Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Metabolic Messengers
  • Published:

Metabolic Messengers: fibroblast growth factor 1

Abstract

While fibroblast growth factor (FGF) 1 is expressed in multiple tissues, only adipose-derived and brain FGF1 have been implicated in the regulation of metabolism. Adipose FGF1 production is upregulated in response to dietary stress and is essential for adipose tissue plasticity in these conditions. Similarly, in the brain, FGF1 secretion into the ventricular space and the adjacent parenchyma is increased after a hypercaloric challenge induced by either feeding or glucose infusion. Potent anorexigenic properties have been ascribed to both peripheral and centrally injected FGF1. The ability of recombinant FGF1 and variants with reduced mitogenicity to lower glucose, suppress adipose lipolysis and promote insulin sensitization elevates their potential as candidates in the treatment of type 2 diabetes mellitus and associated comorbidities. Here, we provide an overview of the known metabolic functions of endogenous FGF1 and discuss its therapeutic potential, distinguishing between peripherally or centrally administered FGF1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of major FGF1-related discoveries.
Fig. 2: Mechanistic insights into the metabolic actions of FGF1.
Fig. 3: Target tissues and metabolic activity of exogenous FGF1.

References

  1. Suh, J. M. et al. Endocrinization of FGF1 produces a neomorphic and potent insulin sensitizer. Nature 513, 436–439 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Scarlett, J. M. et al. Central injection of fibroblast growth factor 1 induces sustained remission of diabetic hyperglycemia in rodents. Nat. Med. 22, 800–806 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gasser, E., Moutos, C. P., Downes, M. & Evans, R. M. FGF1 — a new weapon to control type 2 diabetes mellitus. Nat. Rev. Endocrinol. 13, 599–609 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sancar, G. et al. FGF1 and insulin control lipolysis by convergent pathways. Cell Metab. 34, 171–183.e6 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Maciag, T., Cerundolo, J., Ilsley, S., Kelley, P. R. & Forand, R. An endothelial cell growth factor from bovine hypothalamus: identification and partial characterization. Proc. Natl. Acad. Sci. USA 76, 5674–5678 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Maciag, T., Mehlman, T., Friesel, R. & Schreiber, A. B. Heparin binds endothelial cell growth factor, the principal endothelial cell mitogen in bovine brain. Science 225, 932–935 (1984).

    Article  CAS  PubMed  Google Scholar 

  7. Thornton, S. C., Mueller, S. N. & Levine, E. M. Human endothelial cells: use of heparin in cloning and long-term serial cultivation. Science 222, 623–625 (1983).

    Article  CAS  PubMed  Google Scholar 

  8. Burgess, W. H. & Maciag, T. The heparin-binding (fibroblast) growth factor family of proteins. Annu. Rev. Biochem. 58, 575–606 (1989).

    Article  CAS  PubMed  Google Scholar 

  9. Ornitz, D. M. & Itoh, N. The Fibroblast Growth Factor signaling pathway. Wiley Interdiscip. Rev. Dev. Biol. 4, 215–266 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Miller, D. L., Ortega, S., Bashayan, O., Basch, R. & Basilico, C. Compensation by fibroblast growth factor 1 (FGF1) does not account for the mild phenotypic defects observed in FGF2 null mice. Mol. Cell. Biol. 20, 2260–2268 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Raju, R. et al. A network map of FGF-1/FGFR signaling system. J. Signal Transduct. 2014, 962962 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Werner, S. et al. Large induction of keratinocyte growth factor expression in the dermis during wound healing. Proc. Natl. Acad. Sci. USA 89, 6896–6900 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mouta Carreira, C., Landriscina, M., Bellum, S., Prudovsky, I. & Maciag, T. The comparative release of FGF1 by hypoxia and temperature stress. Growth Factors 18, 277–285 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Conte, C. et al. Fibroblast growth factor 1 induced during myogenesis by a transcription-translation coupling mechanism. Nucleic Acids Res. 37, 5267–5278 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Spriggs, K. A., Bushell, M. & Willis, A. E. Translational regulation of gene expression during conditions of cell stress. Mol. Cell 40, 228–237 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Prudovsky, I. et al. The non-classical export routes: FGF1 and IL-1alpha point the way. J. Cell Sci. 116, 4871–4881 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Hanai, K. et al. Central action of acidic fibroblast growth factor in feeding regulation. Am. J. Physiol. 256, R217–R223 (1989).

    CAS  PubMed  Google Scholar 

  18. Oomura, Y. et al. A new brain glucosensor and its physiological significance. Am. J. Clin. Nutr. 55, 278S–282S (1992). Suppl.

    Article  CAS  PubMed  Google Scholar 

  19. Sasaki, K. et al. Effects of fibroblast growth factors and platelet-derived growth factor on food intake in rats. Brain Res. Bull. 27, 327–332 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. Jonker, J. W. et al. A PPARγ-FGF1 axis is required for adaptive adipose remodelling and metabolic homeostasis. Nature 485, 391–394 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sun, K., Kusminski, C. M. & Scherer, P. E. Adipose tissue remodeling and obesity. J. Clin. Invest. 121, 2094–2101 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fuster, J. J., Ouchi, N., Gokce, N. & Walsh, K. Obesity-induced changes in adipose tissue microenvironment and their impact on cardiovascular disease. Circ. Res. 118, 1786–1807 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Datta, R., Podolsky, M. J. & Atabai, K. Fat fibrosis: friend or foe? JCI Insight 3, 122289 (2018).

    Article  PubMed  Google Scholar 

  24. Khan, T. et al. Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI. Mol. Cell. Biol. 29, 1575–1591 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Spencer, M. et al. Adipose tissue macrophages in insulin-resistant subjects are associated with collagen VI and fibrosis and demonstrate alternative activation. Am. J. Physiol. Endocrinol. Metab. 299, E1016–E1027 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang, X. et al. Fibroblast growth factor signaling in the vasculature. Curr. Atheroscler. Rep. 17, 509 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Newell, F. S. et al. Characterization of the transcriptional and functional effects of fibroblast growth factor-1 on human preadipocyte differentiation. FASEB J. 20, 2615–2617 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Hutley, L. et al. Fibroblast growth factor 1: a key regulator of human adipogenesis. Diabetes 53, 3097–3106 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Sun, K. & Scherer, P. E. The PPARγ-FGF1 axis: an unexpected mediator of adipose tissue homeostasis. Cell Res. 22, 1416–1418 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, S. et al. Adipocyte Piezo1 mediates obesogenic adipogenesis through the FGF1/FGFR1 signaling pathway in mice. Nat. Commun. 11, 2303 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. DiPilato, L. M. et al. The role of PDE3B phosphorylation in the inhibition of lipolysis by insulin. Mol. Cell. Biol. 35, 2752–2760 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Azevedo, M. F. et al. Clinical and molecular genetics of the phosphodiesterases (PDEs). Endocr. Rev. 35, 195–233 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Duncan, R. E., Ahmadian, M., Jaworski, K., Sarkadi-Nagy, E. & Sul, H. S. Regulation of lipolysis in adipocytes. Annu. Rev. Nutr. 27, 79–101 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chhabra, Y. et al. Loss of growth hormone-mediated signal transducer and activator of transcription 5 (STAT5) signaling in mice results in insulin sensitivity with obesity. FASEB J. 33, 6412–6430 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. List, E. O. et al. Endocrine parameters and phenotypes of the growth hormone receptor gene disrupted (GHR-/-) mouse. Endocr. Rev. 32, 356–386 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Mejhert, N. et al. Mapping of the fibroblast growth factors in human white adipose tissue. J. Clin. Endocrinol. Metab. 95, 2451–2457 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Wang, I. M. et al. Systems analysis of eleven rodent disease models reveals an inflammatome signature and key drivers. Mol. Syst. Biol. 8, 594 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wang, D. et al. FGF1ΔHBS prevents diabetic cardiomyopathy by maintaining mitochondrial homeostasis and reducing oxidative stress via AMPK/Nur77 suppression. Signal Transduct. Target. Ther. 6, 133 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Carayol, J. et al. Protein quantitative trait locus study in obesity during weight-loss identifies a leptin regulator. Nat. Commun. 8, 2084 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wang, S. et al. Fibroblast growth factor 1 levels are elevated in newly diagnosed type 2 diabetes compared to normal glucose tolerance controls. Endocr. J. 63, 359–365 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Forman, B. M. et al. 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR γ. Cell 83, 803–812 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Lehmann, J. M. et al. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor γ (PPAR γ). J. Biol. Chem. 270, 12953–12956 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Lin, Q. et al. Activating adenosine monophosphate-activated protein kinase mediates fibroblast growth factor 1 protection from nonalcoholic fatty liver disease in mice. Hepatology 73, 2206–2222 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Perry, R. J. et al. Leptin mediates a glucose-fatty acid cycle to maintain glucose homeostasis in starvation. Cell 172, 234–248.e17 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Perry, R. J. et al. Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell 160, 745–758 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rebrin, K., Steil, G. M., Mittelman, S. D. & Bergman, R. N. Causal linkage between insulin suppression of lipolysis and suppression of liver glucose output in dogs. J. Clin. Invest. 98, 741–749 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xia, W. et al. Loss of ABHD15 impairs the anti-lipolytic action of insulin by altering PDE3B stability and contributes to insulin resistance. Cell Rep. 23, 1948–1961 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ying, L. et al. Paracrine FGFs target skeletal muscle to exert potent anti-hyperglycemic effects. Nat. Commun. 12, 7256 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Leto, D. & Saltiel, A. R. Regulation of glucose transport by insulin: traffic control of GLUT4. Nat. Rev. Mol. Cell Biol. 13, 383–396 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Sasaki, K. et al. Actions of acidic fibroblast growth factor fragments on food intake in rats. Obes. Res. 3, 697S–706S (1995). Suppl 5.

    Article  CAS  PubMed  Google Scholar 

  51. Li, A.-J. et al. Fibroblast growth factor receptor-1 in the lateral hypothalamic area regulates food intake. Exp. Neurol. 137, 318–323 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Sasaki, K. et al. Effects of fibroblast growth factors and related peptides on food intake by rats. Physiol. Behav. 56, 211–218 (1994).

    Article  CAS  PubMed  Google Scholar 

  53. Tennant, K. G., Lindsley, S. R., Kirigiti, M. A., True, C. & Kievit, P. Central and peripheral administration of fibroblast growth factor 1 improves pancreatic islet insulin secretion in diabetic mouse models. Diabetes 68, 1462–1472 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. De Saint Hilaire, Z. & Nicolaïdis, S. Enhancement of slow wave sleep parallel to the satiating effect of acidic fibroblast growth factor in rats. Brain Res. Bull. 29, 525–528 (1992).

    Article  Google Scholar 

  55. Brown, J. M. et al. The hypothalamic arcuate nucleus-median eminence is a target for sustained diabetes remission induced by fibroblast growth factor 1. Diabetes 68, 1054–1061 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Scarlett, J. M. et al. Peripheral mechanisms mediating the sustained antidiabetic action of FGF1 in the brain. Diabetes 68, 654–664 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Sun, H. D. et al. Monoclonal antibody antagonists of hypothalamic FGFR1 cause potent but reversible hypophagia and weight loss in rodents and monkeys. Am. J. Physiol. Endocrinol. Metab. 292, E964–E976 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Samms, R. J. et al. Antibody-mediated inhibition of the FGFR1c isoform induces a catabolic lean state in siberian hamsters. Curr. Biol. 25, 2997–3003 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Lelliott, C. J. et al. Monoclonal antibody targeting of fibroblast growth factor receptor 1c ameliorates obesity and glucose intolerance via central mechanisms. PLoS One 9, e112109 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Comps-Agrar, L., Dunshee, D. R., Eaton, D. L. & Sonoda, J. Unliganded fibroblast growth factor receptor 1 forms density-independent dimers. J. Biol. Chem. 290, 24166–24177 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hultman, K. et al. The central fibroblast growth factor receptor/beta klotho system: Comprehensive mapping in Mus musculus and comparisons to nonhuman primate and human samples using an automated in situ hybridization platform. J. Comp. Neurol. 527, 2069–2085 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Alonge, K. M. et al. Hypothalamic perineuronal net assembly is required for sustained diabetes remission induced by fibroblast growth factor 1 in rats. Nat. Metab. 2, 1025–1033 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bentsen, M. A. et al. Transcriptomic analysis links diverse hypothalamic cell types to fibroblast growth factor 1-induced sustained diabetes remission. Nat. Commun. 11, 4458 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Reichelt, A. C., Hare, D. J., Bussey, T. J. & Saksida, L. M. Perineuronal nets: plasticity, protection, and therapeutic potential. Trends Neurosci. 42, 458–470 (2019).

    Article  CAS  PubMed  Google Scholar 

  65. Mirzadeh, Z. et al. Perineuronal net formation during the critical period for neuronal maturation in the hypothalamic arcuate nucleus. Nat. Metab. 1, 212–221 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Perry, R. J. et al. FGF1 and FGF19 reverse diabetes by suppression of the hypothalamic-pituitary-adrenal axis. Nat. Commun. 6, 6980 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Cottrell, G. T. & Ferguson, A. V. Sensory circumventricular organs: central roles in integrated autonomic regulation. Regul. Pept. 117, 11–23 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Gonzalez, A. M., Berry, M., Maher, P. A., Logan, A. & Baird, A. A comprehensive analysis of the distribution of FGF-2 and FGFR1 in the rat brain. Brain Res. 701, 201–226 (1995).

    Article  CAS  PubMed  Google Scholar 

  69. Belluardo, N. et al. Comparative localization of fibroblast growth factor receptor-1, -2, and -3 mRNAs in the rat brain: in situ hybridization analysis. J. Comp. Neurol. 379, 226–246 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Brown, J. M. et al. Role of hypothalamic MAPK/ERK signaling and central action of FGF1 in diabetes remission. iScience 24, 102944 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bentsen, M. A., Mirzadeh, Z. & Schwartz, M. W. Revisiting how the brain senses glucose-and why. Cell Metab. 29, 11–17 (2019).

    Article  CAS  PubMed  Google Scholar 

  72. Geller, S. et al. Tanycytes regulate lipid homeostasis by sensing free fatty acids and signaling to key hypothalamic neuronal populations via fgf21 secretion. Cell Metab. 30, 833–844.e7 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. Ornitz, D. M. et al. Receptor specificity of the fibroblast growth factor family. J. Biol. Chem. 271, 15292–15297 (1996).

    Article  CAS  PubMed  Google Scholar 

  74. Furdui, C. M., Lew, E. D., Schlessinger, J. & Anderson, K. S. Autophosphorylation of FGFR1 kinase is mediated by a sequential and precisely ordered reaction. Mol. Cell 21, 711–717 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Lew, E. D., Furdui, C. M., Anderson, K. S. & Schlessinger, J. The precise sequence of FGF receptor autophosphorylation is kinetically driven and is disrupted by oncogenic mutations. Sci. Signal. 2, ra6 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Kouhara, H. et al. A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway. Cell 89, 693–702 (1997).

    Article  CAS  PubMed  Google Scholar 

  77. Ong, S. H. et al. Stimulation of phosphatidylinositol 3-kinase by fibroblast growth factor receptors is mediated by coordinated recruitment of multiple docking proteins. Proc. Natl. Acad. Sci. USA 98, 6074–6079 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ong, S. H. et al. FRS2 proteins recruit intracellular signaling pathways by binding to diverse targets on fibroblast growth factor and nerve growth factor receptors. Mol. Cell. Biol. 20, 979–989 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Manning, B. D. & Toker, A. AKT/PKB signaling: navigating the network. Cell 169, 381–405 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chen, G. J., Weylie, B., Hu, C., Zhu, J. & Forough, R. FGFR1/PI3K/AKT signaling pathway is a novel target for antiangiogenic effects of the cancer drug fumagillin (TNP-470). J. Cell. Biochem. 101, 1492–1504 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Forough, R. et al. Role of AKT/PKB signaling in fibroblast growth factor-1 (FGF-1)-induced angiogenesis in the chicken chorioallantoic membrane (CAM). J. Cell. Biochem. 94, 109–116 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Wang, J. et al. PI3K-AKT pathway mediates growth and survival signals during development of fetal mouse lung. Tissue Cell 37, 25–35 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Hossain, M. A., Russell, J. C., Gomes, R. & Laterra, J. Neuroprotection by scatter factor/hepatocyte growth factor and FGF-1 in cerebellar granule neurons is phosphatidylinositol 3-kinase/akt-dependent and MAPK/CREB-independent. J. Neurochem. 81, 365–378 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Cowley, S., Paterson, H., Kemp, P. & Marshall, C. J. Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell 77, 841–852 (1994).

    Article  CAS  PubMed  Google Scholar 

  85. Chen, C. W. et al. The signals of FGFs on the neurogenesis of embryonic stem cells. J. Biomed. Sci. 17, 33 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Weekes, D. et al. Regulation of osteosarcoma cell lung metastasis by the c-Fos/AP-1 target FGFR1. Oncogene 35, 2852–2861 (2016).

    Article  CAS  PubMed  Google Scholar 

  87. Bai, Y. P. et al. FGF-1/-3/FGFR4 signaling in cancer-associated fibroblasts promotes tumor progression in colon cancer through Erk and MMP-7. Cancer Sci. 106, 1278–1287 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Buehler, A. et al. Angiogenesis-independent cardioprotection in FGF-1 transgenic mice. Cardiovasc. Res. 55, 768–777 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Mohammadi, M. et al. A tyrosine-phosphorylated carboxy-terminal peptide of the fibroblast growth factor receptor (Flg) is a binding site for the SH2 domain of phospholipase C-gamma 1. Mol. Cell. Biol. 11, 5068–5078 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Mohammadi, M. et al. Point mutation in FGF receptor eliminates phosphatidylinositol hydrolysis without affecting mitogenesis. Nature 358, 681–684 (1992).

    Article  CAS  PubMed  Google Scholar 

  91. Bae, J. H. et al. The selectivity of receptor tyrosine kinase signaling is controlled by a secondary SH2 domain binding site. Cell 138, 514–524 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Plotnikov, A. N., Schlessinger, J., Hubbard, S. R. & Mohammadi, M. Structural basis for FGF receptor dimerization and activation. Cell 98, 641–650 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Peters, K. G. et al. Point mutation of an FGF receptor abolishes phosphatidylinositol turnover and Ca2+ flux but not mitogenesis. Nature 358, 678–681 (1992).

    Article  CAS  PubMed  Google Scholar 

  94. Dudka, A. A., Sweet, S. M. & Heath, J. K. Signal transducers and activators of transcription-3 binding to the fibroblast growth factor receptor is activated by receptor amplification. Cancer Res. 70, 3391–3401 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lin, W. F. et al. SH2B1beta enhances fibroblast growth factor 1 (FGF1)-induced neurite outgrowth through MEK-ERK1/2-STAT3-Egr1 pathway. Cell. Signal. 21, 1060–1072 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Wu, X. et al. Separating mitogenic and metabolic activities of fibroblast growth factor 19 (FGF19). Proc. Natl. Acad. Sci. USA 107, 14158–14163 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wu, X. et al. FGF19-induced hepatocyte proliferation is mediated through FGFR4 activation. J. Biol. Chem. 285, 5165–5170 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Lewis, J. E. et al. Antibody-mediated targeting of the fgfr1c isoform increases glucose uptake in white and brown adipose tissue in male mice. Endocrinology 158, 3090–3096 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Huang, C. et al. A novel fibroblast growth factor-1 ligand with reduced heparin binding protects the heart against ischemia-reperfusion injury in the presence of heparin co-administration. Cardiovasc. Res. 113, 1585–1602 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Huang, Z. et al. Uncoupling the mitogenic and metabolic functions of FGF1 by tuning FGF1-FGF receptor dimer stability. Cell Rep. 20, 1717–1728 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Schlessinger, J. et al. Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol. Cell 6, 743–750 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Delehedde, M., Lyon, M., Gallagher, J. T., Rudland, P. S. & Fernig, D. G. Fibroblast growth factor-2 binds to small heparin-derived oligosaccharides and stimulates a sustained phosphorylation of p42/44 mitogen-activated protein kinase and proliferation of rat mammary fibroblasts. Biochem. J. 366, 235–244 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mori, S. et al. Direct binding of integrin alphavbeta3 to FGF1 plays a role in FGF1 signaling. J. Biol. Chem. 283, 18066–18075 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yamaji, S. et al. A novel fibroblast growth factor-1 (FGF1) mutant that acts as an FGF antagonist. PLoS One 5, e10273 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Eliceiri, B. P., Klemke, R., Strömblad, S. & Cheresh, D. A. Integrin alphavbeta3 requirement for sustained mitogen-activated protein kinase activity during angiogenesis. J. Cell Biol. 140, 1255–1263 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Gadaleta, R. M. & Moschetta, A. Metabolic Messengers: fibroblast growth factor 15/19. Nat. Metab. 1, 588–594 (2019).

    Article  PubMed  Google Scholar 

  107. Flippo, K. H. & Potthoff, M. J. Metabolic Messengers: FGF21. Nat. Metab. 3, 309–317 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bookout, A. L. et al. FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat. Med. 19, 1147–1152 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lan, T. et al. FGF19, FGF21, and an FGFR1/β-klotho-activating antibody act on the nervous system to regulate body weight and glycemia. Cell Metab. 26, 709–718.e3 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Struik, D., Dommerholt, M. B. & Jonker, J. W. Fibroblast growth factors in control of lipid metabolism: from biological function to clinical application. Curr. Opin. Lipidol. 30, 235–243 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Markan, K. R. et al. FGF21 resistance is not mediated by downregulation of beta-klotho expression in white adipose tissue. Mol. Metab. 6, 602–610 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Gallego-Escuredo, J. M. et al. Opposite alterations in FGF21 and FGF19 levels and disturbed expression of the receptor machinery for endocrine FGFs in obese patients. Int. J. Obes. 39, 121–129 (2015).

    Article  CAS  Google Scholar 

  113. Degirolamo, C., Sabbà, C. & Moschetta, A. Therapeutic potential of the endocrine fibroblast growth factors FGF19, FGF21 and FGF23. Nat. Rev. Drug Discov. 15, 51–69 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Atkins and R. Yu for their assistance with reviewing the manuscript and thank C. Brondos for administrative assistance. This work was supported by grants from the Howard Hughes Medical Institute (to R.M.E.), NIH (DK057978) and the Nomis Foundation (Science of Health). R.M.E. holds the March of Dimes Chair in Molecular and Developmental Biology at the Salk Institute. E.G. was supported by a Swiss National Science Foundation (SNF) fellowship (P400PM_180759). G.S. was supported by a Deutsche Forschungsgemeinschaft (DFG) postdoctoral fellowship (SA 2991/1-1).

Author information

Authors and Affiliations

Authors

Contributions

E.G., G.S., M.D. and R.M.E. researched data for the article and wrote the manuscript. All authors contributed to discussion of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Ronald M. Evans.

Ethics declarations

Competing interests

M.D. and R.M.E are co-inventors of mutated FGF1 proteins and their methods of use, and may be entitled to royalties. All other authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gasser, E., Sancar, G., Downes, M. et al. Metabolic Messengers: fibroblast growth factor 1. Nat Metab 4, 663–671 (2022). https://doi.org/10.1038/s42255-022-00580-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-022-00580-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing