Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Multifaceted mitochondria: moving mitochondrial science beyond function and dysfunction

Subjects

Abstract

Mitochondria have cell-type specific phenotypes, perform dozens of interconnected functions and undergo dynamic and often reversible physiological recalibrations. Given their multifunctional and malleable nature, the frequently used terms ‘mitochondrial function’ and ‘mitochondrial dysfunction’ are misleading misnomers that fail to capture the complexity of mitochondrial biology. To increase the conceptual and experimental specificity in mitochondrial science, we propose a terminology system that distinguishes between (1) cell-dependent properties, (2) molecular features, (3) activities, (4) functions and (5) behaviours. A hierarchical terminology system that accurately captures the multifaceted nature of mitochondria will achieve three important outcomes. It will convey a more holistic picture of mitochondria as we teach the next generations of mitochondrial biologists, maximize progress in the rapidly expanding field of mitochondrial science, and also facilitate synergy with other disciplines. Improving specificity in the language around mitochondrial science is a step towards refining our understanding of the mechanisms by which this unique family of organelles contributes to cellular and organismal health.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: An integrative approach to mitochondrial biology.
Fig. 2: Different cell types and subcellular compartments contain functionally specialized mitochondrial phenotypes.
Fig. 3: Diversity in mitochondrial morphology.
Fig. 4: Terminology for mitochondrial science organized as a hierarchy of mitochondrial needs.
Fig. 5: Example of measurements across domains of mitochondrial biology.

Similar content being viewed by others

References

  1. Marieb, E. & Hoehn, K. Essentials of Human Anatomy & Physiology (Pearson Education, 2022).

  2. Picard, M. & Shirihai, O. S. Mitochondrial signal transduction. Cell Metab. 34, 1620–1653 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Siekevitz, P. Powerhouse of the Cell. Sci. Am. 197, 131–144 (1957).

    Article  Google Scholar 

  4. Harper, M. E. & Patti, M. E. Metabolic terminology: what’s in a name? Nat. Metab. 2, 476–477 (2020).

    Article  PubMed  Google Scholar 

  5. Schmidt, C. A. Prescription drugs and mitochondrial metabolism. Biosci. Rep. 42, BSR20211813 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Eisner, V., Picard, M. & Hajnoczky, G. Mitochondrial dynamics in adaptive and maladaptive cellular stress responses. Nat. Cell Biol. 20, 755–765 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brand, M. D. & Nicholls, D. G. Assessing mitochondrial dysfunction in cells. Biochem. J. 435, 297–312 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Mracek, T., Drahota, Z. & Houstek, J. The function and the role of the mitochondrial glycerol-3-phosphate dehydrogenase in mammalian tissues. Biochim. Biophys. Acta 1827, 401–410 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Graves, S. M. et al. Dopamine metabolism by a monoamine oxidase mitochondrial shuttle activates the electron transport chain. Nat. Neurosci. 23, 15–20 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Mitchell, P. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. 1966. Biochim. Biophys. Acta 1807, 1507–1538 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Wiedemann, N. & Pfanner, N. Mitochondrial machineries for protein import and assembly. Annu. Rev. Biochem. 86, 685–714 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Braymer, J. J. & Lill, R. Iron–sulfur cluster biogenesis and trafficking in mitochondria. J. Biol. Chem. 292, 12754–12763 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hinton, T. V., Batelu, S., Gleason, N. & Stemmler, T. L. Molecular characteristics of proteins within the mitochondrial Fe–S cluster assembly complex. Micron 153, 103181 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. Read, A. D., Bentley, R. E., Archer, S. L. & Dunham-Snary, K. J. Mitochondrial iron–sulfur clusters: structure, function, and an emerging role in vascular biology. Redox Biol. 47, 102164 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rydstrom, J. Mitochondrial NADPH, transhydrogenase and disease. Biochim. Biophys. Acta 1757, 721–726 (2006).

    Article  PubMed  Google Scholar 

  16. Bahat, A., MacVicar, T. & Langer, T. Metabolism and innate immunity meet at the mitochondria. Front. Cell Dev. Biol. 9, 720490 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Elesela, S. & Lukacs, N. W. Role of mitochondria in viral infections. Life. 11, 232 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. McWhirter, S. M., Tenoever, B. R. & Maniatis, T. Connecting mitochondria and innate immunity. Cell 122, 645–647 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Moore, C. B. & Ting, J. P. Regulation of mitochondrial antiviral signaling pathways. Immunity 28, 735–739 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Walker, J. E. The ATP synthase: the understood, the uncertain and the unknown. Biochem. Soc. Trans. 41, 1–16 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Bernardi, P., Carraro, M. & Lippe, G. The mitochondrial permeability transition: recent progress and open questions. FEBS J. 289, 7051–7074 (2021).

  22. MacVicar, T. & Langer, T. OPA1 processing in cell death and disease—the long and short of it. J. Cell Sci. 129, 2297–2306 (2016).

    CAS  PubMed  Google Scholar 

  23. Roger, A. J., Munoz-Gomez, S. A. & Kamikawa, R. The origin and diversification of mitochondria. Curr. Biol. 27, R1177–R1192 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Lill, R., Fekete, Z., Sipos, K. & Rotte, C. Is there an answer? Why are mitochondria essential for life? IUBMB Life 57, 701–703 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Inigo, M., Deja, S. & Burgess, S. C. Ins and outs of the TCA cycle: the central role of anaplerosis. Annu. Rev. Nutr. 41, 19–47 (2021).

    Article  PubMed  Google Scholar 

  26. Oates, E. H. & Antoniewicz, M. R. Coordinated reprogramming of metabolism and cell function in adipocytes from proliferation to differentiation. Metab. Eng. 69, 221–230 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Spinelli, J. B. & Haigis, M. C. The multifaceted contributions of mitochondria to cellular metabolism. Nat. Cell Biol. 20, 745–754 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chandel, N. S. Mitochondria as signaling organelles. BMC Biol. 12, 34 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Shen, K. et al. Mitochondria as cellular and organismal signaling hubs. Annu. Rev. Cell Dev. Biol. 38, 179–218 (2022).

    Article  PubMed  Google Scholar 

  30. Dai, Z., Ramesh, V. & Locasale, J. W. The evolving metabolic landscape of chromatin biology and epigenetics. Nat. Rev. Genet. 21, 737–753 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Martinez-Reyes, I. & Chandel, N. S. Mitochondrial TCA cycle metabolites control physiology and disease. Nat. Commun. 11, 102 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Murphy, M. P. & Chouchani, E. T. Why succinate? Physiological regulation by a mitochondrial coenzyme Q sentinel. Nat. Chem. Biol. 18, 461–469 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bassi, G., Sidhu, S. K. & Mishra, S. The expanding role of mitochondria, autophagy and lipophagy in steroidogenesis. Cells 10, 1851 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Miller, W. L. Steroid hormone synthesis in mitochondria. Mol. Cell. Endocrinol. 379, 62–73 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Beninca, C. et al. A new non-canonical pathway of Gαq protein regulating mitochondrial dynamics and bioenergetics. Cell. Signal. 26, 1135–1146 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hebert-Chatelain, E. et al. A cannabinoid link between mitochondria and memory. Nature 539, 555–559 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Jimenez-Blasco, D. et al. Glucose metabolism links astroglial mitochondria to cannabinoid effects. Nature 583, 603–608 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Suofu, Y. et al. Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release. Proc. Natl Acad. Sci. USA 114, E7997–E8006 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Torralba, D. et al. Priming of dendritic cells by DNA-containing extracellular vesicles from activated T cells through antigen-driven contacts. Nat. Commun. 9, 2658 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Trumpff, C. et al. Stress and circulating cell-free mitochondrial DNA: a systematic review of human studies, physiological considerations, and technical recommendations. Mitochondrion 59, 225–245 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Marti Gutierrez, N. et al. Horizontal mtDNA transfer between cells is common during mouse development. iScience 25, 103901 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Brestoff, J. R. et al. Intercellular mitochondria transfer to macrophages regulates white adipose tissue homeostasis and is impaired in obesity. Cell Metab. 33, 270–282 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Borcherding, N. et al. Dietary lipids inhibit mitochondria transfer to macrophages to divert adipocyte-derived mitochondria into the blood. Cell Metab. 34, 1499–1513 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. Hayakawa, K. et al. Transfer of mitochondria from astrocytes to neurons after stroke. Nature 535, 551–555 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Aharoni-Simon, M. et al. Oxidative stress facilitates exogenous mitochondria internalization and survival in retinal ganglion precursor-like cells. Sci. Rep. 12, 5122 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nicolas-Avila, J. A. et al. A network of macrophages supports mitochondrial homeostasis in the heart. Cell 183, 94–109 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Al Amir Dache, Z. et al. Blood contains circulating cell-free respiratory competent mitochondria. FASEB J. 34, 3616–3630 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Park, M. K., Lomax, R. B., Tepikin, A. V. & Petersen, O. H. Local uncaging of caged Ca2+ reveals distribution of Ca2+-activated Cl channels in pancreatic acinar cells. Proc. Natl Acad. Sci. USA 98, 10948–10953 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Johnson, D. T., Harris, R. A., Blair, P. V. & Balaban, R. S. Functional consequences of mitochondrial proteome heterogeneity. Am. J. Physiol. Cell Physiol. 292, 698–707 (2007).

    Article  Google Scholar 

  50. Johnson, D. T. et al. Tissue heterogeneity of the mammalian mitochondrial proteome. Am. J. Physiol. Cell. Physiol. 292, 689–697 (2007).

    Article  Google Scholar 

  51. Pagliarini, D. J. et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell 134, 112–123 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rath, S. et al. MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Res. 49, D1541–D1547 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Morgenstern, M. et al. Quantitative high-confidence human mitochondrial proteome and its dynamics in cellular context. Cell Metab. 33, 2464–2483 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Aryaman, J., Johnston, I. G. & Jones, N. S. Mitochondrial heterogeneity. Front. Genet. 9, 718 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Fecher, C. et al. Cell-type-specific profiling of brain mitochondria reveals functional and molecular diversity. Nat. Neurosci. 22, 1731–1742 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Stewart, J. B. & Chinnery, P. F. The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat. Rev. Genet. 16, 530–542 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Vincent, A. E. & Picard, M. Multilevel heterogeneity of mitochondrial respiratory chain deficiency. J. Pathol. 246, 261–265 (2018).

    Article  PubMed  Google Scholar 

  58. Pekkurnaz, G. & Wang, X. Mitochondrial heterogeneity and homeostasis through the lens of a neuron. Nat. Metab. 4, 802–812 (2022).

  59. Rausser, S. et al. Mitochondrial phenotypes in purified human immune cell subtypes and cell mixtures. eLife 10, e70899 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. McLaughlin, K. L. et al. Novel approach to quantify mitochondrial content and intrinsic bioenergetic efficiency across organs. Sci. Rep. 10, 17599 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lesner, N. P. et al. Differential requirements for mitochondrial electron transport chain components in the adult murine liver. eLife 11, e80919 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Jang, C. et al. Metabolite exchange between mammalian organs quantified in pigs. Cell Metab. 30, 594–606 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. De Kleer, I., Willems, F., Lambrecht, B. & Goriely, S. Ontogeny of myeloid cells. Front. Immunol. 5, 423 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Harridge, S. D. et al. Whole-muscle and single-fibre contractile properties and myosin heavy chain isoforms in humans. Pflugers Arch. 432, 913–920 (1996).

    Article  CAS  PubMed  Google Scholar 

  65. Picard, M., Hepple, R. T. & Burelle, Y. Mitochondrial functional specialization in glycolytic and oxidative muscle fibers: tailoring the organelle for optimal function. Am. J. Physiol. Cell Physiol. 302, C629–641 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Picard, M., Ritchie, D., Thomas, M. M., Wright, K. J. & Hepple, R. T. Alterations in intrinsic mitochondrial function with aging are fiber-type-specific and do not explain differential atrophy between muscles. Aging Cell 10, 1047–1055 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Willingham, T. B., Ajayi, P. T. & Glancy, B. Subcellular specialization of mitochondrial form and function in skeletal muscle cells. Front. Cell Dev. Biol. 9, 757305 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Cogswell, A. M., Stevens, R. J. & Hood, D. A. Properties of skeletal muscle mitochondria isolated from subsarcolemmal and intermyofibrillar regions. Am. J. Physiol. 264, 383–389 (1993).

    Article  Google Scholar 

  69. Koves, T. R. et al. Subsarcolemmal and intermyofibrillar mitochondria play distinct roles in regulating skeletal muscle fatty acid metabolism. Am. J. Physiol. Cell Physiol. 288, 1074–1082 (2005).

    Article  Google Scholar 

  70. Ferreira, R. et al. Subsarcolemmal and intermyofibrillar mitochondria proteome differences disclose functional specializations in skeletal muscle. Proteomics 10, 3142–3154 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Benador, I. Y. et al. Mitochondria bound to lipid droplets have unique bioenergetics, composition, and dynamics that support lipid droplet expansion. Cell Metab. 27, 869–885 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Benador, I. Y., Veliova, M., Liesa, M. & Shirihai, O. S. Mitochondria bound to lipid droplets: where mitochondrial dynamics regulate lipid storage and utilization. Cell Metab. 29, 827–835 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fawcett, D. W. The Cell Chapter 7: Mitochondria, 410–485 (W. B. Saunders Company, 1966).

  74. Bulthuis, E. P., Adjobo-Hermans, M. J. W., Willems, P. & Koopman, W. J. H. Mitochondrial morphofunction in mammalian cells. Antioxid. Redox Signal. 30, 2066–2109 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cogliati, S. et al. Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell 155, 160–171 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Picard, M., Shirihai, O. S., Gentil, B. J. & Burelle, Y. Mitochondrial morphology transitions and functions: implications for retrograde signaling. Am. J. Physiol. Regul. Integr. Comp. Physiol. 304, 393–406 (2013).

    Article  Google Scholar 

  77. Hong, X. et al. Mitochondrial dynamics maintains stem cell regenerative competence throughout adult life by regulating metabolism and mitophagy Cell Stem Cell 29, 1298–1314 (2022).

  78. Rambold, A. S., Kostelecky, B., Elia, N. & Lippincott-Schwartz, J. Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc. Natl Acad. Sci. USA 108, 10190–10195 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Liesa, M. & Shirihai, O. S. Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab. 17, 491–506 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Picard, M. & Turnbull, D. M. Linking the metabolic state and mitochondrial DNA in chronic disease, health, and aging. Diabetes 62, 672–678 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yu, T., Robotham, J. L. & Yoon, Y. Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc. Natl Acad. Sci. USA 103, 2653–2658 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shenouda, S. M. et al. Altered mitochondrial dynamics contributes to endothelial dysfunction in diabetes mellitus. Circulation 124, 444–453 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lewis, T. L. Jr., Kwon, S. K., Lee, A., Shaw, R. & Polleux, F. MFF-dependent mitochondrial fission regulates presynaptic release and axon branching by limiting axonal mitochondria size. Nat. Commun. 9, 5008 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Rangaraju, V., Lauterbach, M. & Schuman, E. M. Spatially stable mitochondrial compartments fuel local translation during plasticity. Cell 176, 73–84 (2019).

    Article  CAS  PubMed  Google Scholar 

  85. Faitg, J. et al. 3D neuronal mitochondrial morphology in axons, dendrites, and somata of the aging mouse hippocampus. Cell Rep. 36, 109509 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Vincent, A. E. et al. Quantitative 3D mapping of the human skeletal muscle mitochondrial network. Cell Rep. 26, 996–1009(2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhang, R., Ogden, R. T., Picard, M. & Srivastava, A. Nonparametric k-sample test on shape spaces with applications to mitochondrial shape analysis. J. R. Stat. Soc. Ser. C Appl. Stat. 71, 51–69 (2022).

    Article  Google Scholar 

  88. Justs, K. A. et al. Presynaptic mitochondrial volume and packing density scale with presynaptic power demand. J. Neurosci. 42, 954–967 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Meinild Lundby, A. K. et al. Exercise training increases skeletal muscle mitochondrial volume density by enlargement of existing mitochondria and not de novo biogenesis. Acta. Physiol. 222, e12976 (2018).

  90. Wachsmuth, M., Hubner, A., Li, M., Madea, B. & Stoneking, M. Age-related and heteroplasmy-related variation in human mtDNA copy number. PLoS Genet. 12, e1005939 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Picard, M. Blood mitochondrial DNA copy number: what are we counting? Mitochondrion 60, 1–11 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Al-Mehdi, A. B. et al. Perinuclear mitochondrial clustering creates an oxidant-rich nuclear domain required for hypoxia-induced transcription. Sci. Signal 5, ra47 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Desai, R. et al. Mitochondria form contact sites with the nucleus to couple prosurvival retrograde response. Sci. Adv. 6, eabc9955 (2020).

  94. Sun, T., Qiao, H., Pan, P. Y., Chen, Y. & Sheng, Z. H. Motile axonal mitochondria contribute to the variability of presynaptic strength. Cell Rep. 4, 413–419 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Segawa, M. et al. Quantification of cristae architecture reveals time-dependent characteristics of individual mitochondria. Life Sci. Alliance 3, e201900620 (2020).

  96. Frazier, A. E., Vincent, A. E., Turnbull, D. M., Thorburn, D. R. & Taylor, R. W. Assessment of mitochondrial respiratory chain enzymes in cells and tissues. Methods Cell. Biol. 155, 121–156 (2020).

    Article  CAS  PubMed  Google Scholar 

  97. Bose, H. S., Lingappa, V. R. & Miller, W. L. Rapid regulation of steroidogenesis by mitochondrial protein import. Nature 417, 87–91 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Friedman, J. R. & Nunnari, J. Mitochondrial form and function. Nature 505, 335–343 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Scarpulla, R. C. Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol. Rev. 88, 611–638 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Cagin, U. & Enriquez, J. A. The complex cross-talk between mitochondria and the nucleus: What goes in between. Int. J. Biochem. Cell Biol. 63, 10–15 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Giacomello, M., Pyakurel, A., Glytsou, C. & Scorrano, L. The cell biology of mitochondrial membrane dynamics. Nat. Rev. Mol. Cell Biol. 21, 204–224 (2020).

    Article  CAS  PubMed  Google Scholar 

  102. Kraus, F., Roy, K., Pucadyil, T. J. & Ryan, M. T. Function and regulation of the divisome for mitochondrial fission. Nature 590, 57–66 (2021).

    Article  CAS  PubMed  Google Scholar 

  103. Kleele, T. et al. Distinct fission signatures predict mitochondrial degradation or biogenesis. Nature 593, 435–439 (2021).

    Article  CAS  PubMed  Google Scholar 

  104. Zorova, L. D. et al. Mitochondrial membrane potential. Anal. Biochem. 552, 50–59 (2018).

    Article  CAS  PubMed  Google Scholar 

  105. Ramshesh, V. K. & Lemasters, J. J. Imaging of mitochondrial pH using SNARF-1. Methods Mol. Biol. 1782, 351–356 (2018).

    Article  CAS  PubMed  Google Scholar 

  106. Teodoro, J. S., Machado, I. F., Castela, A. C., Rolo, A. P. & Palmeira, C. M. The evaluation of mitochondrial membrane potential using fluorescent dyes or a membrane-permeable cation (TPP+) electrode in isolated mitochondria and intact cells. Methods Mol. Biol. 2184, 197–213 (2020).

    Article  CAS  PubMed  Google Scholar 

  107. Benevenga, N. J. & Blemings, K. P. Unique aspects of lysine nutrition and metabolism. J. Nutr. 137, 1610S–1615S (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Borst, P. The malate–aspartate shuttle (Borst cycle): how it started and developed into a major metabolic pathway. IUBMB Life 72, 2241–2259 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ananieva, E. A. & Wilkinson, A. C. Branched-chain amino acid metabolism in cancer. Curr. Opin. Clin. Nutr. Metab. Care 21, 64–70 (2018).

    Article  CAS  PubMed  Google Scholar 

  110. Kainulainen, H., Hulmi, J. J. & Kujala, U. M. Potential role of branched-chain amino acid catabolism in regulating fat oxidation. Exerc. Sport Sci. Rev. 41, 194–200 (2013).

    Article  PubMed  Google Scholar 

  111. Ueland, P. M. Choline and betaine in health and disease. J. Inherit. Metab. Dis. 34, 3–15 (2011).

    Article  CAS  PubMed  Google Scholar 

  112. Birsoy, K. et al. An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell 162, 540–551 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Blemings, K. P., Crenshaw, T. D. & Benevenga, N. J. Mitochondrial lysine uptake limits hepatic lysine oxidation in rats fed diets containing 5, 20 or 60% casein. J. Nutr. 128, 2427–2434 (1998).

    Article  CAS  PubMed  Google Scholar 

  114. Cardaci, S. et al. Pyruvate carboxylation enables growth of SDH-deficient cells by supporting aspartate biosynthesis. Nat. Cell Biol. 17, 1317–1326 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. King, M. P. & Attardi, G. Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science 246, 500–503 (1989).

    Article  CAS  PubMed  Google Scholar 

  116. LaNoue, K. F., Bryla, J. & Bassett, D. J. Energy-driven aspartate efflux from heart and liver mitochondria. J. Biol. Chem. 249, 7514–7521 (1974).

    Article  CAS  PubMed  Google Scholar 

  117. Sullivan, L. B. et al. Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells. Cell 162, 552–563 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Goldberg, E. J. et al. Tissue-specific characterization of mitochondrial branched-chain keto acid oxidation using a multiplexed assay platform. Biochem. J. 476, 1521–1537 (2019).

    Article  CAS  PubMed  Google Scholar 

  119. Ko, J. H. et al. BCAT1 affects mitochondrial metabolism independently of leucine transamination in activated human macrophages. J. Cell Sci. 133, jcs247957 (2020).

  120. Smirnoff, N. l-ascorbic acid biosynthesis. Vitam. Horm. 61, 241–266 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. May, J. M., Li, L., Qu, Z. C. & Cobb, C. E. Mitochondrial recycling of ascorbic acid as a mechanism for regenerating cellular ascorbate. Biofactors 30, 35–48 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Li, X., Cobb, C. E. & May, J. M. Mitochondrial recycling of ascorbic acid from dehydroascorbic acid: dependence on the electron transport chain. Arch. Biochem. Biophys. 403, 103–110 (2002).

    Article  CAS  PubMed  Google Scholar 

  123. Dodgson, S. J., Forster, R. E. 2nd, Storey, B. T. & Mela, L. Mitochondrial carbonic anhydrase. Proc. Natl Acad. Sci. USA 77, 5562–5566 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Palty, R. et al. NCLX is an essential component of mitochondrial Na+/Ca2+ exchange. Proc. Natl Acad. Sci. USA 107, 436–441 (2010).

    Article  CAS  PubMed  Google Scholar 

  125. Baughman, J. M. et al. Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476, 341–345 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. De Stefani, D., Raffaello, A., Teardo, E., Szabo, I. & Rizzuto, R. A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476, 336–340 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Greotti, E. & De Stefani, D. Biosensors for detection of calcium. Methods Cell. Biol. 155, 337–368 (2020).

    Article  CAS  PubMed  Google Scholar 

  128. De Nadai, A., Vajente, N., Pendin, D. & Mattarei, A. Mt-fura-2, a ratiometric mitochondria-targeted Ca2+ sensor. Determination of spectroscopic properties and Ca2+ imaging assays. Methods Mol. Biol. 2275, 187–215 (2021).

    Article  PubMed  Google Scholar 

  129. Cecchini, G. Complexities of complex II: sulfide metabolism in vivo. J. Biol. Chem. 298, 101661 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kumar, R. et al. A redox cycle with complex II prioritizes sulfide quinone oxidoreductase-dependent H2S oxidation. J. Biol. Chem. 298, 101435 (2022).

    Article  CAS  PubMed  Google Scholar 

  131. Landry, A. P. et al. A catalytic trisulfide in human sulfide quinone oxidoreductase catalyzes coenzyme A persulfide synthesis and inhibits butyrate oxidation. Cell Chem. Biol. 26, 1515–1525 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Zhang, X. et al. Sulfide-quinone oxidoreductase is required for cysteine synthesis and indispensable to mitochondrial health. Redox Biol. 47, 102169 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Libiad, M., Yadav, P. K., Vitvitsky, V., Martinov, M. & Banerjee, R. Organization of the human mitochondrial hydrogen sulfide oxidation pathway. J. Biol. Chem. 289, 30901–30910 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Bertholet, A. M. et al. Mitochondrial uncouplers induce proton leak by activating AAC and UCP1. Nature 606, 180–187 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Chouchani, E. T., Kazak, L. & Spiegelman, B. M. New advances in adaptive thermogenesis: UCP1 and beyond. Cell Metab. 29, 27–37 (2019).

    Article  CAS  PubMed  Google Scholar 

  136. Kazak, L. et al. A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell 163, 643–655 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Nicholls, D. G. & Locke, R. M. Thermogenic mechanisms in brown fat. Physiol. Rev. 64, 1–64 (1984).

    Article  CAS  PubMed  Google Scholar 

  138. Cannon, B. & Nedergaard, J. Respiratory and thermogenic capacities of cells and mitochondria from brown and white adipose tissue. Methods Mol. Biol. 155, 295–303 (2001).

    CAS  PubMed  Google Scholar 

  139. Williams, N. C. & O’Neill, L. A. J. A role for the Krebs cycle intermediate citrate in metabolic reprogramming in innate immunity and inflammation. Front. Immunol. 9, 141 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  140. O’Neill, L. A. J. & Artyomov, M. N. Itaconate: the poster child of metabolic reprogramming in macrophage function. Nat. Rev. Immunol. 19, 273–281 (2019).

    Article  PubMed  Google Scholar 

  141. Cordes, T. et al. Itaconate modulates tricarboxylic acid and redox metabolism to mitigate reperfusion injury. Mol. Metab. 32, 122–135 (2020).

    Article  CAS  PubMed  Google Scholar 

  142. Ghandour, M. S., Parkkila, A. K., Parkkila, S., Waheed, A. & Sly, W. S. Mitochondrial carbonic anhydrase in the nervous system: expression in neuronal and glial cells. J. Neurochem. 75, 2212–2220 (2000).

    Article  CAS  PubMed  Google Scholar 

  143. Vanlander, A. V. & Van Coster, R. Clinical and genetic aspects of defects in the mitochondrial iron–sulfur cluster synthesis pathway. J. Biol. Inorg. Chem. 23, 495–506 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Ball, J. M., Chen, S. & Li, W. Mitochondria in cone photoreceptors act as microlenses to enhance photon delivery and confer directional sensitivity to light. Sci. Adv. 8, eabn2070 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Houten, S. M., Violante, S., Ventura, F. V. & Wanders, R. J. The biochemistry and physiology of mitochondrial fatty acid beta-oxidation and Its genetic disorders. Annu. Rev. Physiol. 78, 23–44 (2016).

    Article  CAS  PubMed  Google Scholar 

  146. Bennett, M. J., Sheng, F. & Saada, A. Biochemical assays of TCA cycle and beta-oxidation metabolites. Methods Cell. Biol. 155, 83–120 (2020).

    Article  CAS  PubMed  Google Scholar 

  147. Schlame, M. & Greenberg, M. L. Biosynthesis, remodeling and turnover of mitochondrial cardiolipin. Biochim. Biophys. Acta Mol. Cell. Biol. Lipids 1862, 3–7 (2017).

    Article  CAS  PubMed  Google Scholar 

  148. Eiyama, A., Aaltonen, M. J., Nolte, H., Tatsuta, T. & Langer, T. Disturbed intramitochondrial phosphatidic acid transport impairs cellular stress signaling. J. Biol. Chem. 296, 100335 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Miliara, X. et al. Structural determinants of lipid specificity within Ups/PRELI lipid transfer proteins. Nat. Commun. 10, 1130 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Tatsuta, T. & Langer, T. Intramitochondrial phospholipid trafficking. Biochim. Biophys. Acta Mol. Cell. Biol. Lipids 1862, 81–89 (2017).

    Article  CAS  PubMed  Google Scholar 

  151. Lechuga-Vieco, A. V., Justo-Mendez, R. & Enriquez, J. A. Not all mitochondrial DNAs are made equal and the nucleus knows it. IUBMB Life 73, 511–529 (2021).

    Article  CAS  PubMed  Google Scholar 

  152. Rackham, O. & Filipovska, A. Organization and expression of the mammalian mitochondrial genome. Nat. Rev. Genet. 23, 606–623 (2022).

  153. Fernandez-Silva, P., Acin-Perez, R., Fernandez-Vizarra, E., Perez-Martos, A. & Enriquez, J. A. In vivo and in organello analyses of mitochondrial translation. Methods Cell. Biol. 80, 571–588 (2007).

    Article  CAS  PubMed  Google Scholar 

  154. Fernandez-Vizarra, E. et al. Isolation of mitochondria for biogenetical studies: an update. Mitochondrion 10, 253–262 (2010).

    Article  CAS  PubMed  Google Scholar 

  155. Mitchell, P. & Moyle, J. Translocation of some anions cations and acids in rat liver mitochondria. Eur. J. Biochem. 9, 149–155 (1969).

    Article  CAS  PubMed  Google Scholar 

  156. Baron, S. et al. Role of mitochondrial Na+ concentration, measured by CoroNa red, in the protection of metabolically inhibited MDCK cells. J. Am. Soc. Nephrol. 16, 3490–3497 (2005).

    Article  CAS  PubMed  Google Scholar 

  157. Vasquez-Vivar, J., Shi, Z. & Tan, S. Tetrahydrobiopterin in cell function and death mechanisms. Antioxid. Redox Signal 37, 171–183 (2022).

  158. Besse, A. et al. The GABA transaminase, ABAT, is essential for mitochondrial nucleoside metabolism. Cell Metab. 21, 417–427 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Cavalcanti-de-Albuquerque, J. P., de-Souza-Ferreira, E., de Carvalho, D. P. & Galina, A. Coupling of GABA metabolism to mitochondrial glucose phosphorylation. Neurochem. Res. 47, 470–480 (2022).

    Article  CAS  PubMed  Google Scholar 

  160. Bennett, C. F. et al. Peroxisomal-derived ether phospholipids link nucleotides to respirasome assembly. Nat. Chem. Biol. 17, 703–710 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Fang, J. et al. Dihydro-orotate dehydrogenase is physically associated with the respiratory complex and its loss leads to mitochondrial dysfunction. Biosci. Rep. 33, e00021 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Brosnan, M. E., MacMillan, L., Stevens, J. R. & Brosnan, J. T. Division of labour: how does folate metabolism partition between one-carbon metabolism and amino acid oxidation. Biochem. J. 472, 135–146 (2015).

    Article  CAS  PubMed  Google Scholar 

  163. Zheng, Y. & Cantley, L. C. Toward a better understanding of folate metabolism in health and disease. J. Exp. Med. 216, 253–266 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Zhao, L. N. & Kaldis, P. Pairing structural reconstruction with catalytic competence to evaluate the mechanisms of key enzymes in the folate-mediated one-carbon pathway. FEBS J. https://doi.org/10.1111/febs.16439 (2022).

  165. Mitchell, P. & Moyle, J. Chemiosmotic hypothesis of oxidative phosphorylation. Nature 213, 137–139 (1967).

    Article  CAS  PubMed  Google Scholar 

  166. Morciano, G. et al. Measurement of ATP concentrations in mitochondria of living cells using luminescence and fluorescence approaches. Methods Cell. Biol. 155, 199–219 (2020).

    Article  CAS  PubMed  Google Scholar 

  167. Fernandez-Aguera, M. C. et al. Oxygen sensing by arterial chemoreceptors depends on mitochondrial complex I signaling. Cell Metab. 22, 825–837 (2015).

    Article  CAS  PubMed  Google Scholar 

  168. Hernansanz-Agustin, P. et al. Na+ controls hypoxic signalling by the mitochondrial respiratory chain. Nature 586, 287–291 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Lopez-Barneo, J. & Ortega-Saenz, P. Mitochondrial acute oxygen sensing and signaling. Crit. Rev. Biochem. Mol. Biol. 57, 205–225 (2022).

    Article  CAS  PubMed  Google Scholar 

  170. Sommer, N. et al. Bypassing mitochondrial complex III using alternative oxidase inhibits acute pulmonary oxygen sensing. Sci. Adv. 6, eaba0694 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Carrer, A. et al. Defining the molecular mechanisms of the mitochondrial permeability transition through genetic manipulation of F-ATP synthase. Nat. Commun. 12, 4835 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Bonora, M., Giorgi, C. & Pinton, P. Molecular mechanisms and consequences of mitochondrial permeability transition. Nat. Rev. Mol. Cell Biol. 23, 266–285 (2022).

    Article  CAS  PubMed  Google Scholar 

  173. Carraro, M. & Bernardi, P. Measurement of membrane permeability and the mitochondrial permeability transition. Methods Cell. Biol. 155, 369–379 (2020).

    Article  CAS  PubMed  Google Scholar 

  174. Hsu, Y. -T. et al. Apoptosis Techniques and Protocols 2nd edn, vol. 37 (Humana Press, 2002).

  175. Bryant, J. D., Lei, Y., VanPortfliet, J. J., Winters, A. D. & West, A. P. Assessing mitochondrial DNA release into the cytosol and subsequent activation of innate immune-related pathways in mammalian cells. Curr. Protoc. 2, e372 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Pfanner, N., Warscheid, B. & Wiedemann, N. Mitochondrial proteins: from biogenesis to functional networks. Nat. Rev. Mol. Cell Biol. 20, 267–284 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Hernansanz-Agustin, P. & Enriquez, J. A. Functional segmentation of CoQ and cyt c pools by respiratory complex superassembly. Free Radic. Biol. Med. 167, 232–242 (2021).

    Article  CAS  PubMed  Google Scholar 

  178. Nesci, S., Trombetti, F. & Pagliarani, A. Nicotinamide nucleotide transhydrogenase as a sensor of mitochondrial biology. Trends Cell Biol. 30, 1–3 (2020).

    Article  CAS  PubMed  Google Scholar 

  179. Keilin, D. The History of Cell Respiration and Cytochrome (Cambridge University Press, 1966).

  180. Chance, B. & Williams, G. R. Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J. Biol. Chem. 217, 383–393 (1955).

    Article  CAS  PubMed  Google Scholar 

  181. Schmidt, C. A., Fisher-Wellman, K. H. & Neufer, P. D. From OCR and ECAR to energy: perspectives on the design and interpretation of bioenergetics studies. J. Biol. Chem. 297, 101140 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Hernansanz-Agustin, P. & Enriquez, J. A. Generation of reactive oxygen species by mitochondria. Antioxidants 10, 415 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Murphy, M. P. How mitochondria produce reactive oxygen species. Biochem. J. 417, 1–13 (2009).

    Article  CAS  PubMed  Google Scholar 

  184. Murphy, M. P. et al. Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo. Nat. Metab. 4, 651–662 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Esteves, F., Rueff, J. & Kranendonk, M. The central role of cytochrome P450 in xenobiotic metabolism-a brief review on a fascinating enzyme family. J. Xenobiot. 11, 94–114 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Omura, T. & Gotoh, O. Evolutionary origin of mitochondrial cytochrome P450. J. Biochem. 161, 399–407 (2017).

    Article  CAS  PubMed  Google Scholar 

  187. Lambeth, J. D. & Stevens, V. L. Cytochrome P450scc: enzymology, and the regulation of intramitochondrial cholesterol delivery to the enzyme. Endocr. Res. 10, 283–309 (1984).

    Article  CAS  PubMed  Google Scholar 

  188. Koshiba, T., Yasukawa, K., Yanagi, Y. & Kawabata, S. Mitochondrial membrane potential is required for MAVS-mediated antiviral signaling. Sci. Signal 4, ra7 (2011).

    Article  PubMed  Google Scholar 

  189. McArthur, K. et al. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science 359, 6378 (2018).

  190. Riley, J. S. et al. Mitochondrial inner membrane permeabilisation enables mtDNA release during apoptosis. EMBO J. 37, e99238 (2018).

  191. Cogliati, S., Enriquez, J. A. & Scorrano, L. Mitochondrial cristae: where beauty meets functionality. Trends Biochem. Sci. 41, 261–273 (2016).

    Article  CAS  PubMed  Google Scholar 

  192. Xian, H. et al. Oxidized DNA fragments exit mitochondria via mPTP- and VDAC-dependent channels to activate NLRP3 inflammasome and interferon signaling. Immunity 55, 1370–1385 (2022).

  193. Wang, C. & Youle, R. J. The role of mitochondria in apoptosis. Annu. Rev. Genet. 43, 95–118 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Santos, J. H. Mitochondria signaling to the epigenome: a novel role for an old organelle. Free Radic. Biol. Med. 170, 59–69 (2021).

    Article  CAS  PubMed  Google Scholar 

  195. Csordas, G., Weaver, D. & Hajnoczky, G. Endoplasmic reticulum–mitochondrial contactology: structure and signaling functions. Trends Cell Biol. 28, 523–540 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Scorrano, L. et al. Coming together to define membrane contact sites. Nat. Commun. 10, 1287 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Booth, D. M., Varnai, P., Joseph, S. K. & Hajnoczky, G. Oxidative bursts of single mitochondria mediate retrograde signaling toward the ER. Mol. Cell 81, 3866–3876 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Shai, N. et al. Systematic mapping of contact sites reveals tethers and a function for the peroxisome–mitochondria contact. Nat. Commun. 9, 1761 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Sabouny, R. & Shutt, T. E. Reciprocal regulation of mitochondrial fission and fusion. Trends Biochem. Sci. 45, 564–577 (2020).

    Article  CAS  PubMed  Google Scholar 

  200. Twig, G. et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 27, 433–446 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Pernas, L. & Scorrano, L. Mito-morphosis: mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function. Annu. Rev. Physiol. 78, 505–531 (2016).

    Article  CAS  PubMed  Google Scholar 

  202. Simula, L. & Campello, S. Monitoring the mitochondrial dynamics in mammalian cells. Methods Mol. Biol. 1782, 267–285 (2018).

    Article  CAS  PubMed  Google Scholar 

  203. Santo-Domingo, J., Giacomello, M., Poburko, D., Scorrano, L. & Demaurex, N. OPA1 promotes pH flashes that spread between contiguous mitochondria without matrix protein exchange. EMBO J. 32, 1927–1940 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Zorov, D. B., Juhaszova, M. & Sollott, S. J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 94, 909–950 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Picard, M. et al. Trans-mitochondrial coordination of cristae at regulated membrane junctions. Nat. Commun. 6, 6259 (2015).

    Article  CAS  PubMed  Google Scholar 

  206. Koren, S. A. et al. All-optical spatiotemporal mapping of ROS dynamics across mitochondrial microdomains. Preprint at bioRxiv https://doi.org/10.1101/2023.01.07.523093 (2023).

  207. Schauss, A. C. et al. A novel cell-free mitochondrial fusion assay amenable for high-throughput screenings of fusion modulators. BMC Biol. 8, 100 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Vincent, A. E., Turnbull, D. M., Eisner, V., Hajnoczky, G. & Picard, M. Mitochondrial Nanotunnels. Trends Cell Biol. 27, 787–799 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Molina, A. J. & Shirihai, O. S. Monitoring mitochondrial dynamics with photoactivatable green fluorescent protein. Methods Enzymol. 457, 289–304 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Nahacka, Z., Zobalova, R., Dubisova, M., Rohlena, J. & Neuzil, J. Miro proteins connect mitochondrial function and intercellular transport. Crit. Rev. Biochem. Mol. Biol. 56, 401–425 (2021).

    Article  CAS  PubMed  Google Scholar 

  211. Silva, C. A. et al. Activity-dependent regulation of mitochondrial motility in developing cortical dendrites. eLife 10, e62091 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Sugiura, A., McLelland, G. L., Fon, E. A. & McBride, H. M. A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. EMBO J. 33, 2142–2156 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Cadete, V. J. et al. Formation of mitochondrial-derived vesicles is an active and physiologically relevant mitochondrial quality control process in the cardiac system. J. Physiol. 594, 5343–5362 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Konig, T. et al. MIROs and DRP1 drive mitochondrial-derived vesicle biogenesis and promote quality control. Nat. Cell Biol. 23, 1271–1286 (2021).

    Article  CAS  PubMed  Google Scholar 

  215. Picard, M. et al. Progressive increase in mtDNA 3243A>G heteroplasmy causes abrupt transcriptional reprogramming. Proc. Natl Acad. Sci. USA 111, 4033–4042 (2014).

    Article  Google Scholar 

  216. Picard, M. & Sandi, C. The social nature of mitochondria: implications for human health. Neurosci. Biobehav. Rev. 120, 595–610 (2021).

    Article  PubMed  Google Scholar 

  217. Maslow, A. H. A theory of human motivation. Psychol. Rev. 50, 370–396 (1943).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to investigators who have contributed to reveal tissue-type-specific and cell-type-specific mitochondrial phenotypes that served as the foundation and motivation for this Perspective. We apologize to authors whose work could not be included due to space constraints. We thank the Twitter mitochondrial community and C. Schmitt who contributed inputs to Table 1, and to members of the Mitochondrial Psychobiology Laboratory, and the Genoxphos Laboratory for stimulating discussions. Work of J.A.E. is supported by Ministerio de Ciencia, Innovación/Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER; RTI2018-099357-B-I00), the Biomedical Research Networking Center on Frailty and Healthy Ageing (CIBERFES-ISCiii-CB16/10/00289) and the Leducq TNE-17CVD. The CNIC is supported by the Instituto de Salud Carlos III (ISCIII), the Ministerio de Ciencia, Innovación y Universidades (MCNU) and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (SEV-2015-0505). This work was supported by National Institutes of Health grants R01MH119336, R01MH122706, R01AG066828, R21MH123927 and RF1AG076821, the Wharton Fund and the Baszucki Brain Research Fund (to M.P.).

Author information

Authors and Affiliations

Authors

Contributions

M.P. drafted the figures. A.S.M., J.A.E. and M.P. contributed to the literature review and revised the final version of the figures and manuscript.

Corresponding author

Correspondence to Martin Picard.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Metabolism thanks Michael Murphy and the other, anonymous, reviewers for their contribution to the peer review of this work. Primary Handling Editor: Christoph Schmitt in collaboration with the Nature Metabolism team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monzel, A.S., Enríquez, J.A. & Picard, M. Multifaceted mitochondria: moving mitochondrial science beyond function and dysfunction. Nat Metab 5, 546–562 (2023). https://doi.org/10.1038/s42255-023-00783-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-023-00783-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing