Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

A CRISPR way for accelerating improvement of food crops

Abstract

CRISPR technology, which is widely used for plant genome editing, will accelerate the breeding of food crops beyond what was imaginable before its development. Here we provide a brief overview of CRISPR technology, its most important applications for crop improvement and several technological breakthroughs. We also make predictions of the applications of CRISPR technology to food crops, which we believe would provide the potential for synthetic biology and domestication of crops. We also discuss the implications of regulatory policy for deployment of the technology in the developing world.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CRISPR technology used for plant genome editing.
Fig. 2: Accelerated domestication of wild plants could broaden the diversity of food crops.

Blickwinkel / Alamy Stock Photo (a); Bilder ur Nordens Flora, Stockholm (b); David Cobb / Alamy Stock Photo (c); DE AGOSTINI PICTURE LIBRARY // gettyimages (d)

Similar content being viewed by others

References

  1. Hickey, L. T. et al. Breeding crops to feed 10 billion. Nat. Biotechnol. 37, 744–754 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Ray, D. K., Mueller, N. D., West, P. C. & Foley, J. A. Yield trends are insufficient to double global crop production by 2050. PLoS ONE 8, e66428 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen, K., Wang, Y., Zhang, R., Zhang, H. & Gao, C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 70, 667–697 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759–771 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Symington, L. S. & Gautier, J. Double-strand break end resection and repair pathway choice. Annu. Rev. Genet. 45, 247–271 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang, Y., Massel, K., Godwin, I. D. & Gao, C. Applications and potential of genome editing in crop improvement. Genome Biol. 19, 210 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li, M. et al. Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system. Front. Plant Sci. 7, 377 (2016).

    PubMed  PubMed Central  Google Scholar 

  11. Waltz, E. CRISPR-edited crops free to enter market, skip regulation. Nat. Biotechnol. 34, 582 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Wang, Y. et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 32, 947–951 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Nekrasov, V. et al. Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Sci. Rep. 7, 482 (2017).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  14. Khanday, I., Skinner, D., Yang, B., Mercier, R. & Sundaresan, V. A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds. Nature 565, 91–95 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Wang, C. et al. Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes. Nat. Biotechnol. 37, 283–286 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Henikoff, S. & Comai, L. Single-nucleotide mutations for plant functional genomics. Annu. Rev. Plant Biol. 54, 375–401 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Zong, Y. et al. Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nat. Biotechnol. 36, 950–953 (2018).

    Article  CAS  Google Scholar 

  18. Zhang, R. et al. Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing. Nat. Plants 5, 480–485 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Tian, S. et al. Engineering herbicide resistant watermelon variety through CRISPR/Cas9-mediated base-editing. Plant Cell Rep. 37, 1353–1356 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Li, C. et al. Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biol. 19, 59 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Long, S. P., Marshall-Colon, A. & Zhu, X. Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell 161, 56–66 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Rodriguez-Leal, D., Lemmon, Z. H., Man, J., Bartlett, M. E. & Lippman, Z. B. Engineering quantitative trait variation for crop improvement by genome editing. Cell 171, 470–480 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, H. et al. Genome editing of upstream open reading frames enables translational control in plants. Nat. Biotechnol. 36, 894–898 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Lowe, K. et al. Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Cell 28, 1998–2015 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kelliher, T. et al. One-step genome editing of elite crop germplasm during haploid induction. Nat. Biotechnol. 37, 287–292 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Wang, B. et al. Development of a haploid-inducer mediated genome editing system for accelerating maize breeding. Mol. Plant 12, 597–602 (2019).

    Article  PubMed  CAS  Google Scholar 

  27. Maher, M. F. et al. Plant gene editing through de novo induction of meristems. Nat. Biotechnol. 38, 84–89 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wurtzel, E. T. et al. Revolutionizing agriculture with synthetic biology. Nat. Plants 5, 1207–1210 (2019).

    Article  PubMed  Google Scholar 

  30. Salesse-Smith, C. E. et al. Overexpression of Rubisco subunits with RAF1 increases Rubisco content in maize. Nat. Plants 4, 802–810 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Wersch, S. & Li, X. Stronger when together: clustering of plant NLR disease resistance genes. Trends Plant Sci. 24, 688–699 (2019).

    Article  PubMed  CAS  Google Scholar 

  32. Engqvist, M. K. M. & Rabe, K. S. Applications of protein engineering and directed evolution in plant research. Plant Physiol. 179, 907–917 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Butt, H. et al. CRISPR directed evolution of the spliceosome for resistance to splicing inhibitors. Genome Biol. 20, 73 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Li, C. et al. Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors. Nat. Biotechnol. https://doi.org/10.1038/s41587-019-0393-7 (2020).

  35. Zsögön, A. et al. De novo domestication of wild tomato using genome editing. Nat. Biotechnol. 36, 1211–1216 (2018).

    Article  CAS  Google Scholar 

  36. Li, T. et al. Domestication of wild tomato is accelerated by genome editing. Nat. Biotechnol. 36, 1160–1163 (2018).

    Article  CAS  Google Scholar 

  37. Lemmon, Z. H. et al. Rapid improvement of domestication traits in an orphan crop by genome editing. Nat. Plants 4, 766–770 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Cui, L. et al. Development of perennial wheat through hybridization between wheat and wheatgrasses: a review. Engineering 4, 507–513 (2018).

    Article  CAS  Google Scholar 

  39. DeHaan, L., Christians, M., Crain, J. & Poland, J. Development and evolution of an intermediate wheatgrass domestication program. Sustainability 10, 1499 (2018).

    Article  Google Scholar 

  40. Venske, E. et al. Bread wheat: a role model for plant domestication and breeding. Hereditas 156, 16 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sánchez-Pérez, R. et al. Mutation of a bHLH transcription factor allowed almond domestication. Science 364, 1095–1098 (2019).

    Article  ADS  PubMed  CAS  Google Scholar 

  42. Nour-Eldin, H. H. et al. Reduction of antinutritional glucosinolates in Brassica oilseeds by mutation of genes encoding transporters. Nat. Biotechnol. 35, 377–382 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Podevin, N., Davies, H. V., Hartung, F., Nogue, F. & Casacuberta, J. M. Site-directed nucleases: a paradigm shift in predictable, knowledge-based plant breeding. Trends Biotechnol. 31, 375–383 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Importation, Interstate Movement, and Environmental Release of Certain Genetically Engineered Organisms (US Department of Agriculture Animal and Health Inspection Service, 2017); https://go.nature.com/2VBr64V

  45. Whelan, A. I. & Lema, M. A. Regulatory framework for gene editing and other new breeding techniques in Argentina. GM Crops Food 6, 253–265 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lema, M. A. Regulatory aspects of gene editing in Argentina. Transgenic Res. 28, 147–150 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Normile, D. Gene-edited foods are safe, Japanese panel concludes. Science (19 March 2019); https://doi.org/10.1126/science.aax3903

  48. Thygesen, P. Clarifying the regulation of genome editing in Australia: situation for genetically modified organisms. Transgenic Res. 28, 151–159 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Callaway, E. CRISPR plants now subject to tough GM laws in European Union. Nature 560, 16 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Huang, S., Weigel, D., Beachy, R. N. & Li, J. A proposed regulatory framework for genome-edited crops. Nat. Genet. 48, 109–111 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to those colleagues whose work was not cited due to restrictions on the number of references. C.G. was supported by the National Natural Science Foundation of China (grant no. 31788103) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Precision Seed Design and Breeding, grant no. XDA24000000), Y.Z. and M. Pribil by the Innovation Fund Denmark grant no. 8055-00038A, and M. Palmgren by the Novo Nordisk Foundation Challenge grant no. NNF19OC005658.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. drafted the first version of the manuscript. M. Pribil revised the manuscript, and C.G. and M. Palmgren designed and revised the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Michael Palmgren or Caixia Gao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Pribil, M., Palmgren, M. et al. A CRISPR way for accelerating improvement of food crops. Nat Food 1, 200–205 (2020). https://doi.org/10.1038/s43016-020-0051-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-020-0051-8

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research