. 29, 100483 (2020).

    Article  Google Scholar 

  54. Framework for a Nutrient Quota and CreditsTrading System for the Contracting Parties of HELCOM in Order to Reduce Eutrophication of the Baltic Sea (Green Stream Network, 2008).

  55. Moberg, E. et al. Combined innovations in public policy, the private sector and culture can drive sustainability transitions in food systems. Nat. Food 2, 282–290 (2021).

    Article  Google Scholar 

  56. Christensen, C. M., McDonald, R., Altman, E. J. & Palmer, J. E. Disruptive innovation: an intellectual history and directions for future research. J. Manage. Stud. 55, 7 (2018).

    Article  Google Scholar 

  57. Henderson, R. Reimagining Capitalism in a World on Fire (Public Affairs, 2020).

Download references

Acknowledgements

We thank A. Törmälä for creating the artwork.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conceptualization and the writing of this paper.

Corresponding author

Correspondence to Helena Kahiluoto.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Food thanks Will Brownlie, Zdravka Tzankova and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahiluoto, H., Pickett, K.E. & Steffen, W. Global nutrient equity for people and the planet. Nat Food 2, 857–861 (2021). https://doi.org/10.1038/s43016-021-00391-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-021-00391-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing