Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Super-enhancer-driven metabolic reprogramming promotes cystogenesis in autosomal dominant polycystic kidney disease

Abstract

Metabolic reprogramming is emerging as a key pathological contributor to the progression of autosomal dominant polycystic kidney disease (ADPKD), but the molecular mechanisms underlying dysregulated cellular metabolism in cystic cells remain elusive. Super-enhancers (SEs) are large clusters of transcriptional enhancers that drive robust expression of cell identity and disease genes. Here, we show that SEs undergo extensive remodelling during cystogenesis and that SE-associated transcripts are most enriched for metabolic processes in cystic cells. Inhibition of cyclin-dependent kinase 7 (CDK7), a transcriptional kinase required for assembly and maintenance of SEs, or AMP deaminase 3 (AMPD3), one of the SE-driven and CDK7-controlled metabolic target genes, delays cyst growth in ADPKD mouse models. In a cohort of people with ADPKD, CDK7 expression was frequently elevated, and its expression was correlated with AMPD3 expression and disease severity. Together, our findings elucidate a mechanism by which SE controls transcription of metabolic genes during cystogenesis, and identify SE-driven metabolic reprogramming as a promising therapeutic target for ADPKD treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization of the SE landscape of ADPKD cells.
Fig. 2: Control of expression of metabolic genes by cystic-cell-specific SEs.
Fig. 3: Expression and activity of CDK7 in ADPKD cells and kidney tissues.
Fig. 4: Effects of CDK7 inhibition on growth and survival of cystic cells in vitro.
Fig. 5: Effects of THZ1 treatment on cyst formation and growth in mouse models of early- and late-onset ADPKD.
Fig. 6: Identification of SE-driven and THZ1-rescued target genes in ADPKD cells.
Fig. 7: Regulation of AMP metabolism and AMPK activity by AMPD3 in ADPKD.
Fig. 8: Effects of AMPD3 inhibition on cystogenesis in the early-onset ADPKD model.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. The RNA-seq and ChIP–seq data can be found at the Gene Expression Omnibus database under accession number GSE141281. Source data are provided with this paper.

References

  1. Bergmann, C. et al. Polycystic kidney disease. Nat. Rev. Dis. Primers 4, 50 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Cornec-Le Gall, E., Alam, A. & Perrone, R. D. Autosomal dominant polycystic kidney disease. Lancet 393, 919–935 (2019).

    Article  PubMed  Google Scholar 

  3. Padovano, V., Podrini, C., Boletta, A. & Caplan, M. J. Metabolism and mitochondria in polycystic kidney disease research and therapy. Nat. Rev. Nephrol. 14, 678–687 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Menezes, L. F. & Germino, G. G. The pathobiology of polycystic kidney disease from a metabolic viewpoint. Nat. Rev. Nephrol. 15, 735–749 (2019).

  5. Rowe, I. & Boletta, A. Defective metabolism in polycystic kidney disease: potential for therapy and open questions. Nephrol. Dial. Transplant. 29, 1480–1486 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Rowe, I. et al. Defective glucose metabolism in polycystic kidney disease identifies a new therapeutic strategy. Nat. Med. 19, 488–493 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chiaravalli, M. et al. 2-Deoxy-d-glucose ameliorates PKD progression. J. Am. Soc. Nephrol. 27, 1958–1969 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Menezes, L. F., Lin, C. C., Zhou, F. & Germino, G. G. Fatty acid oxidation is impaired in an orthologous mouse model of autosomal dominant polycystic kidney disease. EBioMedicine 5, 183–192 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lakhia, R. et al. PPARα agonist fenofibrate enhances fatty acid beta-oxidation and attenuates polycystic kidney and liver disease in mice. Am. J. Physiol. Renal Physiol. 314, F122–F131 (2018).

    Article  PubMed  CAS  Google Scholar 

  10. Hwang, V. J. et al. The cpk model of recessive PKD shows glutamine dependence associated with the production of the oncometabolite 2-hydroxyglutarate. Am. J. Physiol. Renal Physiol. 309, F492–F498 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Soomro, I. et al. Glutamine metabolism via glutaminase 1 in autosomal-dominant polycystic kidney disease. Nephrol. Dial. Transplant. 33, 1343–1353 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Podrini, C. et al. Dissection of metabolic reprogramming in polycystic kidney disease reveals coordinated rewiring of bioenergetic pathways. Commun. Biol. 1, 194 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Lin, C. C. et al. A cleavage product of polycystin-1 is a mitochondrial matrix protein that affects mitochondria morphology and function when heterologously expressed. Sci. Rep. 8, 2743 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Kuo, I. Y. et al. Polycystin 2 regulates mitochondrial Ca2+ signaling, bioenergetics, and dynamics through mitofusin 2. Sci. Signal 12, eaat7397 (2019).

  15. Ishimoto, Y. et al. Mitochondrial abnormality facilitates cyst formation in autosomal dominant polycystic kidney disease. Mol. Cell. Biol. 37, e00337-17 (2017).

  16. Harris, P. C. & Torres, V. E. Genetic mechanisms and signaling pathways in autosomal dominant polycystic kidney disease. J. Clin. Invest. 124, 2315–2324 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Padovano, V. et al. The polycystins are modulated by cellular oxygen-sensing pathways and regulate mitochondrial function. Mol. Biol. Cell 28, 261–269 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu, D. et al. Identification of key genes and candidated pathways in human autosomal dominant polycystic kidney disease by bioinformatics analysis. Kidney Blood Press. Res. 44, 533–552 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. de Almeida, R. M. et al. Transcriptome analysis reveals manifold mechanisms of cyst development in ADPKD. Hum. Genomics 10, 37 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Whyte, W. A. et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307–319 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sengupta, S. & George, R. E. Super-enhancer-driven transcriptional dependencies in cancer. Trends Cancer 3, 269–281 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Compe, E. & Egly, J. M. Nucleotide excision repair and transcriptional regulation: TFIIH and Beyond. Annu. Rev. Biochem. 85, 265–290 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Shin, H. Y. Targeting super-enhancers for disease treatment and diagnosis. Mol. Cells 41, 506–514 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Niederriter, A. R., Varshney, A., Parker, S. C. & Martin, D. M. Super enhancers in cancers, complex disease, and developmental disorders. Genes (Basel) 6, 1183–1200 (2015).

    Article  CAS  Google Scholar 

  25. Chapin, H. C. & Caplan, M. J. The cell biology of polycystic kidney disease. J. Cell Biol. 191, 701–710 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Podrini, C., Cassina, L. & Boletta, A. Metabolic reprogramming and the role of mitochondria in polycystic kidney disease. Cell. Signal. 67, 109495 (2019).

    Article  PubMed  CAS  Google Scholar 

  27. Bustamante, E., Morris, H. P. & Pedersen, P. L. Energy metabolism of tumor cells. Requirement for a form of hexokinase with a propensity for mitochondrial binding. J. Biol. Chem. 256, 8699–8704 (1981).

    Article  CAS  PubMed  Google Scholar 

  28. Cho, H. P., Nakamura, M. T. & Clarke, S. D. Cloning, expression, and nutritional regulation of the mammalian Delta-6 desaturase. J. Biol. Chem. 274, 471–477 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Kaur, H., Kumar, C., Junot, C., Toledano, M. B. & Bachhawat, A. K. Dug1p Is a Cys-Gly peptidase of the gamma-glutamyl cycle of Saccharomyces cerevisiae and represents a novel family of Cys-Gly peptidases. J. Biol. Chem. 284, 14493–14502 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim, J. T., Li, V. L., Terrell, S. M., Fischer, C. R. & Long, J. Z. Family-wide annotation of enzymatic pathways by parallel in vivo metabolomics. Cell Chem. Biol. 26, 1623–1629 (2019). e1623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ahmad, S. et al. Catalytic characterization of human microsomal glutathione S-transferase 2: identification of rate-limiting steps. Biochemistry 52, 1755–1764 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Morisaki, T., Sabina, R. L. & Holmes, E. W. Adenylate deaminase. A multigene family in humans and rats. J. Biol. Chem. 265, 11482–11486 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. Patterson, S. L., Sluka, K. A. & Arnold, M. A. A novel transverse push-pull microprobe: in vitro characterization and in vivo demonstration of the enzymatic production of adenosine in the spinal cord dorsal horn. J. Neurochem. 76, 234–246 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Mahnke-Zizelman, D. K. & Sabina, R.L. Cloning of human AMP deaminase isoform E cDNAs. Evidence for a third AMPD gene exhibiting alternatively spliced 5′-exons. J. Biol. Chem. 267, 20866–20877 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Song, X. et al. Systems biology of autosomal dominant polycystic kidney disease (ADPKD): computational identification of gene expression pathways and integrated regulatory networks. Hum. Mol. Genet. 18, 2328–2343 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Herzig, S. & Shaw, R. J. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol. 19, 121–135 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Chen, L. et al. Macrophage migration inhibitory factor promotes cyst growth in polycystic kidney disease. J. Clin. Invest. 125, 2399–2412 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Calvet, J. P. Polycystic kidney disease: primary extracellular matrix abnormality or defective cellular differentiation? Kidney Int. 43, 101–108 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).

    Article  CAS  Google Scholar 

  40. Saint-Andre, V. et al. Models of human core transcriptional regulatory circuitries. Genome Res. 26, 385–396 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang, X., Cairns, M. J. & Yan, J. Super-enhancers in transcriptional regulation and genome organization. Nucleic Acids Res. 47, 11481–11496 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sun, Y. et al. Activation of P-TEFb by cAMP–PKA signaling in autosomal dominant polycystic kidney disease. Sci. Adv. 5, eaaw3593 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zippo, A. et al. Histone crosstalk between H3S10ph and H4K16ac generates a histone code that mediates transcription elongation. Cell 138, 1122–1136 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Kanno, T. et al. BRD4 assists elongation of both coding and enhancer RNAs by interacting with acetylated histones. Nat. Struct. Mol. Biol. 21, 1047–1057 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhou, X. et al. Therapeutic targeting of BET bromodomain protein, Brd4, delays cyst growth in ADPKD. Hum. Mol. Genet. 24, 3982–3993 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Seeger-Nukpezah, T., Geynisman, D. M., Nikonova, A. S., Benzing, T. & Golemis, E. A. The hallmarks of cancer: relevance to the pathogenesis of polycystic kidney disease. Nat. Rev. Nephrol. 11, 515–534 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lian, X. et al. The combination of metformin and 2-deoxyglucose significantly inhibits cyst formation in miniature pigs with polycystic kidney disease. Br. J. Pharmacol. 176, 711–724 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hajarnis, S. et al. microRNA-17 family promotes polycystic kidney disease progression through modulation of mitochondrial metabolism. Nat. Commun. 8, 14395 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee, E. C. et al. Discovery and preclinical evaluation of anti-miR-17 oligonucleotide RGLS4326 for the treatment of polycystic kidney disease. Nat. Commun. 10, 4148 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Takiar, V. et al. Activating AMP-activated protein kinase (AMPK) slows renal cystogenesis. Proc. Natl Acad. Sci. USA 108, 2462–2467 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Leonhard, W. N. et al. Salsalate, but not metformin or canagliflozin, slows kidney cyst growth in an adult-onset mouse model of polycystic kidney disease. EBioMedicine 47, 436–445 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Seliger, S. L. et al. A randomized clinical trial of metformin to treat autosomal dominant polycystic kidney disease. Am. J. Nephrol. 47, 352–360 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pisani, A., Riccio, E., Bruzzese, D. & Sabbatini, M. Metformin in autosomal dominant polycystic kidney disease: experimental hypothesis or clinical fact? BMC Nephrol. 19, 282 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sarvaria, A., Topp, Z. & Saven, A. Current therapy and new directions in the treatment of hairy cell leukemia: a review. JAMA Oncol. 2, 123–129 (2016).

    Article  PubMed  Google Scholar 

  55. Thike, A. A., Chng, M. J., Fook-Chong, S. & Tan, P. H. Immunohistochemical expression of hormone receptors in invasive breast carcinoma: correlation of results of H-score with pathological parameters. Pathology 33, 21–25 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Shibazaki, S. et al. Cyst formation and activation of the extracellular regulated kinase pathway after kidney specific inactivation of Pkd1. Hum. Mol. Genet. 17, 1505–1516 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yang, Y. et al. Interactions between macrophages and cyst-lining epithelial cells promote kidney cyst growth in Pkd1-deficient mice. J. Am. Soc. Nephrol. 29, 2310–2325 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cao, X. et al. Targeting super-enhancer-driven oncogenic transcription by CDK7 inhibition in anaplastic thyroid carcinoma. Thyroid 29, 809–823 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants (31571337 and 81770658 to Y.C. and 31700144 to Z.M.) from the National Natural Science Foundation of China, a grant (2017YFA0504102 to Y.C.) from the National Key Research and Development Program of China, a grant (to Y.C.) from the Excellent Talent Project of Tianjin Medical University, grants (19JCJQJC63800 to Y.C. and 17JCQNJC10600 to Z.M.) from Tianjin Municipal Science and Technology Commission and a grant (2019ZD027 to Y.C.) from Tianjin Municipal Education Commission.

Author information

Authors and Affiliations

Authors

Contributions

Z.M. performed mouse and biochemistry studies. Y. Song performed mouse and biochemistry studies. X.C. performed bioinformatics analysis. Y.L., Y. Sun and C.H. provided expertise on mouse studies. Z.L. provided expertise on bioinformatics analysis. X.Z. performed bioinformatics analysis. M.G. performed mouse studies. B.L. provided expertise on biochemistry studies. H.X. provided human specimens. L.Z. designed the project and analysed data. Y.C. conceived, designed and supervised the project, analysed data and wrote the manuscript.

Corresponding author

Correspondence to Yupeng Chen.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Peer review information Primary Handling Editor: Pooja Jha.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Enhancer characterization in PH and PN cells.

a, The heatmap of normalized H3K27ac ChIP-seq signal in PH and PN cells. The rows show 3 kb around the H3K27ac peak centre. b, Composite plots of normalized ChIP-seq signals for H3K27ac in PH and PN cells. The x-axis represents distance from the H3K27ac peaks and y-axis represents probability density. c, KEGG enrichment analysis of PN-lost SEs (n = 250 genes). Numbers beside bars indicate numbers of differently expressed genes in that KEGG category. P values obtained by hypergeometric test. d, Gene ontology enrichment analysis of the unchanged SEs (n = 347 genes). Numbers beside bars indicate numbers of differently expressed genes in that GO category. P values obtained by hypergeometric test.

Source data

Extended Data Fig. 2 Comparison of differential expressed genes in ADPKD cells, mouse and human kidney tissues.

Comparison of upregulated (a) and downregulated (c) genes in cells, mouse and human kidney tissues. Gene ontology enrichment analysis of the overlap upregulated genes (b) and downregulated genes (d). Numbers beside bars indicate numbers of differently expressed genes in that GO category. P values obtained by hypergeometric test. e, Scatter plot showing expression changes of SE-driven genes in cells and mouse kidney tissues. x-axis: log2 (fold change) from PN versus PH cells; y-axis: log2 (fold change) from ADPKD mouse kidney tissues versus normal kidney tissues. f, Heatmap demonstrating expression values of 29 candidate genes in cells and mouse kidney tissues. Rows show Z scores calculated for each group.

Source data

Extended Data Fig. 3 Effects of THZ1 treatment on cell proliferation, apoptosis and body weight in ADPKD mouse model.

a, Immunohistochemistry analysis of PCNA expression in P29 Pkd1−/− mice injected with THZ1 or DMSO, n = 3 biologically independent mice per group; Data are represented as means ± s.e.m. Unpaired two-sided Student’s t-test was used for statistical analysis, **P = 0.0051. b, Immunofluorescence analysis of TUNEL level from P29 Pkd1−/− mice injected with THZ1 or DMSO, n = 3 biologically independent mice per group; Data are represented as means ± s.e.m. Unpaired two-sided Student’s t-test was used for statistical analysis, *P = 0.0161. c, Body weight of mice from late-onset ADPKD mouse model. Scale bars, 10 µm (a) and 50 µm (b).

Source data

Extended Data Fig. 4 Expression of THZ1-rescued genes in ADPKD mouse kidneys.

qRT-PCR analysis of THZ1 downregulated (a) and upregulated (b) genes mRNA level in THZ1 treated mouse kidney tissues (n = 3 biologically independent mice per group). Data are represented as means ± s.e.m., analysed by unpaired two-sided Student’s t-test, Sh3rf2 *P = 0.0127, Adamts5 **P = 0.0053, Arhgef2 ****P < 0.0001, Sh3bp2 **P = 0.0096, Mdh1 **P = 0.0071, Fdxr **P = 0.0038, Csrp2 ***P = 0.0006, Aldh9a1 **P = 0.0098.

Source data

Extended Data Fig. 5 The ratio of AMP to ATP decreased in PN cells.

a, HPLC analysis of total AMP and ATP concentrations from PH and PN cell perchlorate extracts. b, The ratio of AMP to ATP in PH and PN cells (n = 3 biologically independent experiments). Data are represented as means ± s.e.m., analysed by unpaired two-sided Student’s t-test, **P = 0.0073.

Source data

Supplementary information

Source data

Source Data Fig. 1

Statistical source Data

Source Data Fig. 2

Statistical source Data

Source Data Fig. 3

Statistical source Data

Source Data Fig. 3

Unprocessed Western Blots

Source Data Fig. 4

Statistical source Data

Source Data Fig. 4

Unprocessed Western Blots

Source Data Fig. 5

Statistical source Data

Source Data Fig. 6

Statistical source Data

Source Data Fig. 7

Statistical source Data

Source Data Fig. 7

Unprocessed Western Blots

Source Data Fig. 8

Statistical source Data

Source Data Extended Data Fig. 1

Statistical source Data

Source Data Extended Data Fig. 2

Statistical source Data

Source Data Extended Data Fig. 3

Statistical source Data

Source Data Extended Data Fig. 4

Statistical source Data

Source Data Extended Data Fig. 5

Statistical source Data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mi, Z., Song, Y., Cao, X. et al. Super-enhancer-driven metabolic reprogramming promotes cystogenesis in autosomal dominant polycystic kidney disease. Nat Metab 2, 717–731 (2020). https://doi.org/10.1038/s42255-020-0227-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-020-0227-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing