Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A CRISPR way for accelerating improvement of food crops

Abstract

CRISPR technology, which is widely used for plant genome editing, will accelerate the breeding of food crops beyond what was imaginable before its development. Here we provide a brief overview of CRISPR technology, its most important applications for crop improvement and several technological breakthroughs. We also make predictions of the applications of CRISPR technology to food crops, which we believe would provide the potential for synthetic biology and domestication of crops. We also discuss the implications of regulatory policy for deployment of the technology in the developing world.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: CRISPR technology used for plant genome editing.
Fig. 2: Accelerated domestication of wild plants could broaden the diversity of food crops.

Blickwinkel / Alamy Stock Photo (a); Bilder ur Nordens Flora, Stockholm (b); David Cobb / Alamy Stock Photo (c); DE AGOSTINI PICTURE LIBRARY // gettyimages (d)

References

  1. 1.

    Hickey, L. T. et al. Breeding crops to feed 10 billion. Nat. Biotechnol. 37, 744–754 (2019).

    CAS  PubMed  Google Scholar 

  2. 2.

    Ray, D. K., Mueller, N. D., West, P. C. & Foley, J. A. Yield trends are insufficient to double global crop production by 2050. PLoS ONE 8, e66428 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Chen, K., Wang, Y., Zhang, R., Zhang, H. & Gao, C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 70, 667–697 (2019).

    CAS  PubMed  Google Scholar 

  4. 4.

    Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759–771 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Symington, L. S. & Gautier, J. Double-strand break end resection and repair pathway choice. Annu. Rev. Genet. 45, 247–271 (2011).

    CAS  PubMed  Google Scholar 

  7. 7.

    Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Zhang, Y., Massel, K., Godwin, I. D. & Gao, C. Applications and potential of genome editing in crop improvement. Genome Biol. 19, 210 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Li, M. et al. Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system. Front. Plant Sci. 7, 377 (2016).

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Waltz, E. CRISPR-edited crops free to enter market, skip regulation. Nat. Biotechnol. 34, 582 (2016).

    CAS  PubMed  Google Scholar 

  12. 12.

    Wang, Y. et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 32, 947–951 (2014).

    CAS  PubMed  Google Scholar 

  13. 13.

    Nekrasov, V. et al. Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Sci. Rep. 7, 482 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Khanday, I., Skinner, D., Yang, B., Mercier, R. & Sundaresan, V. A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds. Nature 565, 91–95 (2019).

    ADS  CAS  PubMed  Google Scholar 

  15. 15.

    Wang, C. et al. Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes. Nat. Biotechnol. 37, 283–286 (2019).

    CAS  PubMed  Google Scholar 

  16. 16.

    Henikoff, S. & Comai, L. Single-nucleotide mutations for plant functional genomics. Annu. Rev. Plant Biol. 54, 375–401 (2003).

    CAS  PubMed  Google Scholar 

  17. 17.

    Zong, Y. et al. Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nat. Biotechnol. 36, 950–953 (2018).

    CAS  Google Scholar 

  18. 18.

    Zhang, R. et al. Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing. Nat. Plants 5, 480–485 (2019).

    CAS  PubMed  Google Scholar 

  19. 19.

    Tian, S. et al. Engineering herbicide resistant watermelon variety through CRISPR/Cas9-mediated base-editing. Plant Cell Rep. 37, 1353–1356 (2018).

    CAS  PubMed  Google Scholar 

  20. 20.

    Li, C. et al. Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biol. 19, 59 (2018).

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Long, S. P., Marshall-Colon, A. & Zhu, X. Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell 161, 56–66 (2015).

    CAS  PubMed  Google Scholar 

  22. 22.

    Rodriguez-Leal, D., Lemmon, Z. H., Man, J., Bartlett, M. E. & Lippman, Z. B. Engineering quantitative trait variation for crop improvement by genome editing. Cell 171, 470–480 (2017).

    CAS  PubMed  Google Scholar 

  23. 23.

    Zhang, H. et al. Genome editing of upstream open reading frames enables translational control in plants. Nat. Biotechnol. 36, 894–898 (2018).

    CAS  PubMed  Google Scholar 

  24. 24.

    Lowe, K. et al. Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Cell 28, 1998–2015 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Kelliher, T. et al. One-step genome editing of elite crop germplasm during haploid induction. Nat. Biotechnol. 37, 287–292 (2019).

    CAS  PubMed  Google Scholar 

  26. 26.

    Wang, B. et al. Development of a haploid-inducer mediated genome editing system for accelerating maize breeding. Mol. Plant 12, 597–602 (2019).

    PubMed  Google Scholar 

  27. 27.

    Maher, M. F. et al. Plant gene editing through de novo induction of meristems. Nat. Biotechnol. 38, 84–89 (2020).

    CAS  PubMed  Google Scholar 

  28. 28.

    Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    ADS  CAS  PubMed  Google Scholar 

  29. 29.

    Wurtzel, E. T. et al. Revolutionizing agriculture with synthetic biology. Nat. Plants 5, 1207–1210 (2019).

    PubMed  Google Scholar 

  30. 30.

    Salesse-Smith, C. E. et al. Overexpression of Rubisco subunits with RAF1 increases Rubisco content in maize. Nat. Plants 4, 802–810 (2018).

    CAS  PubMed  Google Scholar 

  31. 31.

    Wersch, S. & Li, X. Stronger when together: clustering of plant NLR disease resistance genes. Trends Plant Sci. 24, 688–699 (2019).

    PubMed  Google Scholar 

  32. 32.

    Engqvist, M. K. M. & Rabe, K. S. Applications of protein engineering and directed evolution in plant research. Plant Physiol. 179, 907–917 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Butt, H. et al. CRISPR directed evolution of the spliceosome for resistance to splicing inhibitors. Genome Biol. 20, 73 (2019).

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Li, C. et al. Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors. Nat. Biotechnol. https://doi.org/10.1038/s41587-019-0393-7 (2020).

  35. 35.

    Zsögön, A. et al. De novo domestication of wild tomato using genome editing. Nat. Biotechnol. 36, 1211–1216 (2018).

    Google Scholar 

  36. 36.

    Li, T. et al. Domestication of wild tomato is accelerated by genome editing. Nat. Biotechnol. 36, 1160–1163 (2018).

    CAS  Google Scholar 

  37. 37.

    Lemmon, Z. H. et al. Rapid improvement of domestication traits in an orphan crop by genome editing. Nat. Plants 4, 766–770 (2018).

    CAS  PubMed  Google Scholar 

  38. 38.

    Cui, L. et al. Development of perennial wheat through hybridization between wheat and wheatgrasses: a review. Engineering 4, 507–513 (2018).

    CAS  Google Scholar 

  39. 39.

    DeHaan, L., Christians, M., Crain, J. & Poland, J. Development and evolution of an intermediate wheatgrass domestication program. Sustainability 10, 1499 (2018).

    Google Scholar 

  40. 40.

    Venske, E. et al. Bread wheat: a role model for plant domestication and breeding. Hereditas 156, 16 (2019).

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Sánchez-Pérez, R. et al. Mutation of a bHLH transcription factor allowed almond domestication. Science 364, 1095–1098 (2019).

    ADS  PubMed  Google Scholar 

  42. 42.

    Nour-Eldin, H. H. et al. Reduction of antinutritional glucosinolates in Brassica oilseeds by mutation of genes encoding transporters. Nat. Biotechnol. 35, 377–382 (2017).

    CAS  PubMed  Google Scholar 

  43. 43.

    Podevin, N., Davies, H. V., Hartung, F., Nogue, F. & Casacuberta, J. M. Site-directed nucleases: a paradigm shift in predictable, knowledge-based plant breeding. Trends Biotechnol. 31, 375–383 (2013).

    CAS  PubMed  Google Scholar 

  44. 44.

    Importation, Interstate Movement, and Environmental Release of Certain Genetically Engineered Organisms (US Department of Agriculture Animal and Health Inspection Service, 2017); https://go.nature.com/2VBr64V

  45. 45.

    Whelan, A. I. & Lema, M. A. Regulatory framework for gene editing and other new breeding techniques in Argentina. GM Crops Food 6, 253–265 (2015).

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Lema, M. A. Regulatory aspects of gene editing in Argentina. Transgenic Res. 28, 147–150 (2019).

    CAS  PubMed  Google Scholar 

  47. 47.

    Normile, D. Gene-edited foods are safe, Japanese panel concludes. Science (19 March 2019); https://doi.org/10.1126/science.aax3903

  48. 48.

    Thygesen, P. Clarifying the regulation of genome editing in Australia: situation for genetically modified organisms. Transgenic Res. 28, 151–159 (2019).

    CAS  PubMed  Google Scholar 

  49. 49.

    Callaway, E. CRISPR plants now subject to tough GM laws in European Union. Nature 560, 16 (2018).

    ADS  CAS  PubMed  Google Scholar 

  50. 50.

    Huang, S., Weigel, D., Beachy, R. N. & Li, J. A proposed regulatory framework for genome-edited crops. Nat. Genet. 48, 109–111 (2016).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to those colleagues whose work was not cited due to restrictions on the number of references. C.G. was supported by the National Natural Science Foundation of China (grant no. 31788103) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Precision Seed Design and Breeding, grant no. XDA24000000), Y.Z. and M. Pribil by the Innovation Fund Denmark grant no. 8055-00038A, and M. Palmgren by the Novo Nordisk Foundation Challenge grant no. NNF19OC005658.

Author information

Affiliations

Authors

Contributions

Y.Z. drafted the first version of the manuscript. M. Pribil revised the manuscript, and C.G. and M. Palmgren designed and revised the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Michael Palmgren or Caixia Gao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Pribil, M., Palmgren, M. et al. A CRISPR way for accelerating improvement of food crops. Nat Food 1, 200–205 (2020). https://doi.org/10.1038/s43016-020-0051-8

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing