Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Amino acid intake strategies define pluripotent cell states

Abstract

Mammalian preimplantation development is associated with marked metabolic robustness, and embryos can develop under a wide variety of nutrient conditions, including even the complete absence of soluble amino acids. Here we show that mouse embryonic stem cells (ESCs) capture the unique metabolic state of preimplantation embryos and proliferate in the absence of several essential amino acids. Amino acid independence is enabled by constitutive uptake of exogenous protein through macropinocytosis, alongside a robust lysosomal digestive system. Following transition to more committed states, ESCs reduce digestion of extracellular protein and instead become reliant on exogenous amino acids. Accordingly, amino acid withdrawal selects for ESCs that mimic the preimplantation epiblast. More broadly, we find that all lineages of preimplantation blastocysts exhibit constitutive macropinocytic protein uptake and digestion. Taken together, these results highlight exogenous protein uptake and digestion as an intrinsic feature of preimplantation development and provide insight into the catabolic strategies that enable embryos to sustain viability before implantation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Naïve ESCs can proliferate without essential amino acids.
Fig. 2: ESCs engage in constitutive macropinocytosis.
Fig. 3: Leucine independence is a feature of naïve pluripotency.
Fig. 4: Lysosomal metabolism facilitates amino acid independence.
Fig. 5: Digestive amino acid metabolism is attenuated with developmental progression.
Fig. 6: Cells in preimplantation blastocyst engage in macropinocytosis.

Similar content being viewed by others

Data availability

RNA-seq data supporting the findings of this study have been deposited in the Gene Expression Omnibus under accession codes GSE216356 and GSE234802. Alignment was performed against the mouse mm10 genome assembly. EpiLC conversion RNA-seq was obtained from previously published data48 (GSE92412). E3.5–5.5 scRNA-seq data were obtained from endoderm-explorer.com45. RNA-seq from female ESCs was obtained from previously published data75 (GSE84164). RNA-seq from human ESCs was obtained from previously published data (E-MTAB-2857, GSE59435, GSE174771)72,73,74. All unique reagents generated in this study will be made available, following request, from the corresponding author with a completed material transfer agreement. Source data are provided with this paper.

Code availability

No custom code was generated for this study. All previously published code used in this study is referred to in Methods.

References

  1. Rivera-Perez, J. A. & Hadjantonakis, A. K. The dynamics of morphogenesis in the early mouse embryo. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1101/cshperspect.a015867 (2014).

  2. Alberio, R. Regulation of cell fate decisions in early mammalian embryos. Annu. Rev. Anim. Biosci. 8, 377–393 (2020).

    Article  PubMed  Google Scholar 

  3. Brinster, R. L. Effect of glutathione on the development of two-cell mouse embryos in vitro. J. Reprod. Fertil. 17, 521–525 (1968).

    Article  PubMed  CAS  Google Scholar 

  4. Whitten, W. K. & Biggers, J. D. Complete development in vitro of the pre-implantation stages of the mouse in a simple chemically defined medium. J. Reprod. Fertil. 17, 399–401 (1968).

    Article  PubMed  CAS  Google Scholar 

  5. Cholewa, J. A. & Whitten, W. K. Development of two-cell mouse embryos in the absence of a fixed-nitrogen source. J. Reprod. Fertil. 22, 553–555 (1970).

    Article  PubMed  CAS  Google Scholar 

  6. Leese, H. J. Metabolism of the preimplantation embryo: 40 years on. Reproduction 143, 417–427 (2012).

    Article  PubMed  CAS  Google Scholar 

  7. Hosios, A. M. et al. Amino acids rather than glucose account for the majority of cell mass in proliferating mammalian cells. Dev. Cell 36, 540–549 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Palm, W. & Thompson, C. B. Nutrient acquisition strategies of mammalian cells. Nature 546, 234–242 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Lu, V., Roy, I. J. & Teitell, M. A. Nutrients in the fate of pluripotent stem cells. Cell Metab. 33, 2108–2121 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Mathieu, J. & Ruohola-Baker, H. Metabolic remodeling during the loss and acquisition of pluripotency. Development 144, 541–551 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Boroviak, T., Loos, R., Bertone, P., Smith, A. & Nichols, J. The ability of inner-cell-mass cells to self-renew as embryonic stem cells is acquired following epiblast specification. Nat. Cell Biol. 16, 516–528 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Ying, Q. L. et al. The ground state of embryonic stem cell self-renewal. Nature 453, 519–523 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Martello, G. & Smith, A. The nature of embryonic stem cells. Annu. Rev. Cell Dev. Biol. 30, 647–675 (2014).

    Article  PubMed  CAS  Google Scholar 

  14. Hayashi, K., Ohta, H., Kurimoto, K., Aramaki, S. & Saitou, M. Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 146, 519–532 (2011).

    Article  PubMed  CAS  Google Scholar 

  15. Nakamura, T. et al. A developmental coordinate of pluripotency among mice, monkeys and humans. Nature 537, 57–62 (2016).

    Article  PubMed  CAS  Google Scholar 

  16. Kalkan, T. et al. Tracking the embryonic stem cell transition from ground state pluripotency. Development 144, 1221–1234 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Arnold, P. K. et al. A non-canonical tricarboxylic acid cycle underlies cellular identity. Nature 603, 477–481 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Carey, B. W., Finley, L. W. S., Cross, J. R., Allis, C. D. & Thompson, C. B. Intracellular alpha-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518, 413–416 (2015).

    Article  PubMed  CAS  Google Scholar 

  19. Vardhana, S. A. et al. Glutamine independence is a selectable feature of pluripotent stem cells. Nat. Metab. 1, 676–687 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Bayerl, J. et al. Principles of signaling pathway modulation for enhancing human naive pluripotency induction. Cell Stem Cell 28, 1549–1565 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Xu, Y. et al. Chaperone-mediated autophagy regulates the pluripotency of embryonic stem cells. Science 369, 397–403 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Brune, D., Andrade-Navarro, M. A. & Mier, P. Proteome-wide comparison between the amino acid composition of domains and linkers. BMC Res. Notes 11, 117 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shyh-Chang, N. et al. Influence of threonine metabolism on S-adenosylmethionine and histone methylation. Science 339, 222–226 (2013).

    Article  PubMed  Google Scholar 

  24. Wang, J. et al. Dependence of mouse embryonic stem cells on threonine catabolism. Science 325, 435–439 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Commisso, C. et al. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497, 633–637 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Lee, S.-W. et al. EGFR-Pak signaling selectively regulates glutamine deprivation-induced macropinocytosis. Dev. Cell 50, 381–392.e5 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Davidson, S. M. et al. Direct evidence for cancer-cell-autonomous extracellular protein catabolism in pancreatic tumors. Nat. Med. 23, 235–241 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kamphorst, J. J. et al. Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein. Cancer Res. 75, 544–553 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Recouvreux, M. V. & Commisso, C. Macropinocytosis: a metabolic adaptation to nutrient stress in cancer. Front. Endocrinol. 8, 261 (2017).

    Article  Google Scholar 

  30. Reis, R. C., Sorgine, M. H. & Coelho-Sampaio, T. A novel methodology for the investigation of intracellular proteolytic processing in intact cells. Eur. J. Cell Biol. 75, 192–197 (1998).

    Article  PubMed  CAS  Google Scholar 

  31. Commisso, C., Flinn, R. J. & Bar-Sagi, D. Determining the macropinocytic index of cells through a quantitative image-based assay. Nat. Protoc. 9, 182–192 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Kim, S. M. et al. PTEN deficiency and AMPK activation promote nutrient scavenging and anabolism in prostate cancer cells. Cancer Discov. 8, 866–883 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. West, M. A., Bretscher, M. S. & Watts, C. Distinct endocytotic pathways in epidermal growth factor-stimulated human carcinoma A431 cells. J. Cell Biol. 109, 2731–2739 (1989).

    Article  PubMed  CAS  Google Scholar 

  34. Montalvo-Ortiz, B. L. et al. Characterization of EHop-016, novel small molecule inhibitor of Rac GTPase. J. Biol. Chem. 287, 13228–13238 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Deacon, S. W. et al. An isoform-selective, small-molecule inhibitor targets the autoregulatory mechanism of p21-activated kinase. Chem. Biol. 15, 322–331 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Charpentier, J. C. et al. Macropinocytosis drives T cell growth by sustaining the activation of mTORC1. Nat. Commun. 11, 180 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Palm, W. et al. The utilization of extracellular proteins as nutrients is suppressed by mTORC1. Cell 162, 259–270 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Nofal, M. et al. GCN2 adapts protein synthesis to scavenging-dependent growth. Cell Syst. 13, 158–172.e9 (2022).

    Article  PubMed  CAS  Google Scholar 

  39. Faddah, D. A. et al. Single-cell analysis reveals that expression of nanog is biallelic and equally variable as that of other pluripotency factors in mouse ESCs. Cell Stem Cell 13, 23–29 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Wray, J. et al. Inhibition of glycogen synthase kinase-3 alleviates Tcf3 repression of the pluripotency network and increases embryonic stem cell resistance to differentiation. Nat. Cell Biol. 13, 838–845 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Aguilar, J. & Reyley, M. The uterine tubal fluid: secretion, composition and biological effects. Anim. Reprod. 2, 91–105 (2005).

    Google Scholar 

  42. Kelleher, A. M., Burns, G. W., Behura, S., Wu, G. & Spencer, T. E. Uterine glands impact uterine receptivity, luminal fluid homeostasis and blastocyst implantation. Sci. Rep. 6, 38078 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Marks, H. et al. The transcriptional and epigenomic foundations of ground state pluripotency. Cell 149, 590–604 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Betschinger, J. et al. Exit from pluripotency is gated by intracellular redistribution of the bHLH transcription factor Tfe3. Cell 153, 335–347 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Nowotschin, S. et al. The emergent landscape of the mouse gut endoderm at single-cell resolution. Nature 569, 361–367 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Hayashi, K. & Saitou, M. Stepwise differentiation from naive state pluripotent stem cells to functional primordial germ cells through an epiblast-like state. Methods Mol. Biol. 1074, 175–183 (2013).

    Article  PubMed  CAS  Google Scholar 

  47. Shao, X. et al. Placental trophoblast syncytialization potentiates macropinocytosis via mTOR signaling to adapt to reduced amino acid supply. Proc. Natl Acad. Sci. USA 118, e2017092118 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Atlasi, Y. et al. Epigenetic modulation of a hardwired 3D chromatin landscape in two naive states of pluripotency. Nat. Cell Biol. 21, 568–578 (2019).

    Article  PubMed  CAS  Google Scholar 

  49. Hamilton, T. G., Klinghoffer, R. A., Corrin, P. D. & Soriano, P. Evolutionary divergence of platelet-derived growth factor alpha receptor signaling mechanisms. Mol. Cell. Biol. 23, 4013–4025 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Plusa, B., Piliszek, A., Frankenberg, S., Artus, J. & Hadjantonakis, A.-K. Distinct sequential cell behaviours direct primitive endoderm formation in the mouse blastocyst. Development 135, 3081–3091 (2008).

    Article  PubMed  CAS  Google Scholar 

  51. Brison, D. R. et al. Identification of viable embryos in IVF by non-invasive measurement of amino acid turnover. Hum. Reprod. 19, 2319–2324 (2004).

    Article  PubMed  CAS  Google Scholar 

  52. Houghton, F. D. et al. Non-invasive amino acid turnover predicts human embryo developmental capacity. Hum. Reprod. 17, 999–1005 (2002).

    Article  PubMed  CAS  Google Scholar 

  53. Leese, H. J., Brison, D. R. & Sturmey, R. G. The Quiet Embryo Hypothesis: 20 years on. Front. Physiol. 13, 899485 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hoijman, E. et al. Cooperative epithelial phagocytosis enables error correction in the early embryo. Nature 590, 618–623 (2021).

    Article  PubMed  CAS  Google Scholar 

  55. Whitten, W. K. in Schering Symposium on Intrinsic and Extrinsic Factors in Early Mammalian Development (ed. Raspé, G.) 129–141 (Pergamon, 1971).

  56. Sonder, S. L. et al. Restructuring of the plasma membrane upon damage by LC3-associated macropinocytosis. Sci. Adv. https://doi.org/10.1126/sciadv.abg1969 (2021).

  57. Kostopoulou, N. et al. Embryonic stem cells are devoid of macropinocytosis, a trafficking pathway for activin A in differentiated cells. J. Cell Sci. https://doi.org/10.1242/jcs.246892 (2021).

  58. von Zastrow, M. & Sorkin, A. Mechanisms for regulating and organizing receptor signaling by endocytosis. Annu. Rev. Biochem. 90, 709–737 (2021).

    Article  Google Scholar 

  59. Lu, V. et al. Glutamine-dependent signaling controls pluripotent stem cell fate. Dev. Cell 57, 610–623.e8 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Puertollano, R., Ferguson, S. M., Brugarolas, J. & Ballabio, A. The complex relationship between TFEB transcription factor phosphorylation and subcellular localization. EMBO J. https://doi.org/10.15252/embj.201798804 (2018).

  61. Villegas, F. et al. Lysosomal signaling licenses embryonic stem cell differentiation via inactivation of Tfe3. Cell Stem Cell 24, 257–270.e8 (2019).

    Article  PubMed  CAS  Google Scholar 

  62. Puccini, J., Badgley, M. A. & Bar-Sagi, D. Exploiting cancer’s drinking problem: regulation and therapeutic potential of macropinocytosis. Trends Cancer 8, 54–64 (2022).

    Article  PubMed  CAS  Google Scholar 

  63. Vander Heiden, M. G. & DeBerardinis, R. J. Understanding the intersections between metabolism and cancer biology. Cell 168, 657–669 (2017).

    Article  PubMed Central  Google Scholar 

  64. Young, N. P. et al. AMPK governs lineage specification through Tfeb-dependent regulation of lysosomes. Genes Dev. 30, 535–552 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Morgani, S. M. & Hadjantonakis, A.-K. Spatially organized differentiation of mouse pluripotent stem cells on micropatterned surfaces. Methods Mol. Biol. 2214, 41–58 (2021).

    Article  PubMed  CAS  Google Scholar 

  66. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    Article  PubMed  CAS  Google Scholar 

  68. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wickham, H. in ggplot2: Elegant Graphics for Data Analysis (eds Gentleman, R. et al.) Ch. 2 (Springer, 2009).

  70. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2, 100141 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  72. Takashima, Y. et al. Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell 158, 1254–1269 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Theunissen, T. W. et al. Systematic identification of culture conditions for induction and maintenance of naive human pluripotency. Cell Stem Cell 15, 471–487 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Bi, Y. et al. Cell fate roadmap of human primed-to-naive transition reveals preimplantation cell lineage signatures. Nat. Commun. 13, 3147 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Yagi, M. et al. Derivation of ground-state female ES cells maintaining gamete-derived DNA methylation. Nature 548, 224–227 (2017).

    Article  PubMed  CAS  Google Scholar 

  76. Sullivan, L. B. et al. Aspartate is an endogenous metabolic limitation for tumour growth. Nat. Cell Biol. 20, 782–788 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Millard, P., Letisse, F., Sokol, S. & Portais, J.-C. IsoCor: correcting MS data in isotope labeling experiments. Bioinformatics 28, 1294–1296 (2012).

    Article  PubMed  CAS  Google Scholar 

  78. van Dijk, D. et al. Recovering gene interactions from single-cell data using data diffusion. Cell 174, 716–729.e27 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Solter, D. & Knowles, B. B. Immunosurgery of mouse blastocyst. Proc. Natl Acad. Sci. USA 72, 5099–5102 (1975).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Finley Laboratory, W. Palm, B. King, A. Intlekofer and S. Vardhana for helpful discussions, the Media Preparation Facility at MSKCC for specialized media production and A. Smith and R. Jaenisch for ESC lines. B.T.J. is a National Institute of Child Health and Human Development Ruth L. Kirschstein Predoctoral fellow (no. F30HD107943) and is supported by a Medical Scientist Training Program grant from the National Institute of General Medical Sciences of the National Institutes of Health under award no. T32GM007739 to the Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program. K.I.P. was supported by a Bruce Charles Forbes Pre-Doctoral Fellowship (MSKCC). J.S.B. is supported by a Human Frontier Science Program Fellowship (no. LT000200/2021-L). L.W.S.F. is a New York Stem Cell Foundation – Robertson Investigator and was a Searle Scholar. This research was additionally supported by MSKCC Support Grant no. P30CA008748, by grants to A.-K.H. from the National Institutes of Health (nos. R01DK127821 and R01HD094868) and by grants to L.W.S.F. from the Starr Foundation (no. I12-0051), the Tri-Institutional Stem Cell Initiative (no. 2019-007), the Basic Research Innovation Award from the Sloan Kettering Institute and the New York Stem Cell Foundation.

Author information

Authors and Affiliations

Authors

Contributions

P.K.T. and L.W.S.F. conceived the study. P.K.T and B.T.J. performed all of the experiments, with assistance from J.S.B., A.E.B., Y.C. and J.Y. V.G. performed blastocyst experiments. K.I.P. performed and analysed RNA-seq experiments. S.C.B. performed image analysis. A.-K.H. provided additional study guidance. L.W.S.F. supervised the project. P.K.T. and L.W.S.F. wrote the paper with input from all authors.

Corresponding author

Correspondence to Lydia W. S. Finley.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Metabolism thanks T. Rodriguez and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alfredo Giménez-Cassina, in collaboration with the Nature Metabolism team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Naïve ESCs grow without exogenous leucine.

(a) Population doublings of S/L- and S/L + 2i-cultured ESCs subjected to glutamine (Gln) replete or depleted conditions for 48 h. (b) Relative viability (measured by PI exclusion) of S/L- and S/L + 2i-cultured ESCs subjected to leucine (Leu) deprivation for 48 h. Viability is expressed relative to leucine-replete controls. (c) Teratoma formation from S/L + 2i-cultured ESCs subjected to leucine (Leu) replete or depleted conditions for 24 h. Each injection resulted in teratoma formation within two weeks (6 per group); two tumors per group were subjected to histology analysis with similar findings. Representative images of hematoxylin and eosin stained tumor tissue showing differentiation into endoderm, mesoderm and ectoderm-derived tissues. (d) Population doublings of S/L- and S/L + 2i-cultured ESCs (ESC-2) subjected to leucine (Leu) depleted conditions for 48 h. (e) Population doublings of S/L- and S/L + 2i-cultured ESCs subjected to isoleucine (Ile), phenylalanine (Phe), or valine (Val) depleted conditions for 48 h. (f) Cell volume of S/L- and S/L + 2i-cultured ESCs subjected to leucine (Leu) replete or depleted conditions for 48 h. (g) Change in total cellular volume of S/L- and S/L + 2i-cultured ESCs (ESC-1 and ESC-2) subjected to leucine (Leu) depleted conditions for 48 h. (h) Change in protein content of S/L- and S/L + 2i-cultured ESCs subjected to leucine (Leu) depleted conditions for the indicated times. Data are mean ± SD, n = 3 independent samples. Significance was assessed by unpaired two-tailed t test (b,d-g) and two-way ANOVA with Sidak’s multiple comparisons post-test (h). Scale bar, 50 µm.

Source data

Extended Data Fig. 2 Protein uptake and hydrolysis in ESCs.

(a) DQ-BSA signal in S/L + 2i ESCs (ESC-2) subjected to leucine (Leu) replete or depleted conditions. (b,c) Dextran uptake (b) and DQ-BSA hydrolysis (c) in S/L- and S/L + 2i-cultured ESCs (ESC-2). (d) Flow cytometry quantification of DQ-BSA signal in S/L-, S/L + 2i- and 2i/L (serum-free)-cultured ESCs. (e) Flow cytometry quantification of DQ-BSA signal in S/L- and S/L + 2i-cultured ESCs and PANC-1 pancreatic ductal adenocarcinoma cells. (f) Flow cytometry quantification of DQ-Ovalbumin signal in S/L- and S/L + 2i-cultured ESCs with or without pre-treatment with EIPA. (g,h) Population doublings of S/L- and S/L + 2i-cultured ESCs subjected to leucine (Leu) deficient conditions for 48 h in the presence or absence of EIPA (g) or chloroquine (h). Data are single measurements (b,c) or mean ± SD, n = 3 independent samples (d-h). Significance was assessed in comparison to S/L (d) or S/L + 2i (e) cells by one-way ANOVA with Sidak’s multiple comparisons post-test and two-way ANOVA with Sidak’s multiple comparisons post-test (g,h).

Source data

Extended Data Fig. 3 Amino acid deprivation affects features of ESC identity.

(a,b) Nanog-GFP ESCs were sorted into GFP-low and GFP-high populations, recovered for 24 h after seeding, and subjected to leucine (Leu) replete or depleted conditions for 48 h. The emergence of GFP-high ESCs from the GFP-low sorted population (a) and of GFP-low ESCs from the GFP-high sorted population (b) was quantified. (c) Nanog-GFP expression in S/L cultured ESCs treated with vehicle or bafilomycin A (BafA) for 24 h under leucine (Leu) replete (left panel) or depleted (right panel) conditions. (d) RT-qPCR of pluripotency-associated (Esrrb, Klf4, Nanog, Zfp42/Rex1, Pou5f1/Oct4) and early differentiation associated genes (Fgf5, Oct6, T) in S/L-cultured ESCs subjected to 24 h of lysine (Lys), phenylalanine (Phe), or valine (Val) replete or depleted conditions. (e) Quantification of undifferentiated colonies formed by ESCs seeded at clonal density in S/L medium following 24 h culture in leucine (Leu) replete or depleted conditions in the presence of EHop-016, chloroquine or vehicle controls. (f) Proliferation of S/L- and S/L + 2i-cultured ESCs provided physiological levels of leucine (30 µM) for 48 h relative to growth in leucine-replete (800 µM) conditions. Data are mean ± SD, n = 3 independent samples (a,b,e,f). Significance was assessed by unpaired two-tailed t test (a,b,f) and two-way ANOVA with Sidak’s multiple comparisons post-test (e) (ns=not significant).

Source data

Extended Data Fig. 4 Tfe3 activation induces amino acid independence.

(a) Heat map showing expression of KEGG lysosome genes in Tfe3-ERT2-expressing S/L-cultured ESCs treated with vehicle (ethanol, EtOH) or tamoxifen (Tam). Sample genes are labeled; full gene list is available in Supplementary Table 3. (b) Population doublings of Tfe3-ERT2-expressing S/L-cultured ESCs treated with vehicle (ethanol, EtOH) or tamoxifen (Tam) for 48 h. (c) Population doublings of Tfe3-ERT2-expressing S/L-cultured ESCs subjected to phenylalanine (Phe), lysine (Lys) or valine (Val) depleted conditions for 48 h. Data are mean ± SD, n = 3 independent samples (b,c). Significance was assessed by unpaired two-tailed t test (b,c), (ns=not significant).

Source data

Extended Data Fig. 5 Lysosomal and plasma amino acid transporter gene signatures.

(a) RNA-seq analysis of S/L + 2i- and 2i/L-cultured ESCs subjected to exit from pluripotency conditions (-2i/L) for 12, 24 and 40 h. Genes related to naïve pluripotency and early post-implantation development are shown. (b,c) Heat maps showing expression of KEGG lysosome genes (b) or plasma membrane amino acid transporters (c) in S/L + 2i-cultured ESCs subjected to exit from pluripotency conditions for 12, 24 and 40 h. Sample genes are labeled; full gene list is available in Supplementary Tables 6 and 7. (d,e) Linear regression of KEGG lysosome genes or plasma membrane amino acid transporter genes in S/L + 2i- (d) or 2i/L- (e) cultured ESCs subjected to exit from pluripotency conditions for 12, 24 and 40 h. 95% confidence intervals are shown in grey. (f) Violin plots of RNAseq data75 showing the expression distribution of KEGG lysosome and plasma amino acid transporter genes in S/L + 2i- and S/L-cultured ESCs derived from female mouse embryos. (g,h) Violin plots of three RNAseq data sets72–74 showing the expression distribution of KEGG lysosome (g) and plasma amino acid transporter (h) genes in naïve and primed human ESCs. Data are mean ± SD, n = 3 independent samples (a,b); n = 2 independent samples (c-e). Significance was assessed by unpaired two-tailed t test (a-c) and by paired two-tailed t test (f,g) (ns=not significant).

Source data

Extended Data Fig. 6 Conversion of naïve ESCs to EpiLCs.

(a) Schematic of the conversion of S/L + 2i-cultured ESCs to EpiLCs. (b) RT-qPCR of naïve pluripotency-associated (Klf4, Nanog) and EpiLC-associated (Oct6, Otx2) genes in S/L + 2i-cultured ESCs maintained under control or EpiLC-inducing conditions for 48 h. n = 3 independent samples.

Source data

Extended Data Fig. 7 Quantification of macropinocytosis in epiblast and primitive endoderm cells.

Quantification of DQ-BSA staining in control and EIPA pre-treated ICM cells dissociated from E3.75 PdgfraH2B-GFP/+ blastocysts. GFP demarcates primitive endoderm.

Source data

Supplementary information

Supplementary Information

Supplementary Fig. 1.

Reporting Summary

Supplementary Tables 1–7.

Supplementary Table 1: List of all RT–qPCR primer sequences. Supplementary Table 2: List of all gene names comprising the plasma membrane amino acid transporter gene set. Supplementary Table 3: Expression of KEGG lysosome genes (z-scores) in Tfe3–ERT2-expressing, S/L-cultured ESCs treated with vehicle (EtOH) or tamoxifen (Tam). Supplementary Table 4: Expression of KEGG lysosome genes (z-scores) in ESCs following 2i/L withdrawal for the indicated times. Supplementary Table 5: Expression of genes encoding plasma membrane amino acid transporters (z-scores) in ESCs following 2i/L withdrawal for the indicated times. Supplementary Table 6: Heat maps showing expression of KEGG lysosome genes (z-scores) in S/L + 2i-cultured ESCs subjected to exit from pluripotency conditions for 12, 24 and 40 h. Supplementary Table 7: Heat maps showing expression of plasma membrane amino acid transporters (z-scores) in S/L + 2i-cultured ESCs subjected to exit from pluripotency conditions for 12, 24 and 40 h.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 7

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Todorova, P.K., Jackson, B.T., Garg, V. et al. Amino acid intake strategies define pluripotent cell states. Nat Metab 6, 127–140 (2024). https://doi.org/10.1038/s42255-023-00940-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-023-00940-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing