Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sex differences in the intergenerational inheritance of metabolic traits

Abstract

Strong evidence suggests that early-life exposures to suboptimal environmental factors, including those in utero, influence our long-term metabolic health. This has been termed developmental programming. Mounting evidence suggests that the growth and metabolism of male and female fetuses differ. Therefore, sexual dimorphism in response to pre-conception or early-life exposures could contribute to known sex differences in susceptibility to poor metabolic health in adulthood. However, until recently, many studies, especially those in animal models, focused on a single sex, or, often in the case of studies performed during intrauterine development, did not report the sex of the animal at all. In this review, we (a) summarize the evidence that male and females respond differently to a suboptimal pre-conceptional or in utero environment, (b) explore the potential biological mechanisms that underlie these differences and (c) review the consequences of these differences for long-term metabolic health, including that of subsequent generations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Factors that influence the intergenerational inheritance of metabolic traits at each stage of organismal development.
Fig. 2: Sexual dimorphic effects related to sex chromosomes and sex hormones.
Fig. 3: Developmental epigenetic reprogramming leading to sex-related effects on gene expression patterns.
Fig. 4: Sexual dimorphic effects related to mitochondria.
Fig. 5: Sex differences in placental and maternal adaptations to pregnancy.
Fig. 6: Pathways leading to sex differences in the intergenerational inheritance of metabolic disease.

Similar content being viewed by others

References

  1. Tramunt, B. et al. Sex differences in metabolic regulation and diabetes susceptibility. Diabetologia 63, 453–461 (2020).

    Article  PubMed  Google Scholar 

  2. World Health Organization. Obesity and overweight. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (2021).

  3. Fernandez-Twinn, D. S., Hjort, L., Novakovic, B., Ozanne, S. E. & Saffery, R. Intrauterine programming of obesity and type 2 diabetes. Diabetologia 62, 1789–1801 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wu, L. L. et al. Mitochondrial dysfunction in oocytes of obese mothers: transmission to offspring and reversal by pharmacological endoplasmic reticulum stress inhibitors. Development 142, 681–691 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. de Castro Barbosa, T. et al. High-fat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring. Mol. Metab. 5, 184–197 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chang, R. C., Wang, H., Bedi, Y. & Golding, M. C. Preconception paternal alcohol exposure exerts sex-specific effects on offspring growth and long-term metabolic programming. Epigenetics Chromatin 12, 9 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Donkin, I. & Barrès, R. Sperm epigenetics and influence of environmental factors. Mol. Metab. 14, 1–11 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ge, Z.-J. et al. Maternal diabetes causes alterations of DNA methylation statuses of some imprinted genes in murine oocytes. Biol. Reprod. 88, 117 (2013).

    Article  PubMed  Google Scholar 

  9. Dearden, L., Bouret, S. G. & Ozanne, S. E. Sex and gender differences in developmental programming of metabolism. Mol. Metab. 15, 8–19 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Barker, D. J. P. The origins of the developmental origins theory. J. Intern. Med. 261, 412–417 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Hales, C. N. et al. Fetal and infant growth and impaired glucose tolerance at age 64. BMJ 303, 1019–1022 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gluckman, P. D., Hanson, M. A., Phil, D., Cooper, C. & Thornburg, K. L. Effect of in utero and early-life conditions on adult health and disease. N. Engl. J. Med. 359, 61–73 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ravelli, A. C. J., Van Der Meulen, J. H. P., Osmond, C., Barker, D. J. P. & Bleker, O. P. Obesity at the age of 50 y in men and women exposed to famine prenatally. Am. J. Clin. Nutr. 70, 811–816 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Van Duijn, L., Rousian, M., Laven, J. S. E. & Steegers-Theunissen, R. P. M. Periconceptional maternal body mass index and the impact on post-implantation (sex-specific) embryonic growth and morphological development. Int. J. Obes. 45, 2369–2376 (2021).

    Article  Google Scholar 

  15. Francis, E. C., Dabelea, D., Shankar, K. & Perng, W. Maternal diet quality during pregnancy is associated with biomarkers of metabolic risk among male offspring. Diabetologia 64, 2478–2490 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Stein, A. D. et al. Anthropometric measures in middle age after exposure to famine during gestation: evidence from the Dutch famine. Am. J. Clin. Nutr. 85, 869–876 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Andres, A. et al. Longitudinal body composition of children born to mothers with normal weight, overweight, and obesity. Obesity 23, 1252–1258 (2015).

    Article  PubMed  Google Scholar 

  18. Watkins, A. J., Rubini, E., Hosier, E. D. & Morgan, H. L. Paternal programming of offspring health. Early Hum. Dev. 150, 105185 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Pembrey, M. E. et al. Sex-specific, male-line transgenerational responses in humans. Eur. J. Hum. Genet. 14, 159–166 (2006).

    Article  PubMed  Google Scholar 

  20. Kocourkova, J., Burcin, B. & Kucera, T. Demographic relevancy of increased use of assisted reproduction in European countries. Reprod. Health 11, 37 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Schieve, L. A. et al. Low and very low birth weight in infants conceived with use of assisted reproductive technology. N. Engl. J. Med. 346, 731–737 (2002).

    Article  PubMed  Google Scholar 

  22. de Waal, E. et al. The cumulative effect of assisted reproduction procedures on placental development and epigenetic perturbations in a mouse model. Hum. Mol. Genet. 24, 6975–6985 (2015).

    PubMed  PubMed Central  Google Scholar 

  23. Vrooman, L. A. et al. Assisted reproductive technologies induce temporally specific placental defects and the preeclampsia risk marker sFLT1 in mouse. Development 147, dev186551 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Heber, M. F. & Ptak, G. E. The effects of assisted reproduction technologies on metabolic health and disease. Biol. Reprod. 104, 734–744 (2021).

    Article  PubMed  Google Scholar 

  25. Belva, F. et al. Pubertal development in ICSI children. Hum. Reprod. 27, 1156–1161 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Donjacour, A., Liu, X., Lin, W., Simbulan, R. & Rinaudo, P. F. In vitro fertilization affects growth and glucose metabolism in a sex-specific manner in an outbred mouse model. Biol. Reprod. 90, 80 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Eriksson, J. G., Kajantie, E., Osmond, C., Thornburg, K. & Barker, D. J. P. Boys live dangerously in the womb. Am. J. Hum. Biol. 22, 330–335 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Desoye, G. & Wells, J. C. K. Pregnancies in diabetes and obesity: the capacity-load model of placental adaptation. Diabetes 70, 823–830 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vatten, L. J. & Skjærven, R. Offspring sex and pregnancy outcome by length of gestation. Early Hum. Dev. 76, 47–54 (2004).

    Article  PubMed  Google Scholar 

  30. Teulings, N. E. W. D. et al. Independent influences of maternal obesity and fetal sex on maternal cardiovascular adaptation to pregnancy: a prospective cohort study. Int. J. Obes. 44, 2246–2255 (2020).

    Article  Google Scholar 

  31. Broere-Brown, Z. A. et al. Fetal sex and maternal pregnancy outcomes: a systematic review and meta-analysis. Biol. Sex. Differ. 11, 26 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Aiken, C. E. & Ozanne, S. E. Sex differences in developmental programming models. Reproduction 145, R1–R13 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Mao, J. et al. Contrasting effects of different maternal diets on sexually dimorphic gene expression in the murine placenta. Proc. Natl Acad. Sci. USA 107, 5557–5562 (2010). This paper uncovered pronounced sexual dimorphism in gene expression patterns in placentae of litters exposed to abnormal maternal diets.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Binder, N. K. et al. Paternal obesity in a rodent model affects placental gene expression in a sex-specific manner. Reproduction 149, 435–444 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Lecoutre, S. et al. Depot- and sex-specific effects of maternal obesity in offspring’s adipose tissue. J. Endocrinol. 230, 39–53 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Rahman, M. S. & Pang, M.-G. New biological insights on X and Y chromosome-bearing spermatozoa. Front. Cell Dev. Biol. 7, 388 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Khramtsova, E. A., Davis, L. K. & Stranger, B. E. The role of sex in the genomics of human complex traits. Nat. Rev. Genet. 20, 173–190 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Deng, X., Berletch, J. B., Nguyen, D. K. & Disteche, C. M. X chromosome regulation: diverse patterns in development, tissues and disease. Nat. Rev. Genet. 15, 367–378 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Migeon, B. R. Females are Mosaic: X Inactivation and Sex Differences in Disease (Oxford University Press, 2007).

    Google Scholar 

  40. Link, J. C. et al. X chromosome dosage of histone demethylase KDM5C determines sex differences in adiposity. J. Clin. Invest. 130, 5688–5702 (2020). This study demonstrated that the dosage differences of the X-linked escapee gene Kdm5c contribute to the male/female differences in adipocyte biology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Goossens, G. H., Jocken, J. W. E. & Blaak, E. E. Sexual dimorphism in cardiometabolic health: the role of adipose tissue, muscle and liver. Nat. Rev. Endocrinol. 17, 47–66 (2021).

    Article  PubMed  Google Scholar 

  42. Aguet, F. et al. The impact of sex on gene expression across human tissues. Science 369, eaba3066 (2020). This study provided a survey of sex differences in the human transcriptome and its genetic regulation across 44 human tissues.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gershoni, M. & Pietrokovski, S. The landscape of sex-differential transcriptome and its consequent selection in human adults. BMC Biol. 15, 7 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lopes-Ramos, C. M. et al. Sex differences in gene expression and regulatory networks across 29 human tissues. Cell Rep. 31, 107795 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Christianto, A. et al. Sex differences in metabolic pathways are regulated by Pfkfb3 and Pdk4 expression in rodent muscle. Commun. Biol. 4, 1264 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Norheim, F. et al. Gene-by-sex interactions in mitochondrial functions and cardio-metabolic traits. Cell Metab. 29, 932–949 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chella Krishnan, K. et al. Sex-specific metabolic functions of adipose lipocalin-2. Mol. Metab. 30, 30–47 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Waxman, D. J. & O’Connor, C. Growth hormone regulation of sex-dependent liver gene expression. Mol. Endocrinol. 20, 2613–2629 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Sugathan, A. & Waxman, D. J. Genome-wide analysis of chromatin states reveals distinct mechanisms of sex-dependent gene regulation in male and female mouse liver. Mol. Cell. Biol. 33, 3594–3610 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hao, P. & Waxman, D. J. STAT5 regulation of sex-dependent hepatic CpG methylation at distal regulatory elements mapping to sex-biased genes. Mol. Cell. Biol. 41, e00166–e00220 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Blekhman, R., Marioni, J. C., Zumbo, P., Stephens, M. & Gilad, Y. Sex-specific and lineage-specific alternative splicing in primates. Genome Res. 20, 180–189 (2010). This paper identified genes that exhibit sex-specific alternative splicing in primates, with evidence for possible contribution to human evolution.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lindholm, M. E. et al. The human skeletal muscle transcriptome: sex differences, alternative splicing, and tissue homogeneity assessed with RNA sequencing. FASEB J. 28, 4571–4581 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Mayne, B. T. et al. Large-scale gene expression meta-analysis reveals tissue-specific, sex-biased gene expression in humans. Front. Genet. 7, 183 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gao, A. et al. Sexual dimorphism in glucose metabolism is shaped by androgen-driven gut microbiome. Nat. Commun. 12, 7080 (2021). This study identified an important contribution of androgen to the differences in glucose metabolism between the two sexes, through the modulation of the gut microbiome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cross, T. L., Kasahara, K. & Rey, F. E. Sexual dimorphism of cardiometabolic dysfunction: gut microbiome in the play? Mol. Metab. 15, 70–81 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wankhade, U. D. et al. Maternal high-fat diet programs offspring liver steatosis in a sexually dimorphic manner in association with changes in gut microbial ecology in mice. Sci. Rep. 8, 16502 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Reik, W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447, 425–432 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Smallwood, S. A. et al. Dynamic CpG island methylation landscape in oocytes and preimplantation embryos. Nat. Genet. 43, 811–814 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dahl, J. A. et al. Broad histone H3K4me3 domains in mouse oocytes modulate maternal-to-zygotic transition. Nature 537, 548–552 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hammoud, S. S. et al. Distinctive chromatin in human sperm packages genes for embryo development. Nature 460, 473–478 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Molaro, A. et al. Sperm methylation profiles reveal features of epigenetic inheritance and evolution in primates. Cell 146, 1029–1041 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lismer, A. et al. Histone H3 lysine 4 trimethylation in sperm is transmitted to the embryo and associated with diet-induced phenotypes in the offspring. Dev. Cell 56, 671–686 (2021).

    Article  CAS  PubMed  Google Scholar 

  63. Hemberger, M., Dean, W. & Reik, W. Epigenetic dynamics of stem cells and cell lineage commitment: digging Waddington’s canal. Nat. Rev. Mol. Cell Biol. 10, 526–537 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Tucci, V., Isles, A. R., Kelsey, G. & Ferguson-Smith, A. C. Genomic imprinting and physiological processes in mammals. Cell 176, 952–965 (2019).

    Article  CAS  PubMed  Google Scholar 

  65. Inoue, A., Jiang, L., Lu, F., Suzuki, T. & Zhang, Y. Maternal H3K27me3 controls DNA methylation-independent imprinting. Nature 547, 419–424 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Mei, H. et al. H2AK119ub1 guides maternal inheritance and zygotic deposition of H3K27me3 in mouse embryos. Nat. Genet. 53, 539–550 (2021).

    Article  CAS  PubMed  Google Scholar 

  67. Branco, M. R. et al. Maternal DNA methylation regulates early trophoblast development. Dev. Cell 36, 152–163 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kong, Q. et al. Histone variant H3.3-mediated chromatin remodeling is essential for paternal genome activation in mouse preimplantation embryos. J. Biol. Chem. 293, 3829–3838 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Torres-Padilla, M. E., Bannister, A. J., Hurd, P. J., Kouzarides, T. & Zernicka-Goetz, M. Dynamic distribution of the replacement histone variant H3.3 in the mouse oocyte and preimplantation embryos. Int. J. Dev. Biol. 50, 455–461 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Shinagawa, T. et al. Histone variants enriched in oocytes enhance reprogramming to induced pluripotent stem cells. Cell Stem Cell 14, 217–227 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Funaya, S., Ooga, M., Suzuki, M. G. & Aoki, F. Linker histone H1FOO regulates the chromatin structure in mouse zygotes. FEBS Lett. 592, 2414–2424 (2018).

    Article  CAS  PubMed  Google Scholar 

  72. Hake, S. B. & Allis, C. D. Histone H3 variants and their potential role in indexing mammalian genomes: the ‘H3 barcode hypothesis’. Proc. Natl Acad. Sci. USA 103, 6428–6435 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Conine, C. C., Sun, F., Song, L., Rivera-Pérez, J. A. & Rando, O. J. Small RNAs gained during epididymal transit of sperm are essential for embryonic development in mice. Dev. Cell 46, 470–480 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sharma, U. et al. Small RNAs are trafficked from the epididymis to developing mammalian sperm. Dev. Cell 46, 481–494 (2017).

    Article  CAS  Google Scholar 

  75. Chen, Q. et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 351, 397–400 (2016).

    Article  CAS  PubMed  Google Scholar 

  76. Schorn, A. J., Gutbrod, M. J., LeBlanc, C. & Martienssen, R. LTR-retrotransposon control by tRNA-derived small RNAs. Cell 170, 61–71 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Engel, N. Sex differences in early embryogenesis: inter-chromosomal regulation sets the stage for sex-biased gene networks: the dialogue between the sex chromosomes and autosomes imposes sexual identity soon after fertilization. BioEssays 40, e1800073 (2018).

    Article  PubMed  Google Scholar 

  78. Burgoyne, P. S. & Arnold, A. P. A primer on the use of mouse models for identifying direct sex chromosome effects that cause sex differences in non-gonadal tissues. Biol. Sex. Differ. 7, 68 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wijchers, P. J. et al. Developmental cell sexual dimorphism in mammalian autosomal gene regulation is determined not only by Sry but by sex chromosome complement as well. Dev. Cell 19, 477–484 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Bhan, A. et al. Histone methyltransferase EZH2 is transcriptionally induced by estradiol as well as estrogenic endocrine disruptors bisphenol-A and diethylstilbestrol. J. Mol. Biol. 426, 3426–3441 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Yamane, K. et al. JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell 125, 483–495 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Tang, W. W., Kobayashi, T., Irie, N., Dietmann, S. & Surani, M. A. Specification and epigenetic programming of the human germ line. Nat. Rev. Genet. 17, 585–600 (2016).

    Article  CAS  PubMed  Google Scholar 

  83. Seisenberger, S. et al. The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol. Cell 48, 849–862 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tang, W. W. C. et al. A unique gene regulatory network resets the human germline epigenome for development. Cell 161, 1453–1467 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Huang, T. C. et al. Sex-specific chromatin remodelling safeguards transcription in germ cells. Nature 600, 737–742 (2021). This study uncovered sex-specific differences in the dynamics of repressive histone modifications remodelling during germline development, leading to different epigenomic landscapes in males and females.

    Article  CAS  PubMed  Google Scholar 

  86. Sasaki, H. & Matsui, Y. Epigenetic events in mammalian germ-cell development: reprogramming and beyond. Nat. Rev. Genet. 9, 129–140 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Xu, Q. et al. SETD2 regulates the maternal epigenome, genomic imprinting and embryonic development. Nat. Genet. 51, 844–856 (2019).

    Article  CAS  PubMed  Google Scholar 

  88. Shirane, K., Miura, F., Ito, T. & Lorincz, M. C. NSD1-deposited H3K36me2 directs de novo methylation in the mouse male germline and counteracts Polycomb-associated silencing. Nat. Genet. 52, 1088–1098 (2020).

    Article  CAS  PubMed  Google Scholar 

  89. Jaenisch, R. & Bird, A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet. 33, 245–254 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Han, L. et al. Embryonic defects induced by maternal obesity in mice derive from Stella insufficiency in oocytes. Nat. Genet. 50, 432–442 (2018).

    Article  CAS  PubMed  Google Scholar 

  91. Radford, E. J. et al. In utero effects. In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism. Science 345, 1255903 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ding, T., Mokshagundam, S., Rinaudo, P. F., Osteen, K. G. & Bruner-Tran, K. L. Paternal developmental toxicant exposure is associated with epigenetic modulation of sperm and placental Pgr and Igf2 in a mouse model. Biol. Reprod. 99, 864–876 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Pepin, A. S., Lafleur, C., Lambrot, R., Dumeaux, V. & Kimmins, S. Sperm histone H3 lysine 4 tri-methylation serves as a metabolic sensor of paternal obesity and is associated with the inheritance of metabolic dysfunction. Mol. Metab. https://doi.org/10.1016/j.molmet.2022.101463 (2022).

  94. Stanford, K. I. et al. Paternal exercise improves glucose metabolism in adult offspring. Diabetes 67, 2530–2540 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Sharma, U. et al. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science 351, 391–396 (2016).

    Article  CAS  PubMed  Google Scholar 

  96. Khulan, B. et al. Periconceptional maternal micronutrient supplementation is associated with widespread gender related changes in the epigenome: a study of a unique resource in the Gambia. Hum. Mol. Genet. 21, 2086–2101 (2012). This pilot interventional study performed in rural Gambia uncovered sex dimorphic DNA methylation changes induced by periconceptional maternal micronutrient supplementation.

    Article  CAS  PubMed  Google Scholar 

  97. Milagre, I. et al. Gender differences in global but not targeted demethylation in iPSC reprogramming. Cell Rep. 18, 1079–1089 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Pasque, V. et al. X chromosome dosage influences DNA methylation dynamics during reprogramming to mouse iPSCs. Stem Cell Rep. 10, 1537–1550 (2018).

    Article  CAS  Google Scholar 

  99. Rossmann, M. P., Dubois, S. M., Agarwal, S. & Zon, L. I. Mitochondrial function in development and disease. Dis. Model. Mech. 14, dmm048912 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Medini, H., Cohen, T. & Mishmar, D. Mitochondria are fundamental for the emergence of metazoans: on metabolism, genomic regulation, and the birth of complex organisms. Annu. Rev. Genet. 54, 151–166 (2020).

    Article  CAS  PubMed  Google Scholar 

  101. Ramalho-Santos, J. & Amaral, S. Mitochondria and mammalian reproduction. Mol. Cell. Endocrinol. 379, 74–84 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Sutovsky, P. et al. Ubiquitin tag for sperm mitochondria. Nature 402, 371–372 (1999).

    Article  CAS  PubMed  Google Scholar 

  103. Mishra, P. & Chan, D. C. Mitochondrial dynamics and inheritance during cell division, development and disease. Nat. Rev. Mol. Cell Biol. 15, 634–646 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. May-Panloup, P. et al. Low oocyte mitochondrial DNA content in ovarian insufficiency. Hum. Reprod. 20, 593–597 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Jenuth, J. P., Peterson, A. C., Fu, K. & Shoubridge, E. A. Random genetic drift in the female germline explains the rapid segregation of mammalian mitochondrial DNA. Nat. Genet. 14, 146–151 (1996).

    Article  CAS  PubMed  Google Scholar 

  106. Gemmell, N. J., Metcalf, V. J. & Allendorf, F. W. Mother’s Curse: the effect of mtDNA on individual fitness and population viability. Trends Ecol. Evol. 19, 238–244 (2004).

    Article  PubMed  Google Scholar 

  107. Dowling, D. K. & Adrian, R. E. Challenges and prospects for testing the Mother’s Curse hypothesis. Integr. Comp. Biol. 59, 875–889 (2019).

    Article  CAS  PubMed  Google Scholar 

  108. Nakada, K. et al. Mitochondria-related male infertility. Proc. Natl Acad. Sci. USA 103, 15148–15153 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Inoue, K. et al. Generation of mice with mitochondrial dysfunction by introducing mouse mtDNA carrying a deletion into zygotes. Nat. Genet. 26, 176–181 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Martikainen, M. H. et al. Decreased male reproductive success in association with mitochondrial dysfunction. Eur. J. Hum. Genet. 25, 1162–1164 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gorman, G. S., Grady, J. P. & Turnbull, D. M. Mitochondrial donation—how many women could benefit? N. Engl. J. Med. 372, 885–887 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ande, S. R. et al. Prohibitin overexpression in adipocytes induces mitochondrial biogenesis, leads to obesity development, and affects glucose homeostasis in a sex-specific manner. Diabetes 63, 3734–3741 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Miotto, P. M., McGlory, C., Holloway, T. M., Phillips, S. M. & Holloway, G. P. Sex differences in mitochondrial respiratory function in human skeletal muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 314, R909–R915 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Woodman, A. G. et al. Prenatal iron deficiency causes sex-dependent mitochondrial dysfunction and oxidative stress in fetal rat kidneys and liver. FASEB J. 32, 3254–3263 (2018).

    Article  CAS  PubMed  Google Scholar 

  115. Nicholas, L. M. et al. Exposure to maternal obesity programs sex differences in pancreatic islets of the offspring in mice. Diabetologia 63, 324–337 (2020). This study demonstrated that maternal obesity programs offspring islets in a sex-specific manner, with islets of female offspring being better at coping with a nutritionally rich postnatal environment.

    Article  CAS  PubMed  Google Scholar 

  116. Chella Krishnan, K. et al. Sex-specific genetic regulation of adipose mitochondria and metabolic syndrome by Ndufv2. Nat. Metab. 3, 1552–1568 (2021). This study identified a genetic variant at the Ndufv2 locus that regulates its activity, as well as that of at least 89 mitochondrial genes in the adipose tissue, in a sex-dependant manner.

    Article  CAS  PubMed  Google Scholar 

  117. Mitchell, S. J. et al. Effects of sex, strain and energy intake on hallmarks of aging in mice. Cell Metab. 23, 1093–1112 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Napso, T. et al. Diet-induced maternal obesity impacts feto-placental growth and induces sex-specific alterations in placental morphology, mitochondrial bioenergetics, dynamics, lipid metabolism and oxidative stress in mice. Acta Physiol. 3, e13795 (2022).

    Google Scholar 

  119. Theys, N., Bouckenooghe, T., Ahn, M. T., Remacle, C. & Reusens, B. Maternal low-protein diet alters pancreatic islet mitochondrial function in a sex-specific manner in the adult rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297, R1516–R1525 (2009).

    Article  CAS  PubMed  Google Scholar 

  120. Shelley, P. et al. Altered skeletal muscle insulin signaling and mitochondrial complex II-III linked activity in adult offspring of obese mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297, R675–R681 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Christians, J. K. The placenta’s role in sexually dimorphic fetal growth strategies. Reprod. Sci. https://doi.org/10.1007/S43032-021-00780-3 (2021).

    Article  PubMed  Google Scholar 

  122. Kalisch-Smith, J. I., Simmons, D. G., Pantaleon, M. & Moritz, K. M. Sex differences in rat placental development: from pre-implantation to late gestation. Biol. Sex. Differ. 8, 17 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. O’Connell, B. A., Moritz, K. M., Roberts, C. T., Walker, D. W. & Dickinson, H. The placental response to excess maternal glucocorticoid exposure differs between the male and female conceptus in spiny mice. Biol. Reprod. 85, 1040–1047 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Wang, Y., Bucher, M. & Myatt, L. Use of glucose, glutamine and fatty acids for trophoblast respiration in lean, obese and gestational diabetic women. J. Clin. Endocrinol. Metab. 104, 4178–4187 (2019).

    Article  PubMed Central  Google Scholar 

  125. Gong, S. et al. Placental polyamine metabolism differs by fetal sex, fetal growth restriction, and preeclampsia. JCI Insight 3, e120723 (2018). This study identified a link between placental polyamine metabolism and sex-related differences in placenta-related complications of human pregnancy.

    Article  PubMed Central  Google Scholar 

  126. Wieczorek, A. et al. Sex-specific regulation of stress-induced fetal glucocorticoid surge by the mouse placenta. Am. J. Physiol. Endocrinol. Metab. 317, E109–E120 (2019).

    Article  CAS  PubMed  Google Scholar 

  127. Gonzalez, T. L. et al. Sex differences in the late first trimester human placenta transcriptome. Biol. Sex Differ. 9, 4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Sun, T. et al. Sexually dimorphic cross-talk at the maternal-fetal interface. J. Clin. Endocrinol. Metab. 105, e4831–e4847 (2020).

    Article  PubMed Central  Google Scholar 

  129. Gong, S. et al. Genome-wide oxidative bisulfite sequencing identifies sex-specific methylation differences in the human placenta. Epigenetics 13, 228–239 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Braun, A. E. et al. Examining sex differences in the human placental transcriptome during the first fetal androgen peak. Reprod. Sci. 28, 801–818 (2021).

    Article  CAS  PubMed  Google Scholar 

  131. Hamada, H. et al. Allele-specific methylome and transcriptome analysis reveals widespread imprinting in the human placenta. Am. J. Hum. Genet. 99, 1045–1058 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Nugent, B. M., O’Donnell, C. M., Epperson, C. N. & Bale, T. L. Placental H3K27me3 establishes female resilience to prenatal insults. Nat. Commun. 9, 2555 (2018). This study found sex differences in placental expression of X-linked OGT gene, leading to higher levels of the repressive histone mark H3K27me3 in female placentae.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Hardivillé, S. & Hart, G. W. Nutrient regulation of signaling, transcription, and cell physiology by O-GlcNAcylation. Cell Metab. 20, 208–213 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Gabory, A. et al. Maternal diets trigger sex-specific divergent trajectories of gene expression and epigenetic systems in mouse placenta. PLoS ONE 7, e47986 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Chen, P. Y. et al. Intrauterine calorie restriction affects placental DNA methylation and gene expression. Physiol. Genomics 45, 565–576 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kim, D. W., Young, S. L., Grattan, D. R. & Jasoni, C. L. Obesity during pregnancy disrupts placental morphology, cell proliferation, and inflammation in a sex-specific manner across gestation in the mouse. Biol. Reprod. 90, 130 (2014).

    Article  CAS  PubMed  Google Scholar 

  137. Claycombe-Larson, K. G., Bundy, A. N. & Roemmich, J. N. Paternal high-fat diet and exercise regulate sperm miRNA and histone methylation to modify placental inflammation, nutrient transporter mRNA expression and fetal weight in a sex-dependent manner. J. Nutr. Biochem. 81, 108373 (2020).

    Article  CAS  PubMed  Google Scholar 

  138. Madeja, Z. et al. Paternal MHC expression on mouse trophoblast affects uterine vascularization and fetal growth. Proc. Natl Acad. Sci. USA 108, 4012–4017 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Napso, T., Yong, H. E. J., Lopez-Tello, J. & Sferruzzi-Perri, A. N. The role of placental hormones in mediating maternal adaptations to support pregnancy and lactation. Front. Physiol. 9, 1091 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Napso, T. et al. Placental secretome characterization identifies candidates for pregnancy complications. Commun. Biol. 4, 701 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Cleaton, M. A. et al. Fetus-derived DLK1 is required for maternal metabolic adaptations to pregnancy and is associated with fetal growth restriction. Nat. Genet. 48, 1473–1480 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Douglas, C. et al. CRISPR–Cas9 effectors facilitate generation of single-sex litters and sex-specific phenotypes. Nat. Commun. 12, 6926 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Winkler, T. W. et al. The influence of age and sex on genetic associations with adult body size and shape: a large-scale genome-wide interaction study. PLoS Genet. 11, e1005378 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Savva, C. et al. Obese mother offspring have hepatic lipidic modulation that contributes to sex-dependent metabolic adaptation later in life. Commun. Biol. 4, 14 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Litzenburger, T. et al. Maternal high-fat diet induces long-term obesity with sex-dependent metabolic programming of adipocyte differentiation, hypertrophy and dysfunction in the offspring. Clin. Sci. 134, 921–939 (2020).

    Article  CAS  Google Scholar 

  146. Fullston, T. et al. Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. FASEB J. 27, 4226–4243 (2013).

    Article  CAS  PubMed  Google Scholar 

  147. Pramfalk, C. et al. Sex-specific differences in hepatic fat oxidation and synthesis may explain the higher propensity for NAFLD in men. J. Clin. Endocrinol. Metab. 100, 4425–4433 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Samuelsson, A. M., Matthews, P. A., Jansen, E., Taylor, P. D. & Poston, L. Sucrose feeding in mouse pregnancy leads to hypertension, and sex-linked obesity and insulin resistance in female offspring. Front. Physiol. 4, 14 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Dearden, L. & Balthasar, N. Sexual dimorphism in offspring glucose-sensitive hypothalamic gene expression and physiological responses to maternal high-fat diet feeding. Endocrinology 155, 2144–2154 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Almeida, M. M. et al. Perinatal maternal high-fat diet induces early obesity and sex-specific alterations of the endocannabinoid system in white and brown adipose tissue of weanling rat offspring. Br. J. Nutr. 118, 788–803 (2017).

    Article  CAS  PubMed  Google Scholar 

  151. Hufnagel, A. et al. Maternal but not fetoplacental health can be improved by metformin in a murine diet-induced model of maternal obesity and glucose intolerance. J. Physiol. https://doi.org/10.1113/JP281902 (2021).

    Article  PubMed  Google Scholar 

  152. Schoonejans, J. M. et al. Maternal metformin intervention during obese glucose-intolerant pregnancy affects adiposity in young adult mouse offspring in a sex-specific manner. Int. J. Mol. Sci. 22, 8104 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Petry, C. J., Dorling, M. W., Pawlak, D. B., Ozanne, S. E. & Hales, C. N. Diabetes in old male offspring of rat dams fed a reduced protein diet. Int. J. Exp. Diabetes Res. 2, 139–143 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Fernandez-Twinn, D. S. et al. Maternal protein restriction leads to hyperinsulinemia and reduced insulin-signaling protein expression in 21-month-old female rat offspring. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288, R368–R373 (2005).

    Article  CAS  PubMed  Google Scholar 

  155. Samuelsson, A. M. et al. Diet-induced obesity in female mice leads to offspring hyperphagia, adiposity, hypertension, and insulin resistance: a novel murine model of developmental programming. Hypertension 51, 383–392 (2008).

    Article  CAS  PubMed  Google Scholar 

  156. Lomas‐Soria, C. et al. Maternal obesity has sex‐dependent effects on insulin, glucose and lipid metabolism and the liver transcriptome in young adult rat offspring. J. Physiol. 596, 4611–4628 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Della Torre, S. Non-alcoholic fatty liver disease as a canonical example of metabolic inflammatory-based liver disease showing a sex-specific prevalence: relevance of estrogen signaling. Front. Endocrinol. 11, 572490 (2020).

    Article  Google Scholar 

  158. Villa, A. et al. Tetradian oscillation of estrogen receptor-α is necessary to prevent liver lipid deposition. Proc. Natl Acad. Sci. USA 109, 11806–11811 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Kozlov, A. V. et al. Effect of estrogen on mitochondrial function and intracellular stress markers in rat liver and kidney following trauma-hemorrhagic shock and prolonged hypotension. Mol. Med. 16, 254–261 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Yasuda, M., Shimizu, I., Shiba, M. & Ito, S. Suppressive effects of estradiol on dimethylnitrosamine-induced fibrosis of the liver in rats. Hepatology 29, 719–727 (1999).

    Article  CAS  PubMed  Google Scholar 

  161. Sampathkumar, N. K. et al. Widespread sex-dimorphism in aging and age-related diseases. Hum. Genet. 139, 333–356 (2020).

    Article  PubMed  Google Scholar 

  162. Blackburn, E. H., Epel, E. S. & Lin, J. Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection. Science 350, 1193–1198 (2015).

    Article  CAS  PubMed  Google Scholar 

  163. Gardner, M. et al. Gender and telomere length: systematic review and meta-analysis. Exp. Gerontol. 51, 15–27 (2014).

    Article  CAS  PubMed  Google Scholar 

  164. Horvath, S. et al. An epigenetic clock analysis of race/ethnicity, sex, and coronary heart disease. Genome Biol. 17, 171 (2016). This study found that epigenetic ageing rates are significantly associated with sex, which may contribute to the lower mortality rates in women.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Sugrue, V. J. et al. Castration delays epigenetic aging and feminizes DNA methylation at androgen-regulated loci. Elife 10, e64932 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Zambrano, E., Lomas-Soria, C. & Nathanielsz, P. W. Rodent studies of developmental programming and ageing mechanisms: special issue: in utero and early-life programming of ageing and disease. Eur. J. Clin. Invest. 51, e13631 (2021).

    Article  CAS  PubMed  Google Scholar 

  167. Parkinson, J. R. C. et al. Clinical and molecular evidence of accelerated ageing following very preterm birth. Pediatr. Res. 87, 1005–1010 (2019).

    Article  CAS  PubMed  Google Scholar 

  168. Girchenko, P. et al. Associations between maternal risk factors of adverse pregnancy and birth outcomes and the offspring epigenetic clock of gestational age at birth. Clin. Epigenetics 9, 49 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Shrestha, D., Workalemahu, T. & Tekola-Ayele, F. Maternal dyslipidemia during early pregnancy and epigenetic ageing of the placenta. Epigenetics 14, 1030–1039 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Accounting for sex in the genome. Nat. Med. 23, 1243 (2017).

  171. Mank, J. E. & Rideout, E. J. Developmental mechanisms of sex differences: from cells to organisms. Development 148, 199750 (2021).

    Article  CAS  Google Scholar 

  172. Christians, J. K., Shergill, H. K. & Albert, A. Y. K. Sex-dependent effects of prenatal food and protein restriction on offspring physiology in rats and mice: systematic review and meta-analyses. Biol. Sex Differ. 12, 21 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Chin, E. H. & Christians, J. K. When are sex-specific effects really sex-specific? J. Dev. Orig. Health Dis. 6, 438–442 (2015).

    Article  CAS  PubMed  Google Scholar 

  174. Pietzner, M. et al. Mapping the proteo-genomic convergence of human diseases. Science 374, eabj1541 (2021).

    Article  CAS  PubMed  Google Scholar 

  175. Karp, N. A. et al. Prevalence of sexual dimorphism in mammalian phenotypic traits. Nat. Commun. 8, 15475 (2017). This large high-throughput study analysed 234 traits in thousands of mice and found that a large proportion of mammalian traits in both wild-type and mutants are influenced by sex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. van der Bijl, W. & Mank, J. E. Widespread cryptic variation in genetic architecture between the sexes. Evol. Lett. 5, 359–369 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Juliusdottir, T. et al. Distinction between the effects of parental and fetal genomes on fetal growth. Nat. Genet. 53, 1135–1142 (2021).

    Article  CAS  PubMed  Google Scholar 

  178. Keleher, M. R. et al. Maternal high-fat diet associated with altered gene expression, DNA methylation and obesity risk in mouse offspring. PLoS ONE 13, e0192606 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Chang, E. et al. Programming effects of maternal and gestational obesity on offspring metabolism and metabolic inflammation. Sci. Rep. 9, 16027 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Khamoui, A. V., Desai, M., Ross, M. G. & Rossiter, H. B. Sex-specific effects of maternal and postweaning high-fat diet on skeletal muscle mitochondrial respiration. J. Dev. Orig. Health Dis. 9, 670–677 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Marchese, E. et al. Enumerating B cells in whole human islets: sex differences and associations with clinical outcomes after islet transplantation. Diabetes Care 38, e176–e177 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Argente-Arizón, P. et al. The hypothalamic inflammatory/gliosis response to neonatal overnutrition is sex and age dependent. Endocrinology 159, 368–387 (2018).

    Article  CAS  PubMed  Google Scholar 

  183. Óvilo, C. et al. Prenatal programming in an obese swine model: sex-related effects of maternal energy restriction on morphology, metabolism and hypothalamic gene expression. Br. J. Nutr. 111, 735–746 (2014).

    Article  CAS  PubMed  Google Scholar 

  184. Bohacek, J. & Mansuy, I. M. Molecular insights into transgenerational non-genetic inheritance of acquired behaviours. Nat. Rev. Genet. 16, 641–652 (2015).

    Article  CAS  PubMed  Google Scholar 

  185. Jawaid, A., Jehle, K.-L. & Mansuy, I. M. Impact of parental exposure on offspring health in humans. Trends Genet. 37, 373–388 (2021).

    Article  CAS  PubMed  Google Scholar 

  186. Heard, E. & Martienssen, R. A. Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157, 95–109 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Lawson, H. A., Cheverud, J. M. & Wolf, J. B. Genomic imprinting and parent-of-origin effects on complex traits. Nat. Rev. Genet. 14, 609–617 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Surani, M. A., Barton, S. C. & Norris, M. L. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308, 548–550 (1984).

    Article  CAS  PubMed  Google Scholar 

  189. McGrath, J. & Solter, D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37, 179–183 (1984).

    Article  CAS  PubMed  Google Scholar 

  190. Angiolini, E. et al. Regulation of placental efficiency for nutrient transport by imprinted genes. Placenta 27, S98–S102 (2006).

    Article  CAS  PubMed  Google Scholar 

  191. Hanna, C. W. Placental imprinting: emerging mechanisms and functions. PLoS Genet. 16, e1008709 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Rahimi, S. et al. Moderate maternal folic acid supplementation ameliorates adverse embryonic and epigenetic outcomes associated with assisted reproduction in a mouse model. Hum. Reprod. 34, 851–862 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Thomas, K. N. et al. Maternal background alters the penetrance of growth phenotypes and sex-specific placental adaptation of offspring sired by alcohol-exposed males. FASEB J. 35, e22035 (2021).

    Article  CAS  PubMed  Google Scholar 

  194. Aykroyd, B. R. L., Tunster, S. J. & Sferruzzi-Perri, A. N. Igf2 deletion alters mouse placenta endocrine capacity in a sexually dimorphic manner. J. Endocrinol. 246, 93–108 (2020).

    Article  CAS  PubMed  Google Scholar 

  195. Aykroyd, B. R. L., Tunster, S. J. & Sferruzzi-Perri, A. N. Loss of imprinting of the Igf2-H19 ICR1 enhances placental endocrine capacity via sex-specific alterations in signalling pathways in the mouse. Development 149, dev199811 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Sandovici, I., Hoelle, K., Angiolini, E. & Constância, M. Placental adaptations to the maternal-fetal environment: implications for fetal growth and developmental programming. Reprod. Biomed. Online 25, 68–89 (2012).

    Article  PubMed  Google Scholar 

  197. Small, K. S. et al. Regulatory variants at KLF14 influence type 2 diabetes risk via a female-specific effect on adipocyte size and body composition. Nat. Genet. 50, 572–580 (2018). This human study demonstrated that the metabolic risk associated with a genetic variation at the imprinted KLF14 locus depends on the sex both of the subject and of the parent from whom the risk allele derives.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Yang, Q. et al. Adipocyte-specific modulation of KLF14 expression in mice leads to sex-dependent impacts on adiposity and lipid metabolism. Diabetes https://doi.org/10.2337/db21-0674 (2022).

  199. Messerschmidt, D. M. et al. Trim28 is required for epigenetic stability during mouse oocyte to embryo transition. Science 335, 1499–1502 (2012).

    Article  CAS  PubMed  Google Scholar 

  200. Bojkowska, K. et al. Liver-specific ablation of Krüppel-associated box-associated protein 1 in mice leads to male-predominant hepatosteatosis and development of liver adenoma. Hepatology 56, 1279–1290 (2012).

    Article  CAS  PubMed  Google Scholar 

  201. Bond, S. T. et al. Deletion of Trim28 in committed adipocytes promotes obesity but preserves glucose tolerance. Nat. Commun. 12, 74 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Tanaka, K. et al. Paternally expressed gene 3 (Pw1/Peg3) promotes sexual dimorphism in metabolism and behavior. PLoS Genet. 18, e1010003 (2022). This study identified the paternally expressed imprinted Peg3/Pw1 gene as an important regulator of male-specific metabolic characteristics, acting through sex steroid pathways.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the Medical Research Council (MRC_MC_UU_00014/4 to M.C. and S.E.O.) and the British Heart Foundation (RG/17/12/33167 to S.E.O.). A.H. was supported by a Wellcome Trust studentship (108926/B/15/Z).

Author information

Authors and Affiliations

Authors

Contributions

S.E.O. and D.S.F.-T. conceived the outline and wrote the synopsis of the review. S.E.O. and M.C. elaborated the concepts, wrote the introductory and concluding sections, gave feedback on all other sections, and had oversight of this review. A.H. wrote the section on sexual dimorphism vulnerabilities during pre-conception and intrauterine development, including Table 1, and drew Fig. 1. I.S. wrote the section on biological mechanisms leading to sex differences in intergenerational programming of metabolic traits and drew Figs. 26. D.S.F.-T. wrote the section on consequences for long-term and intergenerational inheritance of metabolic traits. All authors read and gave feedback on all sections, and approved the final version of the paper.

Corresponding authors

Correspondence to Miguel Constância or Susan E. Ozanne.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Metabolism thanks Kelle Moley and Michael Golding for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandovici, I., Fernandez-Twinn, D.S., Hufnagel, A. et al. Sex differences in the intergenerational inheritance of metabolic traits. Nat Metab 4, 507–523 (2022). https://doi.org/10.1038/s42255-022-00570-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-022-00570-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing