Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The metabolic and functional roles of sensory nerves in adipose tissues

Abstract

Homeostatic regulation of adipose tissue is critical for the maintenance of energy balance and whole-body metabolism. The peripheral nervous system provides bidirectional neural communication between the brain and adipose tissue, thereby providing homeostatic control. Most research on adipose innervation and nerve functions has been limited to the sympathetic nerves and their neurotransmitter norepinephrine. In recent years, more work has focused on adipose sensory nerves, but the contributions of subsets of sensory nerves to metabolism and the specific roles contributed by sensory neuropeptides are still understudied. Advances in imaging of adipose innervation and newer tissue denervation techniques have confirmed that sensory nerves contribute to the regulation of adipose functions, including lipolysis and browning. Here, we summarize the historical and latest findings on the regulation, function and plasticity of adipose tissue sensory nerves that contribute to metabolically important processes such as lipolysis, vascular control and sympathetic axis cross-talk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of adipose tissue innervation by sensory and sympathetic nerves and associated release of nerve products (neuropeptides and neurotransmitters).
Fig. 2: Anatomical distribution of sensory afferent cell bodies across levels of the DRG in rodents (Siberian hamster, mouse and rat) and corresponding peripheral tissue and organ sensory innervation projections.
Fig. 3: Commonly adopted methods to study adipose innervation in rodents, including adipose denervation techniques.
Fig. 4: Evidence for positive or negative feedback loops between sensory and sympathetic nerves in adipose tissue.

Similar content being viewed by others

References

  1. Bartness, T. J., Vaughan, C. H. & Song, C. K. Sympathetic and sensory innervation of brown adipose tissue. Int. J. Obes. 34, S36–S42 (2010).

    Article  Google Scholar 

  2. Bartness, T. J., Shrestha, Y. B., Vaughan, C. H., Schwartz, G. J. & Song, C. K. Sensory and sympathetic nervous system control of white adipose tissue lipolysis. Mol. Cell. Endocrinol. 318, 34–43 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Wang, Y. et al. The role of somatosensory innervation of adipose tissues. Nature 609, 569–574 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bartness, T. & Kay Song, C. Innervation of brown adipose tissue and its role in thermogenesis. Can. J. Diabetes 29, 420–428 (2005).

  5. Youngstrom, T. G. & Bartness, T. J. White adipose tissue sympathetic nervous system denervation increases fat pad mass and fat cell number. Am. J. Physiol. 275, R1488–R1493 (1998).

    CAS  PubMed  Google Scholar 

  6. Harris, R. B. S. Denervation as a tool for testing sympathetic control of white adipose tissue. Physiol. Behav. 190, 3–10 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Harris, R. B. Sympathetic denervation of one white fat depot changes norepinephrine content and turnover in intact white and brown fat depots. Obesity 20, 1355–1364 (2012).

    Article  PubMed  Google Scholar 

  8. Makwana, K. et al. Sensory neurons expressing calcitonin gene-related peptide alpha regulate adaptive thermogenesis and diet-induced obesity. Mol. Metab. 45, 101161 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nguyen, N. L. T., Xue, B. & Bartness, T. J. Sensory denervation of inguinal white fat modifies sympathetic outflow to white and brown fat in Siberian hamsters. Physiol. Behav. 190, 28–33 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Blaszkiewicz, M. et al. Neuropathy and neural plasticity in the subcutaneous white adipose depot. PLoS ONE 14, e0221766 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Almuklass, A. M., Capobianco, R. A., Feeney, D. F., Alvarez, E. & Enoka, R. M. Sensory nerve stimulation causes an immediate improvement in motor function of persons with multiple sclerosis: a pilot study. Mult. Scler. Relat. Disord. 38, 101508 (2020).

    Article  PubMed  Google Scholar 

  12. Dhaka, A., Earley, T. J., Watson, J. & Patapoutian, A. Visualizing cold spots: TRPM8-expressing sensory neurons and their projections. J. Neurosci. 28, 566–575 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fishman, R. B. & Dark, J. Sensory innervation of white adipose tissue. Am. J. Physiol. 253, R942–R944 (1987).

    CAS  PubMed  Google Scholar 

  14. Song, C. K., Schwartz, G. J. & Bartness, T. J. Anterograde transneuronal viral tract tracing reveals central sensory circuits from white adipose tissue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296, R501–R511 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Stefanidis, A. et al. Insights into the neurochemical signature of the Innervation of Beige Fat. Mol. Metab. 11, 47–58 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Giordano, A. et al. White adipose tissue lacks significant vagal innervation and immunohistochemical evidence of parasympathetic innervation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R1243–R1255 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Ryu, V., Garretson, J. T., Liu, Y., Vaughan, C. H. & Bartness, T. J. Brown adipose tissue has sympathetic-sensory feedback circuits. J. Neurosci. 35, 2181–2190 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vaughan, C. H. & Bartness, T. J. Anterograde transneuronal viral tract tracing reveals central sensory circuits from brown fat and sensory denervation alters its thermogenic responses. Am. J. Physiol. Regul. Integr. Comp. Physiol. 302, R1049–R1058 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Garretson, J. T. et al. Lipolysis sensation by white fat afferent nerves triggers brown fat thermogenesis. Mol. Metab. 5, 626–634 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu, B. X. et al. Distribution, morphological characterization, and resiniferatoxin-susceptibility of sensory neurons that innervate rat perirenal adipose tissue. Front Neuroanat. 13, 29 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Marzvanyan, A. & Alhawaj, A. F. in StatPearls (StatPearls Publishing, 2023).

  22. Quick, K. et al. TRPC3 and TRPC6 are essential for normal mechanotransduction in subsets of sensory neurons and cochlear hair cells. Open Biol. 2, 120068 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sita, G., Hrelia, P., Graziosi, A., Ravegnini, G. & Morroni, F. TRPM2 in the brain: role in health and disease. Cells https://doi.org/10.3390/cells7070082 (2018).

  24. Gavva, N. R. et al. Transient receptor potential melastatin 8 (TRPM8) channels are involved in body temperature regulation. Mol. Pain. 8, 36 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Duitama, M. et al. TRP channels role in pain associated with neurodegenerative diseases. Front Neurosci. 14, 782 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Christie, S., Wittert, G. A., Li, H. & Page, A. J. Involvement of TRPV1 channels in energy homeostasis. Front Endocrinol. 9, 420 (2018).

    Article  Google Scholar 

  27. Cavanaugh, D. J. et al. Restriction of transient receptor potential vanilloid-1 to the peptidergic subset of primary afferent neurons follows its developmental downregulation in nonpeptidergic neurons. J. Neurosci. 31, 10119–10127 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Baboota, R. K. et al. Capsaicin induces ‘brite’ phenotype in differentiating 3T3-L1 preadipocytes. PLoS ONE 9, e103093 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kanno, M., Akishima, S., Ohta, J., Hara, S. & Honda, M. A case of acute postinfarction mitral insufficiency and cardiogenic shock caused by total rupture of a papillary muscle. Kyobu Geka 44, 515–518 (1991).

    CAS  PubMed  Google Scholar 

  30. Cline, D. L., Short, L. I., Forster, M. A. M. & Gray, S. L. Adipose tissue expression of PACAP, VIP, and their receptors in response to cold stress. J. Mol. Neurosci. 68, 427–438 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Jia, M. Q. et al. Orexin receptor type 2 agonism inhibits thermogenesis in brown adipose tissue by attenuating afferent innervation. J. Biomed. Res. 36, 195–207 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Conner, W. E., Lin, D. S. & Colvis, C. Differential mobilization of fatty acids from adipose tissue. J. Lipid Res. 37, 290–298 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Raclot, T. & Groscolas, R. Differential mobilization of white adipose tissue fatty acids according to chain length, unsaturation, and positional isomerism. J. Lipid Res. 34, 1515–1526 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Snoke, D. B. et al. Linoleate-rich safflower oil diet increases linoleate-derived bioactive lipid mediators in plasma, and brown and white adipose depots of healthy mice. Metabolites https://doi.org/10.3390/metabo12080743 (2022).

  35. Miller, J. L. et al. A peroxidized omega-3-enriched polyunsaturated diet leads to adipose and metabolic dysfunction. J. Nutr. Biochem. 64, 50–60 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Alsalem, M. et al. The contribution of the endogenous TRPV1 ligands 9-HODE and 13-HODE to nociceptive processing and their role in peripheral inflammatory pain mechanisms. Br. J. Pharmacol. 168, 1961–1974 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Inoue, N., Matsunaga, Y., Satoh, H. & Takahashi, M. Enhanced energy expenditure and fat oxidation in humans with high BMI scores by the ingestion of novel and non-pungent capsaicin analogues (capsinoids). Biosci. Biotechnol. Biochem. 71, 380–389 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Snitker, S. et al. Effects of novel capsinoid treatment on fatness and energy metabolism in humans: possible pharmacogenetic implications. Am. J. Clin. Nutr. 89, 45–50 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Yoshioka, M., Doucet, E., Drapeau, V., Dionne, I. & Tremblay, A. Combined effects of red pepper and caffeine consumption on 24 h energy balance in subjects given free access to foods. Br. J. Nutr. 85, 203–211 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Baskaran, P., Krishnan, V., Ren, J. & Thyagarajan, B. Capsaicin induces browning of white adipose tissue and counters obesity by activating TRPV1 channel-dependent mechanisms. Br. J. Pharmacol. 173, 2369–2389 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee, E. et al. Transient receptor potential vanilloid type-1 channel regulates diet-induced obesity, insulin resistance, and leptin resistance. FASEB J. 29, 3182–3192 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li, L. et al. Lack of TRPV1 aggravates obesity-associated hypertension through the disturbance of mitochondrial Ca2+ homeostasis in brown adipose tissue. Hypertens. Res 45, 789–801 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ohyama, K. et al. A synergistic antiobesity effect by a combination of capsinoids and cold temperature through promoting beige adipocyte biogenesis. Diabetes 65, 1410–1423 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Saito, M., Matsushita, M., Yoneshiro, T. & Okamatsu-Ogura, Y. Brown adipose tissue, diet-induced thermogenesis, and thermogenic food ingredients: from mice to men. Front. Endocrinol. 11, 222 (2020).

    Article  Google Scholar 

  45. Motter, A. L. & Ahern, G. P. TRPV1-null mice are protected from diet-induced obesity. FEBS Lett. 582, 2257–2262 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Takaishi, M. et al. Reciprocal effects of capsaicin and menthol on thermosensation through regulated activities of TRPV1 and TRPM8. J. Physiol. Sci. 66, 143–155 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Niijima, A. Afferent signals from leptin sensors in the white adipose tissue of the epididymis, and their reflex effect in the rat. J. Auton. Nerv. Syst. 73, 19–25 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Murphy, K. T. et al. Leptin-sensitive sensory nerves innervate white fat. Am. J. Physiol. Endocrinol. Metab. 304, E1338–E1347 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Levi-Montalcini, R. & Angeletti, P. U. Essential role of the nerve growth factor in the survival and maintenance of dissociated sensory and sympathetic embryonic nerve cells in vitro. Dev. Biol. 6, 653–659 (1963).

    Article  CAS  PubMed  Google Scholar 

  50. Yoo, S., Lim, J. Y. & Hwang, S. W. Sensory TRP channel interactions with endogenous lipids and their biological outcomes. Molecules 19, 4708–4744 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Guilherme, A., Henriques, F., Bedard, A. H. & Czech, M. P. Molecular pathways linking adipose innervation to insulin action in obesity and diabetes mellitus. Nat. Rev. Endocrinol. 15, 207–225 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shaw, J. E. & Ramwell, P. W. Release of prostaglandin from rat epididymal fat pad on nervous and hormonal stimulation. J. Biol. Chem. 243, 1498–1503 (1968).

    Article  CAS  PubMed  Google Scholar 

  53. Smith, J. A., Amagasu, S. M., Eglen, R. M., Hunter, J. C. & Bley, K. R. Characterization of prostanoid receptor-evoked responses in rat sensory neurones. Br. J. Pharmacol. 124, 513–523 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shi, Z. et al. Sympathetic activation by chemical stimulation of white adipose tissues in rats. J. Appl. Physiol. 112, 1008–1014 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Ryu, V., Watts, A. G., Xue, B. & Bartness, T. J. Bidirectional crosstalk between the sensory and sympathetic motor systems innervating brown and white adipose tissue in male Siberian hamsters. Am. J. Physiol. Regul. Integr. Comp. Physiol. 312, R324–R337 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  56. de Kloet, A. D. & Herman, J. P. Fat-brain connections: adipocyte glucocorticoid control of stress and metabolism. Front. Neuroendocrinol. 48, 50–57 (2018).

    Article  PubMed  Google Scholar 

  57. do Carmo, J. M. et al. Obesity-induced hypertension: brain signaling pathways. Curr. Hypertens. Rep. 18, 58 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Pyner, S. Neurochemistry of the paraventricular nucleus of the hypothalamus: implications for cardiovascular regulation. J. Chem. Neuroanat. 38, 197–208 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Seravalle, G. & Grassi, G. Sympathetic nervous system, hypertension, obesity and metabolic syndrome. High. Blood Press. Cardiovasc Prev. 23, 175–179 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Ding, L. et al. Superoxide anions in paraventricular nucleus modulate adipose afferent reflex and sympathetic activity in rats. PLoS ONE 8, e83771 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Xiong, X. Q. et al. Enhanced adipose afferent reflex contributes to sympathetic activation in diet-induced obesity hypertension. Hypertension 60, 1280–1286 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Dalmasso, C., Leachman, J. R., Osborn, J. L. & Loria, A. S. Sensory signals mediating high blood pressure via sympathetic activation: role of adipose afferent reflex. Am. J. Physiol. Regul. Integr. Comp. Physiol. 318, R379–R389 (2020).

    Article  CAS  PubMed  Google Scholar 

  63. Cui, B. P. et al. Ionotropic glutamate receptors in paraventricular nucleus mediate adipose afferent reflex and regulate sympathetic outflow in rats. Acta Physiol. 209, 45–54 (2013).

    Article  CAS  Google Scholar 

  64. Kalil, G. Z. & Haynes, W. G. Sympathetic nervous system in obesity-related hypertension: mechanisms and clinical implications. Hypertens. Res. 35, 4–16 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Garcia-Mesa, Y. et al. Involvement of cutaneous sensory corpuscles in non-painful and painful diabetic neuropathy. J. Clin. Med. https://doi.org/10.3390/jcm10194609 (2021).

  66. Agashe, S. & Petak, S. Cardiac autonomic neuropathy in diabetes mellitus. Methodist Debakey Cardiovasc. J. 14, 251–256 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Azpiroz, F. & Malagelada, C. Diabetic neuropathy in the gut: pathogenesis and diagnosis. Diabetologia 59, 404–408 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. He, Z., Yin, G., Li, Q. Q., Zeng, Q. & Duan, J. Diabetes mellitus causes male reproductive dysfunction: a review of the evidence and mechanisms. In Vivo 35, 2503–2511 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Willows, J. W. et al. Age-related changes to adipose tissue and peripheral neuropathy in genetically diverse HET3 mice differ by sex and are not mitigated by rapamycin longevity treatment. Aging Cell https://doi.org/10.1111/acel.13784 (2023).

  70. Blaszkiewicz, M. et al. The involvement of neuroimmune cells in adipose innervation. Mol. Med. 26, 126 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Blaszkiewicz, M. et al. Adipose tissue myeloid-lineage neuroimmune cells express genes important for neural plasticity and regulate adipose innervation. Front. Endocrinol. 13, 864925 (2022).

    Article  Google Scholar 

  72. Willows, J. W. et al. Schwann cells contribute to demyelinating diabetic neuropathy and nerve terminal structures in white adipose tissue. iScience 26, 106189 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Feldman, E. L., Nave, K. A., Jensen, T. S. & Bennett, D. L. H. New horizons in diabetic neuropathy: mechanisms, bioenergetics, and pain. Neuron 93, 1296–1313 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Al-Ani, F. S., Al-Nimer, M. S. & Ali, F. S. Dyslipidemia as a contributory factor in etiopathogenesis of diabetic neuropathy. Indian J. Endocrinol. Metab. 15, 110–114 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Vincent, A. M., Hinder, L. M., Pop-Busui, R. & Feldman, E. L. Hyperlipidemia: a new therapeutic target for diabetic neuropathy. J. Peripher. Nerv. Syst. 14, 257–267 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Stino, A. M., Rumora, A. E., Kim, B. & Feldman, E. L. Evolving concepts on the role of dyslipidemia, bioenergetics, and inflammation in the pathogenesis and treatment of diabetic peripheral neuropathy. J. Peripher. Nerv. Syst. 25, 76–84 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. O’Brien, P. D. et al. Integrated lipidomic and transcriptomic analyses identify altered nerve triglycerides in mouse models of prediabetes and type 2 diabetes. Dis. Model. Mech. https://doi.org/10.1242/dmm.042101 (2020).

  78. Gustavsson, C. et al. Vascular cellular adhesion molecule-1 (VCAM-1) expression in mice retinal vessels is affected by both hyperglycemia and hyperlipidemia. PLoS ONE 5, e12699 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Barreto, J., Karathanasis, S. K., Remaley, A. & Sposito, A. C. Role of LOX-1 (lectin-like oxidized low-density lipoprotein receptor 1) as a cardiovascular risk predictor: mechanistic insight and potential clinical use. Arterioscler. Thromb. Vasc. Biol. 41, 153–166 (2021).

    CAS  PubMed  Google Scholar 

  80. Vincent, A. M. et al. Dyslipidemia-induced neuropathy in mice: the role of oxLDL/LOX-1. Diabetes 58, 2376–2385 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Patwardhan, A. M. et al. Heat generates oxidized linoleic acid metabolites that activate TRPV1 and produce pain in rodents. J. Clin. Invest. 120, 1617–1626 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ding, L. et al. Reduced lipolysis response to adipose afferent reflex involved in impaired activation of adrenoceptor-cAMP-PKA-hormone sensitive lipase pathway in obesity. Sci. Rep. 6, 34374 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Osaka, T. et al. Temperature- and capsaicin-sensitive nerve fibers in brown adipose tissue attenuate thermogenesis in the rat. Pflugers Arch. 437, 36–42 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Blondin, D. P. et al. Human brown adipocyte thermogenesis is driven by beta2-AR stimulation. Cell Metab. 32, 287–300 (2020).

    Article  CAS  PubMed  Google Scholar 

  85. Benedek, G., Szikszay, M. & Obal, F. Impaired thermoregulation against cold in capsaicin pretreated rats. Pflugers Arch. 399, 243–245 (1983).

    Article  CAS  PubMed  Google Scholar 

  86. Cui, J. & Himms-Hagen, J. Rapid but transient atrophy of brown adipose tissue in capsaicin-desensitized rats. Am. J. Physiol. 262, R562–R567 (1992).

    CAS  PubMed  Google Scholar 

  87. Podsednik, A., Cabrejo, R. & Rosen, J. Adipose tissue uses in peripheral nerve surgery. Int. J. Mol. Sci. https://doi.org/10.3390/ijms23020644 (2022).

  88. Uretsky, B. F. Sensory reinnervation of the heart after cardiac transplantation. N. Engl. J. Med. 326, 66–67 (1992).

    Article  CAS  PubMed  Google Scholar 

  89. Kakizaki, M. et al. Differential roles of each orexin receptor signaling in obesity. iScience 20, 1–13 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Makela, K. A. et al. Plasma orexin-A levels do not undergo circadian rhythm in young healthy male subjects. Front. Endocrinol. 9, 710 (2018).

    Article  Google Scholar 

  91. Fischer, A. W., Schlein, C., Cannon, B., Heeren, J. & Nedergaard, J. Intact innervation is essential for diet-induced recruitment of brown adipose tissue. Am. J. Physiol. Endocrinol. Metab. 316, E487–E503 (2019).

    Article  CAS  PubMed  Google Scholar 

  92. Himms-Hagen, J., Cui, J. & Lynn Sigurdson, S. Sympathetic and sensory nerves in control of growth of brown adipose tissue: effects of denervation and of capsaicin. Neurochem. Int. 17, 271–279 (1990).

    Article  CAS  PubMed  Google Scholar 

  93. Cui, J. & Himms-Hagen, J. Long-term decrease in body fat and in brown adipose tissue in capsaicin-desensitized rats. Am. J. Physiol. 262, R568–R573 (1992).

    CAS  PubMed  Google Scholar 

  94. Mancini, C. et al. Identification of biomarkers of brown adipose tissue aging highlights the role of dysfunctional energy and nucleotide metabolism pathways. Sci. Rep. 11, 19928 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Shi, H. & Bartness, T. J. White adipose tissue sensory nerve denervation mimics lipectomy-induced compensatory increases in adiposity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R514–R520 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Watts, A. G. & Grill, H. J. Tim Bartness (1953-2015). Am. J. Physiol. Regul. Integr. Comp. Physiol. 310, R385–R387 (2016).

    Article  PubMed  Google Scholar 

  97. Nguyen, N. L. et al. Separate and shared sympathetic outflow to white and brown fat coordinately regulates thermoregulation and beige adipocyte recruitment. Am. J. Physiol. Regul. Integr. Comp. Physiol. 312, R132–R145 (2017).

    Article  PubMed  Google Scholar 

  98. Ryu, V. & Bartness, T. J. Short and long sympathetic-sensory feedback loops in white fat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 306, R886–R900 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Aveseh, M., Koushkie-Jahromi, M., Nemati, J. & Esmaeili-Mahani, S. Serum calcitonin gene-related peptide facilitates adipose tissue lipolysis during exercise via PIPLC/IP3 pathways. Endocrine 61, 462–472 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. Huesing, C. et al. Sympathetic innervation of inguinal white adipose tissue in the mouse. J. Comp. Neurol. 529, 1465–1485 (2021).

    Article  PubMed  Google Scholar 

  101. Russell, F. A., King, R., Smillie, S. J., Kodji, X. & Brain, S. D. Calcitonin gene-related peptide: physiology and pathophysiology. Physiol. Rev. 94, 1099–1142 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Willows, J. W. et al. Visualization and analysis of whole depot adipose tissue neural innervation. iScience 24, 103127 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Ibrahim, M. M. Subcutaneous and visceral adipose tissue: structural and functional differences. Obes. Rev. 11, 11–18 (2010).

    Article  PubMed  Google Scholar 

  104. Frei, I. C. et al. Adipose mTORC2 is essential for sensory innervation in white adipose tissue and whole-body energy homeostasis. Mol. Metab. 65, 101580 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chang, H. H., Yang, S. S. & Chang, S. J. Perivascular adipose tissue modulation of neurogenic vasorelaxation of rat mesenteric arteries. J. Cardiovasc. Pharmacol. 75, 21–30 (2020).

    Article  CAS  PubMed  Google Scholar 

  106. Abu Bakar, H., Robert Dunn, W., Daly, C. & Ralevic, V. Sensory innervation of perivascular adipose tissue: a crucial role in artery vasodilatation and leptin release. Cardiovasc. Res. 113, 962–972 (2017).

    Article  PubMed  Google Scholar 

  107. Kawasaki, H., Takasaki, K., Saito, A. & Goto, K. Calcitonin gene-related peptide acts as a novel vasodilator neurotransmitter in mesenteric resistance vessels of the rat. Nature 335, 164–167 (1988).

    Article  CAS  PubMed  Google Scholar 

  108. Saito, A. & Yamamoto, M. Acute oral toxicity of capsaicin in mice and rats. J. Toxicol. Sci. 21, 195–200 (1996).

    Article  CAS  PubMed  Google Scholar 

  109. Vaughan, C. H., Zarebidaki, E., Ehlen, J. C. & Bartness, T. J. Analysis and measurement of the sympathetic and sensory innervation of white and brown adipose tissue. Methods Enzymol. 537, 199–225 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Akagi, A. et al. Non-carcinogenicity of capsaicinoids in B6C3F1 mice. Food Chem. Toxicol. 36, 1065–1071 (1998).

    Article  CAS  PubMed  Google Scholar 

  111. Surh, Y. J. & Lee, S. S. Capsaicin, a double-edged sword: toxicity, metabolism, and chemopreventive potential. Life Sci. 56, 1845–1855 (1995).

    Article  CAS  PubMed  Google Scholar 

  112. Fischer, M. J. M., Ciotu, C. I. & Szallasi, A. The mysteries of capsaicin-sensitive afferents. Front. Physiol. 11, 554195 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Iadarola, M. J. & Gonnella, G. L. Resiniferatoxin for pain treatment: an interventional approach to personalized pain medicine. Open Pain. J. 6, 95–107 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Karai, L. et al. Deletion of vanilloid receptor 1-expressing primary afferent neurons for pain control. J. Clin. Invest. 113, 1344–1352 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

K.L.T. was supported by start-up funding from The Ohio State University College of Medicine, as well as NIH grant R01DH114320, a NIDDK Diabetic Complications Consortium (DIACOMP) award EEIR:SCR_001415 and a W.M. Keck Foundation award. We thank J. W. Willows for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

G.M. and K.L.T. contributed equally to the writing of the manuscript.

Corresponding author

Correspondence to Kristy L. Townsend.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Metabolism thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Ashley Castellanos-Jankiewicz, in collaboration with the Nature Metabolism team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, G., Townsend, K.L. The metabolic and functional roles of sensory nerves in adipose tissues. Nat Metab 5, 1461–1474 (2023). https://doi.org/10.1038/s42255-023-00868-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-023-00868-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing