Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The ins and outs of serine and glycine metabolism in cancer

Abstract

Cancer cells reprogramme their metabolism to support unrestrained proliferation and survival in nutrient-poor conditions. Whereas non-transformed cells often have lower demands for serine and glycine, several cancer subtypes hyperactivate intracellular serine and glycine synthesis and become addicted to de novo production. Copy-number amplifications of serine- and glycine-synthesis genes and genetic alterations in common oncogenes and tumour-suppressor genes enhance serine and glycine synthesis, resulting in high production and secretion of these oncogenesis-supportive metabolites. In this Review, we discuss the contribution of serine and glycine synthesis to cancer progression. By relying on de novo synthesis pathways, cancer cells are able to enhance macromolecule synthesis, neutralize high levels of oxidative stress and regulate methylation and tRNA formylation. Furthermore, we discuss the immunosuppressive potential of serine and glycine, and the essentiality of both amino acids to promoting survival of non-transformed neighbouring cells. Finally, we point to the emerging data proposing moonlighting functions of serine- and glycine-synthesis enzymes and examine promising small molecules targeting serine and glycine synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The anabolic serine and glycine synthesis side-branch of glycolysis.
Fig. 2: Amplifications of serine- and glycine-synthesis genes occur in many cancer types.
Fig. 3: Outputs of serine and glycine synthesis and one-carbon metabolism.
Fig. 4: Regulators of serine and glycine synthesis.
Fig. 5: Serine and glycine synthesis in the microenvironment.

Similar content being viewed by others

References

  1. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011). This seminal paper summarizes the key changes involved in cancerous cell transformation, including metabolic rewiring.

  2. Deberardinis, R. J. & Chandel, N. S. Fundamentals of cancer metabolism. Sci. Adv. 2, e1600200 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Phan, L. M., Yeung, S. C. J. & Lee, M. H. Cancer metabolic reprogramming: importance, main features, and potentials for precise targeted anti-cancer therapies. Cancer Biol. Med. 11, 1–19 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Article  Google Scholar 

  5. Deberardinis, R. J. & Chandel, N. S. We need to talk about the Warburg effect. Nat. Metab. 2, 127–129 (2020).

    Article  PubMed  Google Scholar 

  6. Sullivan, M. R. & Vander Heiden, M. G. When cancer needs what’s non-essential. Nat. Cell Biol. 19, 418–420 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. de Koning, T. J. et al. l-Serine in disease and development. Biochem. J. 371, 653–661 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Locasale, J. W. et al. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat. Genet. 43, 869–874 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Possemato, R. et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476, 346–350 (2011). This is a milestone paper describing the role of serine and glycine synthesis addiction in cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Locasale, J. W. & Cantley, L. C. Genetic selection for enhanced serine metabolism in cancer development. Cell Cycle 10, 3812–3813 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Amelio, I., Cutruzzolá, F., Antonov, A., Agostini, M. & Melino, G. Serine and glycine metabolism in cancer. Trends Biochem. Sci. 39, 191–198 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chaneton, B. et al. Serine is a natural ligand and allosteric activator of pyruvate kinase M2. Nature 491, 458–462 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hitosugi, T. et al. Phosphoglycerate mutase 1 coordinates glycolysis and biosynthesis to promote tumor growth. Cancer Cell 22, 585–600 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Christofk, H. R. et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452, 230–233 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Wubben, T. J. et al. Small molecule activation of metabolic enzyme pyruvate kinase muscle isozyme 2, PKM2, circumvents photoreceptor apoptosis. Sci. Rep. 10, 2990 (2020).

  16. Kung, C. et al. Small molecule activation of PKM2 in cancer cells induces serine auxotrophy. Chem. Biol. 19, 1187–1198 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mullarky, E., Mattaini, K. R., Vander Heiden, M. G., Cantley, L. C. & Locasale, J. W. PHGDH amplification and altered glucose metabolism in human melanoma. Pigment Cell Melanoma Res. 24, 1112–1115 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Kim, S. K., Jung, W. H. & Koo, J. S. Differential expression of enzymes associated with serine/glycine metabolism in different breast cancer subtypes. PLoS ONE 9, e101004 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Liao, L. et al. Upregulation of phosphoserine phosphatase contributes to tumor progression and predicts poor prognosis in non-small cell lung cancer patients. Thorac. Cancer 10, 1203–1212 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim, D. et al. SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance. Nature 520, 363–367 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Paone, A. et al. SHMT1 knockdown induces apoptosis in lung cancer cells by causing uracil misincorporation. Cell Death Dis. 5, e1525 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tan, E. H. et al. A multicentre phase II gene expression profiling study of putative relationships between tumour biomarkers and clinical response with erlotinib in non-small-cell lung cancer. Ann. Oncol. 21, 217–222 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Reis-Filho, J. S. et al. EGFR amplification and lack of activating mutations in metaplastic breast carcinomas. J. Pathol. 209, 445–453 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. DeBerardinis, R. J. Serine metabolism: some tumors take the road less traveled. Cell Metab. 14, 285–286 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pacold, M. E. et al. A PHGDH inhibitor reveals coordination of serine synthesis and one-carbon unit fate. Nat. Chem. Biol. 12, 452–458 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mullarky, E. et al. Identification of a small molecule inhibitor of 3-phosphoglycerate dehydrogenase to target serine biosynthesis in cancers. Proc. Natl Acad. Sci. USA 113, 1778–1783 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhu, J. et al. High expression of PHGDH predicts poor prognosis in non-small cell lung cancer. Transl. Oncol. 9, 592–599 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Xian, Y. et al. Phosphoglycerate dehydrogenase is a novel predictor for poor prognosis in gastric cancer. Onco. Targets Ther. 9, 5553–5560 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yin, K. Positive correlation between expression level of mitochondrial serine hydroxymethyltransferase and breast cancer grade. Onco. Targets Ther. 8, 1069–1074 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sun, L. et al. cMyc-mediated activation of serine biosynthesis pathway is critical for cancer progression under nutrient deprivation conditions. Cell Res. 25, 429–444 (2015). This paper identified cMyc as an upstream regulator of serine and glycine synthesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang, B. et al. PHGDH defines a metabolic subtype in lung adenocarcinomas with poor prognosis. Cell Rep. 19, 2289–2303 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Kampen, K. R. et al. Translatome analysis reveals altered serine and glycine metabolism in T-cell acute lymphoblastic leukemia cells. Nat. Commun. 10, 2542 (2019). This paper highlights translational regulation of de novo serine and glycine synthesis.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fan, T. W. M. et al. De novo synthesis of serine and glycine fuels purine nucleotide biosynthesis in human lung cancer tissues. J. Biol. Chem. 294, 13464–13477 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Locasale, J. W. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat. Rev. Cancer 13, 572–583 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Newman, A. C. & Maddocks, O. D. K. One-carbon metabolism in cancer. Br. J. Cancer 116, 1499–1504 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tibbetts, A. S. & Appling, D. R. Compartmentalization of mammalian folate-mediated one-carbon metabolism. Annu. Rev. Nutr. 30, 57–81 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Ducker, G. S. et al. Reversal of cytosolic one-carbon flux compensates for loss of the mitochondrial folate pathway. Cell Metab. 23, 1140–1153 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Finkelstein, J. D. Methionine metabolism in mammals. J. Nutr. Biochem. 1, 228–237 (1990).

    Article  CAS  PubMed  Google Scholar 

  39. Kinney, A. J. & Moore, T. S. Phosphatidylcholine synthesis in castor bean endosperm. Plant Physiol. 84, 78–81 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hwang, S. et al. Serine-dependent sphingolipid synthesis is a metabolic liability of aneuploid cells. Cell Rep. 21, 3807–3818 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gao, X. et al. Serine availability influences mitochondrial dynamics and function through lipid metabolism. Cell Rep. 22, 3507–3520 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schwartz, N. U. et al. Decreased ceramide underlies mitochondrial dysfunction in Charcot–Marie–Tooth 2F. FASEB J. 32, 1716–1728 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Muthusamy, T. et al. Serine restriction alters sphingolipid diversity to constrain tumour growth. Nature 586, 790–795 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bartke, N. & Hannun, Y. A. Bioactive sphingolipids: metabolism and function. J. Lipid Res. 50, S96 (2009).

    Article  Google Scholar 

  45. Ye, J. et al. Serine catabolism regulates mitochondrial redox control during hypoxia. Cancer Discov. 4, 1406–1417 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Da Veiga Moreira, J. et al. The redox status of cancer cells supports mechanisms behind the Warburg effect. Metabolites 6, 33 (2016).

    Article  PubMed Central  Google Scholar 

  47. Davis, S. R. et al. Tracer-derived total and folate-dependent homocysteine remethylation and synthesis rates in humans indicate that serine is the main one-carbon donor. Am. J. Physiol. Metab. 286, E272–E279 (2004).

    CAS  Google Scholar 

  48. Maddocks, O. D. K., Labuschagne, C. F., Adams, P. D. & Vousden, K. H. Serine metabolism supports the methionine cycle and DNA/RNA methylation through de novo ATP synthesis in cancer cells. Mol. Cell 61, 210–221 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yu, W. et al. One-carbon metabolism supports S-adenosylmethionine and histone methylation to drive inflammatory macrophages. Mol. Cell 75, 1147–1160 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Tran, T. Q., Lowman, X. H. & Kong, M. Molecular pathways: metabolic control of histone methylation and gene expression in cancer. Clin. Cancer Res. 23, 4004–4009 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Carey, B. W., Finley, L. W. S., Cross, J. R., Allis, C. D. & Thompson, C. B. Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518, 413–416 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Minton, D. R. et al. Serine catabolism by SHMT2 is required for proper mitochondrial translation initiation and maintenance of formylmethionyl-tRNAs. Mol. Cell 69, 610–621 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Morscher, R. J. et al. Mitochondrial translation requires folate-dependent tRNA methylation. Nature 554, 128–132 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Adams, C. M. Role of the transcription factor ATF4 in the anabolic actions of insulin and the anti-anabolic actions of glucocorticoids. J. Biol. Chem. 282, 16744–16753 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. DeNicola, G. M. et al. NRF2 regulates serine biosynthesis in non–small cell lung cancer. Nat. Genet. 47, 1475–1481 (2015). This paper identified NRF2 as an upstream regulator of serine and glycine synthesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Vattem, K. M. & Wek, R. C. Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc. Natl Acad. Sci. USA 101, 11269–11274 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ye, J. et al. Pyruvate kinase M2 promotes de novo serine synthesis to sustain mTORC1 activity and cell proliferation. Proc. Natl Acad. Sci. USA 109, 6904–6909 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mossmann, D., Park, S. & Hall, M. N. mTOR signalling and cellular metabolism are mutual determinants in cancer. Nat. Rev. Cancer 18, 744–757 (2018).

    Article  CAS  PubMed  Google Scholar 

  59. Ben-Sahra, I., Hoxhaj, G., Ricoult, S. J. H., Asara, J. M. & Manning, B. D. mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle. Science 351, 728–733 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Park, Y., Reyna-Neyra, A., Philippe, L. & Thoreen, C. C. mTORC1 balances cellular amino acid supply with demand for protein synthesis through post-transcriptional control of ATF4. Cell Rep. 19, 1083–1090 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kottakis, F. et al. LKB1 loss links serine metabolism to DNA methylation and tumorigenesis. Nature 539, 390–395 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Reina-Campos, M. et al. Increased serine and one-carbon pathway metabolism by PKCλ/ι deficiency promotes neuroendocrine prostate cancer. Cancer Cell 35, 385–400 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ma, L. et al. Control of nutrient stress-induced metabolic reprogramming by PKCζ in tumorigenesis. Cell 152, 599–611 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kim, Y. R. et al. Oncogenic NRF2 mutations in squamous cell carcinomas of oesophagus and skin. J. Pathol. 220, 446–451 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. DeNicola, G. M. et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475, 106–109 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tao, S. et al. Oncogenic KRAS confers chemoresistance by upregulating NRF2. Cancer Res 74, 7430–7441 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Maddocks, O. D. K. et al. Modulating the therapeutic response of tumours to dietary serine and glycine starvation. Nature 544, 372 (2017). This work showed the difference between cancer cells that depend on dietary serine and glycine versus de novo serine and glycine synthesis.

    Article  CAS  PubMed  Google Scholar 

  68. Sun, W. Y., Kim, H. M., Jung, W.-H. & Koo, J. S. Expression of serine/glycine metabolism-related proteins is different according to the thyroid cancer subtype. J. Transl. Med. 14, 168 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Xia, Y. et al. Metabolic reprogramming by MYCN confers dependence on the serine-glycine-one-carbon biosynthetic pathway. Cancer Res 79, 3837–3850 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nilsson, L. M. et al. Mouse genetics suggests cell-context dependency for myc-regulated metabolic enzymes during tumorigenesis. PLOS Genet. 8, e1002573 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yang, X. et al. SHMT2 desuccinylation by SIRT5 drives cancer cell proliferation. Cancer Res. 78, 372–386 (2018).

    Article  PubMed  Google Scholar 

  72. Lu, W., Zuo, Y., Feng, Y. & Zhang, M. SIRT5 facilitates cancer cell growth and drug resistance in non-small cell lung cancer. Tumor Biol. 35, 10699–10705 (2014).

    Article  CAS  Google Scholar 

  73. Wang, Y.-Q. et al. Sirtuin5 contributes to colorectal carcinogenesis by enhancing glutaminolysis in a deglutarylation-dependent manner. Nat. Commun. 9, 545 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Wei, Z. et al. Deacetylation of serine hydroxymethyl-transferase 2 by SIRT3 promotes colorectal carcinogenesis. Nat. Commun. 9, 4468 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Guo, H. et al. NRF2 SUMOylation promotes de novo serine synthesis and maintains HCC tumorigenesis. Cancer Lett. 466, 39–48 (2019).

    Article  CAS  PubMed  Google Scholar 

  76. Ding, J. et al. The histone H3 methyltransferase G9A epigenetically activates the serine-glycine synthesis pathway to sustain cancer cell survival and proliferation. Cell Metab. 18, 896–907 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Svoboda, L. K. et al. Menin regulates the serine biosynthetic pathway in Ewing sarcoma. J. Pathol. 245, 324–336 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yang, L. et al. Novel impact of the DNMT3A R882H mutation on GSH metabolism in a K562 cell model established by TALENs. Oncotarget 8, 30395–30409 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Zhao, E. et al. KDM4C and ATF4 cooperate in transcriptional control of amino acid metabolism. Cell Rep. 14, 506–519 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Dalton, W. B. et al. Hotspot SF3B1 mutations induce metabolic reprogramming and vulnerability to serine deprivation. J. Clin. Invest 129, 4708–4723 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Maddocks, O. D. K. et al. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature 493, 542–546 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Ou, Y., Wang, S.-J., Jiang, L., Zheng, B. & Gu, W. p53 protein-mediated regulation of phosphoglycerate dehydrogenase (PHGDH) is crucial for the apoptotic response upon serine starvation. J. Biol. Chem. 290, 457–466 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. Liu, J. et al. Phosphoglycerate dehydrogenase induces glioma cells proliferation and invasion by stabilizing forkhead box M1. J. Neurooncol. 111, 245–255 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Liao, Y. et al. The cardiomyocyte RNA-binding proteome: links to intermediary metabolism and heart disease. Cell Rep. 16, 1456–1469 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Castello, A. et al. Comprehensive identification of rna-binding domains in human cells. Mol. Cell 63, 696–710 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ma, X., Li, B., Liu, J., Fu, Y. & Luo, Y. Phosphoglycerate dehydrogenase promotes pancreatic cancer development by interacting with eIF4A1 and eIF4E. J. Exp. Clin. Cancer Res. 38, 66 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Metcalf, S. et al. Selective loss of phosphoserine aminotransferase 1 (PSAT1) suppresses migration, invasion, and experimental metastasis in triple negative breast cancer. Clin. Exp. Metastasis 37, 187–197 (2020).

    Article  CAS  PubMed  Google Scholar 

  88. Liu, B. et al. Overexpression of phosphoserine aminotransferase 1 (PSAT1) predicts poor prognosis and associates with tumor progression in human esophageal squamous cell carcinoma. Cell. Physiol. Biochem. 39, 395–406 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Yang, Y. et al. PSAT1 regulates cyclin D1 degradation and sustains proliferation of non-small cell lung cancer cells. Int. J. Cancer 136, E39–E50 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. Park, S.-M. et al. Phosphoserine phosphatase promotes lung cancer progression through the dephosphorylation of IRS-1 and a noncanonical l-serine-independent pathway. Mol. Cells 42, 604–616 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Collet, J.-F., Stroobant, V. & Van Schaftingen, E. Mechanistic studies of phosphoserine phosphatase, an enzyme related to P-type ATPases. J. Biol. Chem. 274, 33985–33990 (1999).

    Article  CAS  PubMed  Google Scholar 

  92. Liu, X., Reig, B., Nasrallah, I. M. & Stover, P. J. Human cytoplasmic serine hydroxymethyltransferase is an mRNA binding protein. Biochemistry 39, 11523–11531 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Castello, A. et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149, 1393–1406 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Guiducci, G. et al. The moonlighting RNA-binding activity of cytosolic serine hydroxymethyltransferase contributes to control compartmentalization of serine metabolism. Nucleic Acids Res. 47, 4240–4254 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hentze, M. W. & Preiss, T. The REM phase of gene regulation. Trends Biochem. Sci. 35, 423–426 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Zheng, H. et al. A BRISC–SHMT complex deubiquitinates IFNAR1 and regulates interferon responses. Cell Rep. 5, 180–193 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Walden, M. et al. Metabolic control of BRISC–SHMT2 assembly regulates immune signalling. Nature 570, 194–199 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Cao, J. et al. HDAC11 regulates type I interferon signaling through defatty-acylation of SHMT2. Proc. Natl Acad. Sci. USA 116, 5487–5492 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Goveia, J. et al. Meta-analysis of clinical metabolic profiling studies in cancer: challenges and opportunities. EMBO Mol. Med. 8, 1134–1142 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. He, F. et al. l-Serine lowers the inflammatory responses during pasteurella multocida infection. Infect. Immun. 87, e00677–19 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Rodriguez, A. E. et al. Serine metabolism supports macrophage IL-1β production. Cell Metab. 29, 1003–1011 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Su, S. et al. Immune checkpoint inhibition overcomes ADCP-induced immunosuppression by macrophages. Cell 175, 442–457 (2018).

    Article  CAS  PubMed  Google Scholar 

  103. Wilson, J. L. et al. Inverse data-driven modeling and multiomics analysis reveals phgdh as a metabolic checkpoint of macrophage polarization and proliferation. Cell Rep. 30, 1542–1552(2020).

    Article  CAS  PubMed  Google Scholar 

  104. Ma, E. H. et al. Serine is an essential metabolite for effector T cell expansion. Cell Metab. 25, 345–357 (2017).

    Article  CAS  PubMed  Google Scholar 

  105. Ron-Harel, N. et al. Mitochondrial biogenesis and proteome remodeling promote one-carbon metabolism for T cell activation. Cell Metab. 24, 104–117 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chang, C.-H. et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162, 1229–1241 (2015). This work emphasizes the importance of metabolic competition in the tumor microenvironment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Vandekeere, S. et al. Serine synthesis via PHGDH is essential for heme production in endothelial cells. Cell Metab. 28, 573–587 (2018).

    Article  CAS  PubMed  Google Scholar 

  108. Graham, K. & Unger, E. Overcoming tumor hypoxia as a barrier to radiotherapy, chemotherapy and immunotherapy in cancer treatment. Int. J. Nanomed. 13, 6049–6058 (2018).

    Article  CAS  Google Scholar 

  109. Samanta, D. et al. PHGDH expression is required for mitochondrial redox homeostasis, breast cancer stem cell maintenance, and lung metastasis. Cancer Res. 76, 4430–4442 (2016).

    Article  CAS  PubMed  Google Scholar 

  110. Engel, A. L. et al. Serine-dependent redox homeostasis regulates glioblastoma cell survival. Br. J. Cancer 122, 1391–1398 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhang, X. & Bai, W. Repression of phosphoglycerate dehydrogenase sensitizes triple‑negative breast cancer to doxorubicin. Cancer Chemother. Pharmacol. 78, 655–659 (2016).

    Article  CAS  PubMed  Google Scholar 

  112. Ross, K. C., Andrews, A. J., Marion, C. D., Yen, T. J. & Bhattacharjee, V. Identification of the serine biosynthesis pathway as a critical component of BRAF inhibitor resistance of melanoma, pancreatic, and non-small cell lung cancer cells. Mol. Cancer Ther. 16, 1596–1609 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Yoshino, H. et al. PHGDH as a key enzyme for serine biosynthesis in HIF2α-targeting therapy for renal cell carcinoma. Cancer Res. 77, 6321–6329 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Labuschagne, C. F., van den Broek, N. J. F., Mackay, G. M., Vousden, K. H. & Maddocks, O. D. K. Serine, but not glycine, supports one-carbon metabolism and proliferation of cancer cells. Cell Rep. 7, 1248–1258 (2014).

    Article  CAS  PubMed  Google Scholar 

  115. Gravel, S. P. et al. Serine deprivation enhances antineoplastic activity of biguanides. Cancer Res. 74, 7521–7533 (2014).

    Article  CAS  PubMed  Google Scholar 

  116. Humpton, T. J., Hock, A. K., Maddocks, O. D. K. & Vousden, K. H. p53-mediated adaptation to serine starvation is retained by a common tumour-derived mutant. Cancer Metab. 6, 18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Wang, Q. et al. Rational design of selective allosteric inhibitors of PHGDH and serine synthesis with anti-tumor activity. Cell Chem. Biol. 24, 55–65 (2017).

    Article  CAS  PubMed  Google Scholar 

  118. Unterlass, J. E. et al. Validating and enabling phosphoglycerate dehydrogenase (PHGDH) as a target for fragment-based drug discovery in PHGDH-amplified breast cancer. Oncotarget 9, 13139–13153 (2018).

    Article  PubMed  Google Scholar 

  119. Li, A. M. & Ye, J. The PHGDH enigma: do cancer cells only need serine or also a redox modulator? Cancer Lett. 476, 97–105 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ravez, S. et al. α-Ketothioamide derivatives: a promising tool to interrogate phosphoglycerate dehydrogenase (PHGDH). J. Med. Chem. 60, 1591–1597 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Mullarky, E. et al. Inhibition of 3-phosphoglycerate dehydrogenase (PHGDH) by indole amides abrogates de novo serine synthesis in cancer cells. Bioorg. Med. Chem. Lett. 29, 2503–2510 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Weinstabl, H. et al. Intracellular trapping of the selective phosphoglycerate dehydrogenase (PHGDH) inhibitor BI-4924 disrupts serine biosynthesis. J. Med. Chem. 62, 7976–7997 (2019).

    Article  CAS  PubMed  Google Scholar 

  123. Daidone, F. et al. In silico and in vitro validation of serine hydroxymethyltransferase as a chemotherapeutic target of the antifolate drug pemetrexed. Eur. J. Med. Chem. 46, 1616–1621 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Paiardini, A. et al. Screening and in vitro testing of antifolate inhibitors of human cytosolic serine hydroxymethyltransferase. ChemMedChem 10, 490–497 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ducker, G. S. et al. Human SHMT inhibitors reveal defective glycine import as a targetable metabolic vulnerability of diffuse large B-cell lymphoma. Proc. Natl Acad. Sci. USA 114, 11404–11409 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Geeraerts, S. et al. Repurposing the antidepressant sertraline as SHMT inhibitor to suppress serine/glycine synthesis addicted breast tumor growth. Mol. Cancer Ther. 20, 50–63 (2021). This paper describes the clinically used antidepressant sertraline as a dual SHMT1/2 targeting compound.

    Article  CAS  PubMed  Google Scholar 

  127. García-Cañaveras, J. C. et al. SHMT inhibition is effective and synergizes with methotrexate in T-cell acute lymphoblastic leukemia. Leukemia https://doi.org/10.1038/s41375-020-0845-6 (2020).

  128. Pikman, Y. et al. Targeting serine hydroxymethyltransferases 1 and 2 for T-cell acute lymphoblastic leukemia therapy. Preprint at bioRxiv https://doi.org/10.1101/2020.02.06.936286 (2020).

  129. Zhang, W. C. et al. Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell 148, 259–272 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.L.G. received a SB PhD fellowship from Fonds Wetenschappelijk Onderzoek (FWO) (1S14517N). E.H. is a FWO PhD fellow fundamental research (1106121N). K.D.K. was supported by a grant from Stichting Tegen Kanker (2016-112) and funding from the KU Leuven Research Council (C1 grant C14/18/104). K.R.K. was funded by the Emmanuel van der Schueren postdoctoral fellowship from Kom op tegen Kanker and a research grant from FWO (FWO KAN2018 1501419N).

Author information

Authors and Affiliations

Authors

Contributions

S.L.G., E.H., K.D.K. and K.R.K. wrote the review. S.L.G., E.H. and K.R.K. made the figures and tables. K.D.K. and K.R.K. supervised the entire study. All authors have participated in the manuscript review and approved the final manuscript.

Corresponding authors

Correspondence to Kim De Keersmaecker or Kim R. Kampen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary Handling Editor: George Caputa. Nature Metabolism thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geeraerts, S.L., Heylen, E., De Keersmaecker, K. et al. The ins and outs of serine and glycine metabolism in cancer. Nat Metab 3, 131–141 (2021). https://doi.org/10.1038/s42255-020-00329-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-020-00329-9

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer