Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Promoting potato as staple food can reduce the carbon–land–water impacts of crops in China

Abstract

China has recently implemented a policy to promote potato as a national staple food and to close its large yield gaps with other countries. The carbon–land–water implications of this policy are examined here by compiling and analysing detailed city-level life-cycle inventories of China’s staple crops. We find that in general potato, despite relatively low yields, has lower greenhouse gas emissions and water demand than other staple crops (maize, wheat and rice) on a per-calorie basis, but substantial regional variation exists for each crop. Integrating potato as a staple in China to meet increases in food demand and close the yield gap has the potential to reduce the total carbon–land–water impacts of staple crops by 17–25% by 2030. However, an unsuccessful integration runs the risk of global burden-shifting if the policy, for example, reduced domestic rice production and led to increased rice imports. Potential synergies between food security and environmental sustainability in China can be created by the potato policy, but greater efforts are needed to promote potato across the entire food supply chain from production to consumption.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Regional variation in cropland use, GHG emissions and water use at the prefecture–city level in 2015.
Fig. 2: Distribution of the intensity of land use, GHG emissions and water use at the prefecture–city level in 2015.
Fig. 3: Cropland use, GHG emissions and water use under various scenarios.
Fig. 4: Potential global carbon leakage.

Data availability

All the data that support the life-cycle inventory and scenario analyses of this study are from public sources clearly referenced in the manuscript and most of the data are provided in the Supplementary Information. Source data are provided with this paper.

Code availability

The codes used for data processing, analysis and visualization during the current study are available from the corresponding author on reasonable request.

References

  1. Chen, X. P. et al. Producing more grain with lower environmental costs. Nature 514, 486–489 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  2. Ma, L. et al. Environmental assessment of management options for nutrient flows in the food chain in China. Environ. Sci. Technol. 47, 7260–7268 (2013).

    ADS  CAS  PubMed  Article  Google Scholar 

  3. Fan, M. S. et al. Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China. J. Exp. Bot. 63, 13–24 (2012).

    CAS  PubMed  Article  Google Scholar 

  4. You, L. Z., Rosegrant, M. W., Wood, S. & Sun, D. S. Impact of growing season temperature on wheat productivity in China. Agric. For. Meteorol. 149, 1009–1014 (2009).

    ADS  Article  Google Scholar 

  5. Wang, H. L. et al. Phenological trends in winter wheat and spring cotton in response to climate changes in Northwest China. Agric. For. Meteorol. 148, 1242–1251 (2008).

    ADS  Article  Google Scholar 

  6. Tao, F. L., Zhang, Z., Zhang, S., Zhu, Z. & Shi, W. J. Response of crop yields to climate trends since 1980 in China. Clim. Res. 54, 233–247 (2012).

    Article  Google Scholar 

  7. Tao, F. L., Yokozawa, M., Liu, J. Y. & Zhang, Z. Climate-crop yield relationships at provincial scales in China and the impacts of recent climate trends. Clim. Res. 38, 83–94 (2008).

    Article  Google Scholar 

  8. Tao, F. L., Yokozawa, M., Xu, Y. L., Hayashi, Y. & Zhang, Z. Climate changes and trends in phenology and yields of field crops in China, 1981–2000. Agric. For. Meteorol. 138, 82–92 (2006).

    ADS  Article  Google Scholar 

  9. Chen, C., Wang, E. L., Yu, Q. & Zhang, Y. Q. Quantifying the effects of climate trends in the past 43 years (1961–2003) on crop growth and water demand in the North China Plain. Clim. Change 100, 559–578 (2010).

    ADS  Article  Google Scholar 

  10. Zhang, P., Zhang, J. J. & Chen, M. P. Economic impacts of climate change on agriculture: the importance of additional climatic variables other than temperature and precipitation. J. Environ. Econ. Manage. 83, 8–31 (2017).

    Article  Google Scholar 

  11. Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620 (2011).

    ADS  CAS  PubMed  Article  Google Scholar 

  12. National Bureau of Statistics of China. China Statistical Yearbook 1981–2018 (China Statistics Press, 1982–2019).

  13. Frank, S. et al. Agricultural non-CO2 emission reduction potential in the context of the 1.5°C target. Nat. Clim. Chang. 9, 66–72 (2019).

    ADS  CAS  Article  Google Scholar 

  14. Smith, L. E. D. & Siciliano, G. A comprehensive review of constraints to improved management of fertilizers in China and mitigation of diffuse water pollution from agriculture. Agric. Ecosyst. Environ. 209, 15–25 (2015).

    Article  Google Scholar 

  15. Huang, J., Xu, C. C., Ridoutt, B. G., Wang, X. C. & Ren, P. A. Nitrogen and phosphorus losses and eutrophication potential associated with fertilizer application to cropland in China. J. Clean. Prod. 159, 171–179 (2017).

    Article  Google Scholar 

  16. Su, W. & Wang, J. Potato and food security in China. Am. J. Potato Res. 96, 100–101 (2019).

    Article  Google Scholar 

  17. Singh, J., Kaur, L. & Moughan, P. J. Importance of chemistry, technology and nutrition in potato processing. Food Chem. 133, 1091–1091 (2012).

    CAS  Article  Google Scholar 

  18. China Agricultural Yearbook Editorial Committee. China Agriculture Yearbook 1980–2017 (China Agriculture Press, 1981–2018).

  19. Gao, B. et al. Comprehensive environmental assessment of Potato as Staple Food policy in China. Int. J. Environ. Res. Public Health 16, 19 (2019).

    Google Scholar 

  20. Bleischwitz, R. et al. Resource nexus perspectives towards the United Nations Sustainable Development Goals. Nat. Sustain. 1, 737–743 (2018).

    Article  Google Scholar 

  21. Deng, H. M., Wang, C., Cai, W. J., Liu, Y. & Zhang, L. X. Managing the water–energy–food nexus in China by adjusting critical final demands and supply chains: an input–output analysis. Sci. Total Environ. 720, 11 (2020).

    Article  CAS  Google Scholar 

  22. Paustian, K. et al. Climate-smart soils. Nature 532, 49–57 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  23. Bennetzen, E. H., Smith, P. & Porter, J. R. Agricultural production and greenhouse gas emissions from world regions—the major trends over 40 years. Glob. Environ. Change 37, 43–55 (2016).

    Article  Google Scholar 

  24. Hu, H. Y. Distribution of China’s population: accompanying charts and density map. Acta Geogr. Sin. 2, 33–74 (1935).

    Google Scholar 

  25. FAOSTAT (Food and Agriculture Organization, 2020); http://faostat3.fao.org/faostat-gateway/go/to/home/E

  26. Guidelines of Ministry of Agriculture on Promoting the Development of Potato Industry (Plant Management Division Ministry of Agriculture. 2016).

  27. China’s Potato-as-Staple Food Policy Launched (People’s Political Consultative Conference, 2015); http://cppcc.people.com.cn/n/2015/0108/c34948-26348803.html

  28. Chen, M., Sun, J., Guo, Y. & Wang, X. A Brief History of the Potato: China’s Staple Food, 156–195 (China Agriculture Press, 2020).

  29. Fan, X., Zhang, W., Chen, W. W. & Chen, B. Land–water–energy nexus in agricultural management for greenhouse gas mitigation. Appl. Energy 265, 11 (2020).

    Article  Google Scholar 

  30. Carlson, K. M. et al. Greenhouse gas emissions intensity of global croplands. Nat. Clim. Chang. 7, 63–68 (2017).

    ADS  CAS  Article  Google Scholar 

  31. Liu, X., Li, S., He, P., Zhang, P. & Duan, Y. Yield and nutrient gap analysis for potato in northwest China. J. Agric. Sci. 156, 971–979 (2018).

    CAS  Article  Google Scholar 

  32. Yang, Y., Pelton, R. E. O., Kim, T. & Smith, T. M. Effects of spatial scale on life cycle inventory results. Environ. Sci. Technol. 54, 1293–1303 (2020).

    ADS  CAS  PubMed  Article  Google Scholar 

  33. Miller, S. A., Landis, A. E. & Theis, T. L. Use of Monte Carlo analysis to characterize nitrogen fluxes in agroecosystems. Environ. Sci. Technol. 40, 2324–2332 (2006).

    ADS  CAS  PubMed  Article  Google Scholar 

  34. Yang, Y., Bae, J., Kim, J. & Suh, S. Replacing gasoline with corn ethanol results in significant environmental problem-shifting. Environ. Sci. Technol. 46, 3671–3678 (2012).

    ADS  CAS  PubMed  Article  Google Scholar 

  35. Yadav, O. P., Singh, D. V., Dhillon, B. S. & Mohapatra, T. India’s evergreen revolution in cereals. Curr. Sci. India 116, 1805–1808 (2019).

    Article  Google Scholar 

  36. Wang, Q. B., Parsons, R. & Zhang, G. X. China’s dairy markets: trends, disparities, and implications for trade. China Agr. Econ. Rev. 2, 356–371 (2010).

    Article  Google Scholar 

  37. Campbell, B. M. et al. Agriculture production as a major driver of the Earth system exceeding planetary boundaries. Ecol. Soc. 22, 11 (2017).

    Article  Google Scholar 

  38. Shafiee-Jood, M. & Cai, X. M. Reducing food loss and waste to enhance food security and environmental sustainability. Environ. Sci. Technol. 50, 8432–8443 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  39. Hasegawa, T., Havlik, P., Frank, S., Palazzo, A. & Valin, H. Tackling food consumption inequality to fight hunger without pressuring the environment. Nat. Sustain. 2, 826–833 (2019).

    Article  Google Scholar 

  40. Lu, Y. et al. Addressing China’s grand challenge of achieving food security while ensuring environmental sustainability. Sci. Adv. 1, e1400039 (2015).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  41. Kroll, C., Warchold, A. & Pradhan, P. Sustainable Development Goals (SDGs): are we successful in turning trade-offs into synergies? Palgrave Commun. 5, 11 (2019).

    Article  Google Scholar 

  42. Stewart, D. & McDougall, G. Potato: A Nutritious, Tasty but Often Maligned Staple Food (Food & Health Innovation Service, 2012).

  43. Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  44. Allen, R. G., Pereira, L. S., Raes, D. & Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Requirements. Irrigation and Drainage Paper No. 56 (Food and Agriculture Organization, 1998).

  45. Chiu, Y. W., Walseth, B. & Suh, S. Water embodied in bioethanol in the United States. Environ. Sci. Technol. 43, 2688–2692 (2009).

    ADS  CAS  PubMed  Article  Google Scholar 

  46. Yang, Y. & Suh, S. Land cover change from cotton to corn in the USA relieves freshwater ecotoxicity impact but may aggravate other regional environmental impacts. Int. J. Life Cycle Assess. 20, 196–203 (2015).

    CAS  Article  Google Scholar 

  47. Gao, B. et al. Chinese cropping systems are a net source of greenhouse gases despite soil carbon sequestration. Glob. Chang. Biol. 24, 5590–5606 (2018).

    PubMed  Article  Google Scholar 

  48. Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. USDA National Nutrient Database for Standard Reference (United States Department of Agriculture, Agriculture Research Services & Nutrient Data Laboratory, 2016); https://ndb.nal.usda.gov/

  50. China Agriculture Outlook (2020–2029) (Institute of Agricultural Information and Chinese Academy of Agricultural Sciences, 2020).

  51. Wang, W., Bian, Y. & Liu, Y. China’s per capita GDP forecast and ranking change. Contemp. Finan. Stud. 9, 22–42 (2018).

    CAS  Google Scholar 

  52. World Population Prospects: The 2015 Revision (United Nations Department of Economic and Social Affairs, 2015).

  53. Deng, N. Y. et al. Closing yield gaps for rice self-sufficiency in China. Nat. Commun. 10, 1725 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  54. Hatfield, J. L. & Beres, B. L. Yield gaps in wheat: path to enhancing productivity. Front. Plant Sci. 10, 1603 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  55. Meng, Q. F. et al. Understanding production potentials and yield gaps in intensive maize production in China. Field Crop Res. 143, 91–97 (2013).

    Article  Google Scholar 

  56. National Planting Structure Adjustment Plan (2016–2020) (Ministry of Agriculture, 2016).

  57. China Agriculture Outlook (2019–2028) (Institute of Agricultural Information and Chinese Academy of Agricultural Sciences, 2019).

  58. Heffer, P. Assessment of Fertilizer Use by Crop at the Global Level (International Fertilizer Association, 2013).

  59. Data Bank: World Development Indicators (World Bank, 2015); https://databank.shihang.org/source/world-development-indicators

Download references

Acknowledgements

The research was funded in part by the National Natural Science Foundation of China (71874078, B. Liu and 71921003, J.B.). We thank Dongyue Zhao for her effort into the early development of this study.

Author information

Authors and Affiliations

Authors

Contributions

B. Liu, W.G. and Y.Y. designed the research study. B. Liu, W.G. and F.W. developed early drafts. Y.Y., B. Liu and W.G. revised the paper. W.G. and B. Lu collected and analysed the data. B. Lu and W.G. produced the figures. B.Z. and J.B. contributed discussion points and reviewed the paper. All authors critically reviewed and approved the final manuscript and are accountable for all aspects of the work.

Corresponding authors

Correspondence to Yi Yang, Bing Zhang or Jun Bi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Food thanks Zhenling Cui and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–4, Tables 1–25, Figs. 1–15 and References.

Reporting Summary

Source data

Source Data Fig. 1

Statistical Source Data.

Source Data Fig. 2

Statistical Source Data.

Source Data Fig. 3

Statistical Source Data.

Source Data Fig. 4

Statistical Source Data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Gu, W., Yang, Y. et al. Promoting potato as staple food can reduce the carbon–land–water impacts of crops in China. Nat Food 2, 570–577 (2021). https://doi.org/10.1038/s43016-021-00337-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-021-00337-2

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing