Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sensing of the non-essential amino acid tyrosine governs the response to protein restriction in Drosophila

Abstract

The intake of dietary protein regulates growth, metabolism, fecundity and lifespan across various species, which makes amino acid (AA)-sensing vital for adaptation to the nutritional environment. The general control nonderepressible 2 (GCN2)-activating transcription factor 4 (ATF4) pathway and the mechanistic target of rapamycin complex 1 (mTORC1) pathway are involved in AA-sensing. However, it is not fully understood which AAs regulate these two pathways in living animals and how they coordinate responses to protein restriction. Here we show in Drosophila that the non-essential AA tyrosine (Tyr) is a nutritional cue in the fat body necessary and sufficient for promoting adaptive responses to a low-protein diet, which entails reduction of protein synthesis and mTORC1 activity and increased food intake. This adaptation is regulated by dietary Tyr through GCN2-independent induction of ATF4 target genes in the fat body. This study identifies the Tyr–ATF4 axis as a regulator of the physiological response to a low-protein diet and sheds light on the essential function of a non-essential nutrient.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Low-protein diet suppresses protein synthesis in ATF4-dependent manner.
Fig. 2: Tyr supplementation to a low protein diet suppressed ATF4 activity and protein synthesis.
Fig. 3: Tyr restriction induces ATF4-dependent 4E-BP induction.
Fig. 4: Dietary Tyr restriction decreases internal Tyr levels and induces 4E-BP.
Fig. 5: Tyr restriction induces 4E-BP independently of GCN2 and eIF2α.
Fig. 6: Tyr–ATF4–scyl axis regulates mTORC1 activity during protein restriction.
Fig. 7: Tyr scarcity increases CNMa in the fat body which is received in the serotonergic neurons.
Fig. 8: CNMa and its receptor regulate adaptive increase of food intake.

Similar content being viewed by others

Data availability

The NGS data are available under accession nos. DRA013060, DRA013061, DRA009291 and DRA010710. The data used to analyze the results in this paper are available as source data. All the materials generated in this study are available upon request to F.O. Source data are provided with this paper.

Code availability

No custom codes were used during this study.

References

  1. Soultoukis, G. A. & Partridge, L. Dietary protein, metabolism, and aging. Annu. Rev. Biochem. 85, 5–34 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Dong, J., Qiu, H., Garcia-Barrio, M., Anderson, J. & Hinnebusch, A. G. Uncharged tRNA activates GCN2 by displacing the protein kinase moiety from a bipartite tRNA-binding domain. Mol. Cell 6, 269–279 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Kilberg, M. S., Shan, J. & Su, N. ATF4-dependent transcription mediates signaling of amino acid limitation. Trends Endocrinol. Metab. 20, 436–443 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wolfson, R. L. & Sabatini, D. M. The dawn of the age of amino acid sensors for the mTORC1 pathway. Cell Metab. 26, 301–309 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Piper, M. D. W. et al. Matching dietary amino acid balance to the in silico-translated exome optimizes growth and reproduction without cost to lifespan. Cell Metab. 25, 610–621 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Consuegra, J. et al. Drosophila-associated bacteria differentially shape the nutritional requirements of their host during juvenile growth. PLoS Biol. 18, e3000681 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Froldi, F. et al. Histidine is selectively required for the growth of Myc‐dependent dedifferentiation tumours in the Drosophila CNS. EMBO J. 38, e99895 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Leitão-Gonçalves, R. et al. Commensal bacteria and essential amino acids control food choice behavior and reproduction. PLoS Biol. 15, e2000862 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Piper, M. D. W. et al. A holidic medium for Drosophila melanogaster. Nat. Methods 11, 100–105 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Grandison, R. C., Piper, M. D. W. & Partridge, L. Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila. Nature 462, 1061–1064 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee, B. C. et al. Methionine restriction extends lifespan of Drosophila melanogaster under conditions of low amino-acid status. Nat. Commun. 5, 3592 (2014).

    Article  PubMed  CAS  Google Scholar 

  12. Obata, F. et al. Nutritional control of stem cell division through S-adenosylmethionine in drosophila intestine. Dev. Cell 44, 741–751.e3 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Deliu, L. P., Ghosh, A. & Grewal, S. S. Investigation of protein synthesis in Drosophila larvae using puromycin labelling. Biol. Open 6, 1229–1234 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Schmidt, E. K., Clavarino, G., Ceppi, M. & Pierre, P. SUnSET, a nonradioactive method to monitor protein synthesis. Nat. Methods 6, 275–277 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Herrmann, C., Van de Sande, B., Potier, D. & Aerts, S. i-cisTarget: an integrative genomics method for the prediction of regulatory features and cis-regulatory modules. Nucleic Acids Res. 40, e114 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Imrichová, H., Hulselmans, G., Atak, Z. K., Potier, D. & Aerts, S. I-cisTarget 2015 update: generalized cis-regulatory enrichment analysis in human, mouse and fly. Nucleic Acids Res. 43, W57–W64 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Bjordal, M., Arquier, N., Kniazeff, J., Pin, J. P. & Léopold, P. Sensing of amino acids in a dopaminergic circuitry promotes rejection of an incomplete diet in Drosophila. Cell 156, 510–521 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Wek, S. A., Zhu, S. & Wek, R. C. The histidyl-tRNA synthetase-related sequence in the eIF-2 α protein kinase GCN2 interacts with tRNA and is required for activation in response to starvation for different amino acids. Mol. Cell. Biol. 15, 4497–4506 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lesperance, D. N. A. & Broderick, N. A. Meta-analysis of diets used in Drosophila microbiome research and introduction of the Drosophila dietary composition calculator (DDCC). G3 10, 2207–2211 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kang, M. J. et al. 4E-BP is a target of the GCN2-ATF4 pathway during Drosophila development and aging. J. Cell Biol. 216, 115–129 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Neckameyer, W. S., Coleman, C. M., Eadie, S. & Goodwin, S. F. Compartmentalization of neuronal and peripheral serotonin synthesis in Drosophila melanogaster. Genes Brain Behav. 6, 756–769 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Ramirez-Gaona, M. et al. YMDB 2.0: a significantly expanded version of the yeast metabolome database. Nucleic Acids Res. 45, D440–D445 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Sang, J. H. & King, R. C. Nutritional requirements of axenically cultured Drosophila melanogaster adults. J. Exp. Biol. 38, 793–809 (1961).

    Article  CAS  Google Scholar 

  24. Marini, J. C., Agarwal, U. & Didelija, I. C. Dietary arginine requirements for growth are dependent on the rate of citrulline production in mice. J. Nutr. 145, 1227–1231 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Malzer, E. et al. Coordinate regulation of eif2α phosphorylation by PPP1R15 and GCN2 is required during Drosophila development. J. Cell Sci. 126, 1406–1415 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Consuegra, J. et al. Metabolic cooperation among commensal bacteria supports drosophila juvenile growth under nutritional stress. iScience 23, 101232 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Henriques, S. F. et al. Metabolic cross-feeding in imbalanced diets allows gut microbes to improve reproduction and alter host behaviour. Nat. Commun. 11, 1–15 (2020).

    Article  CAS  Google Scholar 

  28. Saxton, R. A. & Sabatini, D. M. mTOR Signaling in growth, metabolism, and disease. Cell 168, 960–976 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lu, J. et al. Sestrin is a key regulator of stem cell function and lifespan in response to dietary amino acids. Nat. Aging 1, 60–72 (2020).

    Article  Google Scholar 

  30. Romero-Pozuelo, J., Demetriades, C., Schroeder, P. & Teleman, A. A. CycD/Cdk4 and discontinuities in dpp signaling activate TORC1 in the Drosophila wing disc. Dev. Cell 42, 376–387 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Kim, W., Jang, Y.-G., Yang, J. & Chung, J. Spatial activation of TORC1 is regulated by hedgehog and E2F1 signaling in the Drosophila eye. Dev. Cell 42, 363–375 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Reiling, J. H. & Hafen, E. The hypoxia-induced paralogs Scylla and Charybdis inhibit growth by down-regulating S6K activity upstream of TSC in Drosophila. Genes Dev. 18, 2879–2892 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. DeYoung, M. P., Horak, P., Sofer, A., Sgroi, D. & Ellisen, L. W. Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev. 22, 239–251 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lipina, C. & Hundal, H. S. Is REDD1 a metabolic éminence grise? Trends Endocrinol. Metab. 27, 868–880 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Whitney, M. L., Jefferson, L. S. & Kimball, S. R. ATF4 is necessary and sufficient for ER stress-induced upregulation of REDD1 expression. Biochem. Biophys. Res. Commun. 379, 451–455 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Jang, S.-K. et al. Inhibition of mTORC1 through ATF4-induced REDD1 and Sestrin2 expression by metformin. BMC Cancer 21, 803 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xu, D. et al. ATF4-mediated upregulation of REDD1 and Sestrin2 Suppresses mTORC1 activity during prolonged leucine deprivation. J. Nutr. 150, 1022–1030 (2020).

    Article  PubMed  Google Scholar 

  38. Kim, B. et al. Response of the microbiome-gut-brain axis in Drosophila to amino acid deficit. Nature 593, 570–574 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Spiess, R., Schoofs, A. & Heinzel, H.-G. Anatomy of the stomatogastric nervous system associated with the foregut in Drosophila melanogaster and Calliphora vicina third instar larvae. J. Morphol. 269, 272–282 (2008).

    Article  PubMed  Google Scholar 

  40. Schoofs, A., Hückesfeld, S., Surendran, S. & Pankratz, M. J. Serotonergic pathways in the Drosophila larval enteric nervous system. J. Insect Physiol. 69, 118–125 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Shimada-Niwa, Y. & Niwa, R. Serotonergic neurons respond to nutrients and regulate the timing of steroid hormone biosynthesis in Drosophila. Nat. Commun. 5, 5778 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. De Sousa-Coelho, A. L., Marrero, P. F. & Haro, D. Activating transcription factor 4-dependent induction of FGF21 during amino acid deprivation. Biochem. J. 443, 165–171 (2012).

    Article  PubMed  CAS  Google Scholar 

  43. Laeger, T. et al. FGF21 is an endocrine signal of protein restriction. J. Clin. Invest. 124, 3913–3922 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Solon-Biet, S. M. et al. Defining the nutritional and metabolic context of FGF21 using the geometric framework. Cell Metab. 24, 555–565 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Hill, C. M. et al. FGF21 signals protein status to the brain and adaptively regulates food choice and metabolism. Cell Rep. 27, 2934–2947 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Maida, A. et al. A liver stress-endocrine nexus promotes metabolic integrity during dietary protein dilution. J. Clin. Invest. 126, 3263–3278 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Yap, Y. W. et al. Restriction of essential amino acids dictates the systemic metabolic response to dietary protein dilution. Nat. Commun. 11, 2894 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Martin, A. et al. Gut microbiota mediate the FGF21 adaptive stress response to chronic dietary protein restriction in mice. Nat. Commun. 12, 3838 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hill, C. M., Berthoud, H.-R., Münzberg, H. & Morrison, C. D. Homeostatic sensing of dietary protein restriction: a case for FGF21. Front. Neuroendocrinol. 51, 125–131 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Shimizu, N. et al. A muscle-liver-fat signalling axis is essential for central control of adaptive adipose remodelling. Nat. Commun. 6, 6693 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Cornu, M. et al. Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21. Proc. Natl Acad. Sci. USA 111, 11592–11599 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wilson, G. J. et al. GCN2 is required to increase fibroblast growth factor 21 and maintain hepatic triglyceride homeostasis during asparaginase treatment. Am. J. Physiol. Endocrinol. Metab. 308, E283–E293 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Knott, S. R. V. et al. Asparagine bioavailability governs metastasis in a model of breast cancer. Nature 554, 378–381 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Krall, A. S. et al. Asparagine couples mitochondrial respiration to ATF4 activity and tumor growth. Cell Metab. 33, 1013–1026.e6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Maddocks, O. D. K. et al. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature 493, 542–546 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Li, X. et al. ATF3 promotes the serine synthesis pathway and tumor growth under dietary serine restriction. Cell Rep. 36, 109706 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shiraki, N. et al. Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells. Cell Metab. 19, 780–794 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Mazor, K. M. & Stipanuk, M. H. GCN2- and eIF2α-phosphorylation-independent, but ATF4-dependent, induction of CARE-containing genes in methionine-deficient cells. Amino Acids 48, 2831–2842 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Laeger, T. et al. Metabolic responses to dietary protein restriction require an increase in FGF21 that is delayed by the absence of GCN2. Cell Rep. 16, 707–716 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Quirós, P. M. et al. Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals. J. Cell Biol. 216, 2027–2045 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Sorge, S. et al. ATF4-induced Warburg metabolism drives over-proliferation in Drosophila. Cell Rep. 31, 107659 (2020).

    Article  CAS  PubMed  Google Scholar 

  62. Wu, G. Amino Acids: Biochemistry and Nutrition. 1–459 (CRC Press, 2013).

  63. Kramer, K. J. & Hopkins, T. L. Tyrosine metabolism for insect cuticle tanning. Arch. Insect Biochem. Physiol. 6, 279–301 (1987).

    Article  CAS  Google Scholar 

  64. Fernstrom, J. D. & Fernstrom, M. H. Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain. J. Nutr. 137, 1539S–1547S (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Ohhara, Y. et al. Autocrine regulation of ecdysone synthesis by β3-octopamine receptor in the prothoracic gland is essential for Drosophila metamorphosis. Proc. Natl Acad. Sci. USA 112, 1452–1457 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Li, Y. et al. Octopamine controls starvation resistance, life span and metabolic traits in Drosophila. Sci. Rep. 6, 35359 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Banderet, L. E. & Lieberman, H. R. Treatment with tyrosine, a neurotransmitter precursor, reduces environmental stress in humans. Brain Res. Bull. 22, 759–762 (1989).

    Article  CAS  PubMed  Google Scholar 

  68. Grandison, R. C., Wong, R., Bass, T. M., Partridge, L. & Piper, M. D. W. Effect of a standardised dietary restriction protocol on multiple laboratory strains of Drosophila melanogaster. PLoS ONE 4, e4067 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Brankatschk, M. & Eaton, S. Lipoprotein particles cross the blood-brain barrier in Drosophila. J. Neurosci. 30, 10441–10447 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Alekseyenko, O. V., Lee, C. & Kravitz, E. A. Targeted manipulation of serotonergic neurotransmission affects the escalation of aggression in adult male Drosophila melanogaster. PLoS ONE 5, e10806 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Kosakamoto, H. et al. Local necrotic cells trigger systemic immune activation via gut microbiome dysbiosis in Drosophila. Cell Rep. 32, 107938 (2020).

    Article  CAS  PubMed  Google Scholar 

  72. Shiota, M. et al. Gold-nanofève surface-enhanced Raman spectroscopy visualizes hypotaurine as a robust anti-oxidant consumed in cancer survival. Nat. Commun. 9, 1561 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Iatsenko, I., Boquete, J.-P. & Lemaitre, B. Microbiota-derived lactate activates production of reactive oxygen species by the intestinal NADPH oxidase Nox and shortens Drosophila lifespan. Immunity 49, 929–942 (2018).

    Article  CAS  PubMed  Google Scholar 

  74. Fridmann-Sirkis, Y. et al. Delayed development induced by toxicity to the host can be inherited by a bacterial-dependent, transgenerational effect. Front. Genet. 5, 27 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge A. P. Gould (the Francis Crick Institute), H. D. Ryoo (New York University School of Medicine), W.J. Lee (Seoul National University), R. Carthew (Northwestern University), O. V. Alekseyenko (Harvard Medical School), the Kyoto Stock Center, National Institute of Genetics, Vienna Drosophila Resource Center and Bloomington Drosophila Stock Center for reagents. We thank S. Sorge, A. Franchet, L. Lampe, A. P. Gould and Y. Yoshinari for critical comments on the manuscript. We thank T. Fujisawa, T. Ichinose, H. Tanimoto and all members of our laboratory for technical assistance and critical advice. We appreciate the generous support of Shimadzu, which provided the LC–MS platform for the Suematsu laboratory but did not participate in designing the study or analyzing the data. This work was supported by AMED-PRIME to F.O. under grant nos. JP17gm6010010 and JP20gm6310011 and by AMED-Project for Elucidating and Controlling Mechanisms of Aging and Longevity to M.M under grant no. JP21gm5010001. This work was also supported by grants from the Japan Society for the Promotion of Science to F.O. under grant nos. 19H03367, 20H05726 and 22H02769 and to M.M. under grant nos. 16H06385, 21H04774 and 21K19206. This work was partially supported by the Uehara Memorial Foundation to F.O., the Tomizawa Jun-ichi & Keiko Fund of the Molecular Biology Society of Japan for Young Scientists to N.O. and F.O. and the Cooperative Research Project Program of Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA Center), University of Tsukuba, Japan. H.K. is a JSPS research fellow.

Author information

Authors and Affiliations

Authors

Contributions

H.K. and F.O. conceived the project. H.K. performed most of the experiments and analyzed the data. N.O. and R.N. analyzed the CNMaR expression pattern. H.A. analyzed bacterial composition and helped with systematic analysis of the NEAA restrictions. Y.S. and M.S. performed some of the metabolome analyses. H.K., N.O., R.N., M.M. and F.O. wrote the initial manuscript. M.M. and F.O. supervised the study. All authors edited and approved the final manuscript.

Corresponding author

Correspondence to Fumiaki Obata.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Metabolism thanks Matthew Piper and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling editor: Yanina-Yasmin Pesch, Ashley Castellanos-Janciewicz, in collaboration with the Nature Metabolism team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Internal AA levels during protein restriction.

a-d, Internal Tyr and Phe levels in the fat body (a, b) or hemolymph (c, d) of third instar larvae fed with a low-protein diet supplemented with or without 5 mM Tyr for 8 h. n = 4. e,f, Internal AA levels in the fat body (e) or hemolymph (f) of third instar larvae fed with a low-protein diet for 8 h. n = 4. For all graphs, Mean and SEM with all data points of biological replicates were shown. P-values are determined by one-way ANOVA with Holm-Šídák’s multiple comparison test (a-d) and unpaired two-tailed Student’s t-test (e,f). Asterisks indicate *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001, ns, not significant.

Source data

Extended Data Fig. 2 Tissue specific transcriptional responses upon Tyr restriction.

a, Number of differentially expressed genes (Benjamini–Hochberg adjusted p-value < 0.01 after Wald test) in the gut or the fat body of third instar larvae during Tyr restriction. The numbers of either up- (log2 fold change > 0.59) or down- (log2 fold change < −0.59) regulated genes are shown. b, Quantitative RT-PCR of 4E-BP in the gut of third instar larvae during Tyr restriction. n = 9. P-value is determined by unpaired two-tailed Student’s t-test. c,d, Representative images of the fat body (c) or the other organs (d) of the ATF4 reporter 4E-BPintron-dsRed with or without Tyr restriction for 28 hours. Scale bars, 1 mm for the gut, 100 μm for the fat body, the salivary gland and the carcass. Ctrl indicates a complete holidic medium. For the graph, Mean and SEM were shown. Data points indicate biological replicates. ns, not significant. The experiments were repeated independently at least twice with similar results (c, d).

Source data

Extended Data Fig. 3 Phenotypic and metabolic analysis upon amino acid restrictions.

a, Fecundity of female flies upon AA restriction for four days. n = 8. Any EAA restrictions significantly (p < 0.0001) suppressed egg laying, while any NEAA did not. b, Body weight of third instar larvae upon Tyr or Leu restriction for 24 hours. n = 28 (Tyr-), 37 (Leu1/2), 30 (Leu1/4), 31 (Leu-). c, Whole body Tyr levels in female flies upon Tyr restriction for four days. n = 6. d,e, Whole body NEAA (d) or EAA (e) levels in adult male flies upon each NEAA (d) or EAA (e) restriction for four days. n = 6. f, Whole body Tyr metabolite levels in the third instar larvae upon Tyr restriction. n = 4. g, Whole body amount of Arg levels in the third instar larvae upon Arg restriction for 8 h. n = 6. Ctrl indicates a complete holidic medium. For all graphs, Mean and SEM were shown. Data points indicate biological replicates. P-values are determined by one-way ANOVA with Dunnett’s multiple comparison test (a), one-way ANOVA with Holm-Šídák’s multiple comparison test (b) and unpaired two-tailed Student’s t-test (c-g). Asterisks indicate *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001, ns, not significant.

Source data

Extended Data Fig. 4 Contribution of gut microbiota to Tyr restriction-induced responses.

a, 16S rRNA amplicon sequencing analysis of the third instar larval gut microbiome during Tyr restriction. b,c, Quantitative PCR analysis of Lactobacillus (b) and Acetobacter (c) in the third instar larval gut during Tyr restriction. n = 4. d, Whole body NEAA levels in the germ-free larvae upon Ala, Tyr, or Asn restriction. n = 4 except for Tyr levels upon control diet (n = 3). e, Quantitative RT-PCR of 4E-BP in the larval fat body upon single NEAA restrictions for 8 h in germ-free condition. n = 6. Ctrl indicates a complete holidic medium. For all graphs, Mean and SEM with all data points of biological replicates were shown. P-values are determined by unpaired two-tailed Student’s t-test (b-d) and one-way ANOVA with Holm-Šídák’s multiple comparison test (e). Asterisks indicate *p < 0.05, ***p < 0.001 and ****p < 0.0001, ns, not significant.

Source data

Extended Data Fig. 5 Suppression of mTORC1 activity upon Tyr or Leu restriction.

a, b, A representative image (a) and quantification (b) of western blot analysis of the fat body using anti-phospho-S6 antibody upon Tyr or Leu restriction (1/2, 1/4 and complete depletion) for 8 h. Ctrl indicates a complete holidic medium. Anti-α+β tubulin was used for loading control. n = 3. P-value is determined by one-way ANOVA with Dunnett’s multiple comparison test. For the graph, Mean and SEM with all data points of biological replicates were shown. Asterisks indicate ****p < 0.0001.

Source data

Supplementary information

Supplementary Information

Supplementary Tables 5–7

Reporting Summary

Supplementary Table 1

DEG list of fat body RNA-seq upon protein restriction.

Supplementary Table 2

Gene Ontology analysis of fat body RNA-seq upon protein restriction.

Supplementary Table 3

DEG list of fat body RNA-seq upon Tyr restriction.

Supplementary Table 4

DEG list of gut RNA-seq upon Tyr restriction.

Source data

Source Data Fig. 1

Statistical source data for Fig. 1.

Source Data Fig. 1

Unprocessed western blots for Fig. 1.

Source Data Fig. 2

Statistical source data for Fig. 2.

Source Data Fig. 2

Unprocessed western blots for Fig. 2.

Source Data Fig. 3

Statistical source data for Fig. 3.

Source Data Fig. 4

Statistical source data for Fig. 4.

Source Data Fig. 5

Statistical source data for Fig. 5.

Source Data Fig. 5

Unprocessed western blots for Fig. 5.

Source Data Fig. 6

Statistical source data for Fig. 6.

Source Data Fig. 6

Unprocessed western blots for Fig. 6.

Source Data Fig. 7

Statistical source data for Fig. 7.

Source Data Fig. 8

Statistical source data for Fig. 8.

Source Data Extended Data Fig. 1

Statistical source data for Extended Data Fig. 1.

Source Data Extended Data Fig. 2

Statistical source data for Extended Data Fig. 2.

Source Data Extended Data Fig. 3

Statistical source data for Extended Data Fig. 3.

Source Data Extended Data Fig. 4

Statistical source data for Extended Data Fig. 4.

Source Data Extended Data Fig. 5

Statistical source data for Extended Data Fig. 5.

Source Data Extended Data Fig. 5

Unprocessed western blots for Extended Data Fig. 5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosakamoto, H., Okamoto, N., Aikawa, H. et al. Sensing of the non-essential amino acid tyrosine governs the response to protein restriction in Drosophila. Nat Metab 4, 944–959 (2022). https://doi.org/10.1038/s42255-022-00608-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-022-00608-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing