Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Light–matter interactions in quantum nanophotonic devices

Abstract

Nanophotonics offers opportunities for engineering and exploiting the quantum properties of light by integrating quantum emitters into nanostructures, and offering reliable paths to quantum technology applications such as sources of quantum light or new quantum simulators, among many others. In this Review, we discuss common nanophotonic platforms for studying light–matter interactions, explaining their strengths and experimental state-of-the-art. Each platform works at a different interaction regime: from standard cavity quantum electrodynamics (QED) setups to unique quantum nanophotonic devices, such as chiral and non-chiral waveguide QED experiments. When several quantum emitters are integrated into nanophotonic systems, collective interactions emerge, enabling miniaturized, versatile and fast-operating quantum devices. We conclude with a perspective on the near-term opportunities offered by nanophotonics in the context of quantum technologies.

Key points

  • Nanophotonics is the field that studies how to control the properties of light at the nanoscale.

  • It began in the late 1980s with the discovery of photonic crystals, followed by subsequent waves that harnessed metals and metamaterials to engineer unique photon flows at the (semi)classical level.

  • Current experimental efforts aim at integrating these setups with natural and artificial atoms to control the light properties at the quantum level.

  • Apart from reducing the mode volume of light and thus enhancing light–matter interactions, nanophotonic setups allow the exploration of new regimes that exploit non-trivial energy dispersions and polarization patterns.

  • Quantum nanophotonics creates unique opportunities to develop a new generation of miniaturized, versatile and fast-operating quantum technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of emitters integrated with a nanophotonic structure (not to scale).
Fig. 2: Nanophotonics cavity quantum electrodynamics (QED) realizations and experimental signatures.
Fig. 3: Nanophotonic waveguide QED realizations and experimental signatures.
Fig. 4: Chiral quantum optics in waveguide QED.
Fig. 5: Collective effects in the dissipative regime.

Similar content being viewed by others

References

  1. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Ekert, A. K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  3. Reiserer, A. Colloquium: Cavity-enhanced quantum network nodes. Rev. Mod. Phys. 94, 041003 (2022).

    Article  ADS  CAS  Google Scholar 

  4. Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

    Article  ADS  CAS  Google Scholar 

  5. Ritsch, H., Domokos, P., Brennecke, F. & Esslinger, T. Cold atoms in cavity-generated dynamical optical potentials. Rev. Mod. Phys. 85, 553–601 (2013).

    Article  ADS  CAS  Google Scholar 

  6. Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology. Nat. Photon. 5, 222 (2011).

    Article  ADS  CAS  Google Scholar 

  7. Gottesman, D., Kitaev, A. & Preskill, J. Encoding a qubit in an oscillator. Phys. Rev. A 64, 012310 (2001).

    Article  ADS  Google Scholar 

  8. Grimsmo, A. L. & Puri, S. Quantum error correction with the Gottesman–Kitaev–Preskill code. PRX Quantum 2, 020101 (2021).

    Article  ADS  Google Scholar 

  9. Briegel, H. J., Browne, D. E., Dür, W., Raussendorf, R. & den Nest, M. Measurement-based quantum computation. Nat. Phys. 5, 19 (2009).

    Article  CAS  Google Scholar 

  10. Haroche, S. Nobel lecture: Controlling photons in a box and exploring the quantum to classical boundary. Rev. Mod. Phys. 85, 1083–1102 (2013).

    Article  ADS  CAS  Google Scholar 

  11. Hammerer, K., Sørensen, A. S. & Polzik, E. S. Quantum interface between light and atomic ensembles. Rev. Mod. Phys. 82, 1041–1093 (2010).

    Article  ADS  CAS  Google Scholar 

  12. Saffman, M., Walker, T. G. & Mölmer, K. Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010).

    Article  ADS  CAS  Google Scholar 

  13. Lodahl, P., Mahmoodian, S. & Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347–400 (2015).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  14. Chang, D. E., Douglas, J. S., González-Tudela, A., Hung, C.-L. & Kimble, H. J. Colloquium: Quantum matter built from nanoscopic lattices of atoms and photons. Rev. Mod. Phys. 90, 031002 (2018).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  15. Lodahl, P. et al. Chiral quantum optics. Nature 541, 473 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Dzsotjan, D., Sørensen, A. S. & Fleischhauer, M. Quantum emitters coupled to surface plasmons of a nanowire: a Green’s function approach. Phys. Rev. B 82, 75427 (2010).

    Article  ADS  Google Scholar 

  17. Gonzalez-Tudela, A. et al. Entanglement of two qubits mediated by one-dimensional plasmonic waveguides.Phys. Rev. Lett. 106, 020501 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 15006 (2019).

    Article  MathSciNet  CAS  Google Scholar 

  19. Sheremet, A. S., Petrov, M. I., Iorsh, I. V., Poshakinskiy, A. V. & Poddubny, A. N. Waveguide quantum electrodynamics: collective radiance and photon–photon correlations. Rev. Mod. Phys. 95, 015002 (2023).

    Article  ADS  CAS  Google Scholar 

  20. Tame, M. S. et al. Quantum plasmonics. Nat. Phys. 9, 329–340 (2013).

    Article  CAS  Google Scholar 

  21. Pelton, M. Modified spontaneous emission in nanophotonic structures. Nat. Photon. 9, 427–435 (2015).

    Article  ADS  CAS  Google Scholar 

  22. Doherty, M. W. et al. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528, 1–45 (2013).

    Article  ADS  CAS  Google Scholar 

  23. Bradac, C., Gao, W., Forneris, J., Trusheim, M. E. & Aharonovich, I. Quantum nanophotonics with group IV defects in diamond. Nat. Commun. 10, 5625 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Castelletto, S. & Boretti, A. Silicon carbide color centers for quantum applications. J. Phys. Photonics 2, 022001 (2020).

    Article  ADS  CAS  Google Scholar 

  25. Gritsch, A., Weiss, L., Früh, J., Rinner, S. & Reiserer, A. Narrow optical transitions in erbium-implanted silicon waveguides. Phys. Rev. X 12, 041009 (2022).

    CAS  Google Scholar 

  26. Durand, A. et al. Broad diversity of near-infrared single-photon emitters in silicon. Phys. Rev. Lett. 126, 083602 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Zhong, T. & Goldner, P. Emerging rare-earth doped material platforms for quantum nanophotonics. Nanophotonics 8, 2003–2015 (2019).

    Article  CAS  Google Scholar 

  28. Xia, F., Wang, H., Xiao, D., Dubey, M. & Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photon. 8, 899–907 (2014).

    Article  ADS  CAS  Google Scholar 

  29. Reserbat-Plantey, A. et al. Quantum nanophotonics in two-dimensional materials. ACS Photonics 8, 85–101 (2021).

    CAS  Google Scholar 

  30. Toninelli, C. et al. Single organic molecules for photonic quantum technologies. Nat. Mater. 20, 1615–1628 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Vetsch, E. et al. Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber. Phys. Rev. Lett. 104, 203603 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Goban, A. et al. Atom–light interactions in photonic crystals. Nat. Commun. 5, 3808 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Thompson, J. D. et al. Coupling a single trapped atom to a nanoscale optical cavity. Science 340, 1202–1205 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Béguin, J.-B. et al. Generation and detection of a sub-Poissonian atom number distribution in a one-dimensional optical lattice. Phys. Rev. Lett. 113, 263603 (2014).

    Article  ADS  PubMed  Google Scholar 

  35. Solano, P., Barberis-Blostein, P., Fatemi, F. K., Orozco, L. A. & Rolston, S. L. Super-radiance reveals infinite-range dipole interactions through a nanofiber. Nat. Commun. 8, 1857 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Reiserer, A. & Rempe, G. Cavity-based quantum networks with single atoms and optical photons. Rev. Mod. Phys. 87, 1379–1418 (2015).

    Article  ADS  CAS  Google Scholar 

  37. Goban, A. et al. Demonstration of a state-insensitive, compensated nanofiber trap. Phys. Rev. Lett. 109, 33603 (2012).

    Article  ADS  CAS  Google Scholar 

  38. Corzo, N. V. et al. Large Bragg reflection from one-dimensional chains of trapped atoms near a nanoscale waveguide. Phys. Rev. Lett. 117, 133603 (2016).

    Article  ADS  PubMed  Google Scholar 

  39. Sørensen, H. L. et al. Coherent backscattering of light off one-dimensional atomic strings. Phys. Rev. Lett. 117, 133604 (2016).

    Article  ADS  PubMed  Google Scholar 

  40. Corzo, N. V. et al. Waveguide-coupled single collective excitation of atomic arrays. Nature 566, 359–362 (2019).

    Article  ADS  PubMed  Google Scholar 

  41. Bouscal, A. et al. Systematic design of a robust half-W1 photonic crystal waveguide for interfacing slow light and trapped cold atoms. Preprint at https://arxiv.org/abs/2301.04675v1 (2023).

  42. Fayard, N. et al. Asymmetric comb waveguide for strong interactions between atoms and light. Preprint at https://arxiv.org/abs/2201.02507v1 (2022).

  43. Beguin, J. B. et al. Reduced volume and reflection for bright optical tweezers with radial Laguerre–Gauss beams. Proc. Natl Acad. Sci. USA 117, 26109–26117 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhou, X., Tamura, H., Chang, T.-H. & Hung, C.-L. Coupling single atoms to a nanophotonic whispering-gallery-mode resonator via optical guiding. Phys. Rev. Lett. 130, 103601 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Samutpraphoot, P. et al. Strong coupling of two individually controlled atoms via a nanophotonic cavity. Phys. Rev. Lett. 124, 063602 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Dordevic, T. et al. Entanglement transport and a nanophotonic interface for atoms in optical tweezers. Science 373, 1511–1514 (2021).

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  47. Endres, M. et al. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. Science 354, 1024–1027 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Barredo, D. et al. Coherent excitation transfer in a spin chain of three Rydberg atoms. Phys. Rev. Lett. 114, 113002 (2015).

    Article  ADS  PubMed  Google Scholar 

  49. Barredo, D., De Léséleuc, S., Lienhard, V., Lahaye, T. & Browaeys, A. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science 354, 1021–1023 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Menon, S. G., Glachman, N., Pompili, M., Dibos, A. & Bernien, H. An integrated atom array–nanophotonic chip platform with background-free imaging. Preprint at https://arxiv.org/abs/2311.02153 (2023).

  51. Zhou, X., Tamura, H., Chang, T.-H. & Hung, C.-L. Trapped atoms and superradiance on an integrated nanophotonic microring circuit. Preprint at https://arxiv.org/abs/2312.14318 (2023). 

  52. Sipahigil, A. et al. An integrated diamond nanophotonics platform for quantum-optical networks. Science 354, 847–850 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Ourari, S. et al. Indistinguishable telecom band photons from a single erbium ion in the solid state. Nature 620, 977–981 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Wolfowicz, G. et al. Quantum guidelines for solid-state spin defects. Nat. Rev. Mater. 6, 906–925 (2021).

    Article  ADS  CAS  Google Scholar 

  55. Santori, C., Fattal, D., Vukovick, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Zaporski, L. et al. Ideal refocusing of an optically active spin qubit under strong hyperfine interactions. Nat. Nanotechnol. 18, 257–263 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Faez, S., Türschmann, P., Haakh, H. R., Götzinger, S. & Sandoghdar, V. Coherent interaction of light and single molecules in a dielectric nanoguide. Phys. Rev. Lett. 113, 213601 (2014).

    Article  ADS  PubMed  Google Scholar 

  58. Wang, D. et al. Turning a molecule into a coherent two-level quantum system. Nat. Phys. 15, 483–489 (2019).

    Article  CAS  Google Scholar 

  59. Bhaskar, M. K. et al. Experimental demonstration of memory-enhanced quantum communication. Nature 580, 60–64 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  60. Ruf, M., Wan, N. H., Choi, H., Englund, D. & Hanson, R. Quantum networks based on color centers in diamond. J. Appl. Phys. 130, 070901 (2021).

    Article  ADS  CAS  Google Scholar 

  61. Fermi, E. Quantum theory of radiation. Rev. Mod. Phys. 4, 87 (1932).

    Article  ADS  CAS  Google Scholar 

  62. Cohen-Tannoudji, C., Dupont-Roc, J. & Grynberg, G. Atom–Photon Interactions (Wiley, 1998).

  63. Hennessy, K. et al. Quantum nature of a strongly coupled single quantum dot–cavity system. Nature 445, 896–899 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  64. Laucht, A. et al. A waveguide-coupled on-chip single-photon source. Phys. Rev. X 2, 11014 (2012).

    Google Scholar 

  65. Weiss, L., Gritsch, A., Merkel, B. & Reiserer, A. Erbium dopants in nanophotonic silicon waveguides. Optica 8, 40–41 (2021).

    Article  ADS  Google Scholar 

  66. Robinson, J. T., Manolatou, C., Chen, L. & Lipson, M. Ultrasmall mode volumes in dielectric optical microcavities. Phys. Rev. Lett. 95, 143901 (2005).

    Article  ADS  PubMed  Google Scholar 

  67. Hu, S. et al. Experimental realization of deep-subwavelength confinement in dielectric optical resonators. Sci. Adv. 4, eaat2355 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Albrechtsen, M. et al. Nanometer-scale photon confinement in topology-optimized dielectric cavities. Nat. Commun. 13, 6281 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chang, W.-H. et al. Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities. Phys. Rev. Lett. 96, 117401 (2006).

    Article  ADS  PubMed  Google Scholar 

  70. Chang, D. E., Sørensen, A. S., Demler, E. A. & Lukin, M. D. A single-photon transistor using nanoscale surface plasmons.Nature 3, 807–812 (2007).

    CAS  Google Scholar 

  71. Chikkaraddy, R. et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535, 127 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. Benz, F. et al. Single-molecule optomechanics in ‘picocavities’. Science 354, 726–729 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  73. Kelkar, H. et al. Sensing nanoparticles with a cantilever-based scannable optical cavity of low finesse and sub-λ3 volume. Phys. Rev. Appl. 4, 054010 (2015).

    Article  ADS  Google Scholar 

  74. Wang, D. et al. Coherent coupling of a single molecule to a scanning Fabry–Perot microcavity. Phys. Rev. X 7, 021014 (2017).

    Google Scholar 

  75. Shlesinger, I., Vandersmissen, J., Oksenberg, E., Verhagen, E. & Koenderink, A. F. Hybrid cavity-antenna architecture for strong and tunable sideband-selective molecular Raman scattering enhancement. Preprint at https://arxiv.org/abs/2306.17286v1 (2023).

  76. Smith, D. R., Pendry, J. B. & Wiltshire, M. C. Metamaterials and negative refractive index. Science 305, 788–792 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  77. Veselago, V. G. The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Usp. 10, 509 (1968).

    Article  ADS  Google Scholar 

  78. Pendry, J. B., Holden, A. J., Robbins, D. J. & Stewart, W. J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999).

    Article  ADS  Google Scholar 

  79. Bekenstein, R. et al. Quantum metasurfaces with atom arrays. Nat. Phys. 16, 676–681 (2020).

    Article  CAS  Google Scholar 

  80. Patti, T. L., Wild, D. S., Shahmoon, E., Lukin, M. D. & Yelin, S. F. Controlling interactions between quantum emitters using atom arrays. Phys. Rev. Lett. 126, 223602 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  81. Fernández-Fernández, D. & González-Tudela, A. Tunable directional emission and collective dissipation with quantum metasurfaces. Phys. Rev. Lett. 128, 113601 (2022).

    Article  ADS  PubMed  Google Scholar 

  82. Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  83. Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 13904 (2008).

    Article  ADS  CAS  Google Scholar 

  84. Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljačić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  85. Rosławska, A. et al. Mapping Lamb, Stark, and Purcell effects at a chromophore–picocavity junction with hyper-resolved fluorescence microscopy. Phys. Rev. X 12, 011012 (2022).

    Google Scholar 

  86. Andersen, M. L., Stobbe, S., Sorensen, A. S. & Lodahl, P. Strongly modified plasmon–matter interaction with mesoscopic quantum emitters. Nat. Phys. 7, 215–218 (2011).

    Article  CAS  Google Scholar 

  87. Pscherer, A. et al. Single-molecule vacuum Rabi splitting: four-wave mixing and optical switching at the single-photon level. Phys. Rev. Lett. 127, 133603 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  88. Jaynes, E. & Cummings, F. W. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51, 89–109 (1963).

    Article  Google Scholar 

  89. Gérard, J.-M. et al. Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity. Phys. Rev. Lett. 81, 1110 (1998).

    Article  ADS  Google Scholar 

  90. Bayer, M. et al. Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators. Phys. Rev. Lett. 86, 3168 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  91. Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photon. 10, 340–345 (2016).

    Article  ADS  CAS  Google Scholar 

  92. Sipahigil, A. et al. Indistinguishable photons from separated silicon-vacancy centers in diamond. Phys. Rev. Lett. 113, 113602 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  93. Knall, E. N. et al. Efficient source of shaped single photons based on an integrated diamond nanophotonic system. Phys. Rev. Lett. 129, 053603 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  94. Wein, S. C. et al. Photon-number entanglement generated by sequential excitation of a two-level atom. Nat. Photon. 16, 374–379 (2022).

    Article  ADS  CAS  Google Scholar 

  95. Schwartz, I. et al. Deterministic generation of a cluster state of entangled photons. Science 354, 434–437 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  96. Istrati, D. et al. Sequential generation of linear cluster states from a single photon emitter. Nat. Commun. 11, 5501 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  97. Tiecke, T. G. et al. Nanophotonic quantum phase switch with a single atom. Nature 508, 241–244 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  98. Sun, S., Kim, H., Solomon, G. S. & Waks, E. A quantum phase switch between a single solid-state spin and a photon. Nat. Nanotechnol. 11, 539–544 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  99. Reithmaier, J. P. et al. Strong coupling in a single quantum dot–semiconductor microcavity system. Nature 432, 197 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  100. Yoshie, T. et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  101. Peter, E. et al. Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys. Rev. Lett. 95, 67401 (2005).

    Article  ADS  CAS  Google Scholar 

  102. Reinhard, A. et al. Strongly correlated photons on a chip. Nat. Photon. 6, 93–96 (2012).

    Article  ADS  CAS  Google Scholar 

  103. Muñoz, C. S. et al. Emitters of N-photon bundles. Nat. Photon. 8, 550–555 (2014).

    Article  ADS  Google Scholar 

  104. Blais, A., Grimsmo, A. L., Girvin, S. M. & Wallraff, A. Circuit quantum electrodynamics. Rev. Mod. Phys. 93, 025005 (2021).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  105. Rugar, A. E. et al. Quantum photonic interface for tin-vacancy centers in diamond. Phys. Rev. X 11, 031021 (2021).

    CAS  Google Scholar 

  106. Kuruma, K. et al. Coupling of a single tin-vacancy center to a photonic crystal cavity in diamond. Appl. Phys. Lett. 118, 230601 (2021).

    Article  ADS  CAS  Google Scholar 

  107. Arcari, M. et al. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys. Rev. Lett. 113, 093603 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  108. Bhaskar, M. K. et al. Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Phys. Rev. Lett. 118, 223603 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  109. Akimov, I. A., Andrews, J. T. & Henneberger, F. Stimulated emission from the biexciton in a single self-assembled {II-VI} quantum dot. Phys. Rev. Lett. 96, 67401 (2006).

    Article  ADS  CAS  Google Scholar 

  110. Bermúdez-Ureña, E. et al. Coupling of individual quantum emitters to channel plasmons. Nat. Commun. 6, 7883 (2015).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  111. Uppu, R. et al. Scalable integrated single-photon source. Sci. Adv. 6, eabc8268 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  112. Uppu, R., Midolo, L., Zhou, X., Carolan, J. & Lodahl, P. Quantum-dot-based deterministic photon–emitter interfaces for scalable photonic quantum technology. Nat. Nanotechnol. 16, 1308–1317 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  113. Østfeldt, F. T. et al. On-demand source of dual-rail photon pairs based on chiral interaction in a nanophotonic waveguide. PRX Quantum 3, 020363 (2022).

    Article  Google Scholar 

  114. Bliokh, K. Y., Rodríguez-Fortuño, F. J., Nori, F. & Zayats, A. V. Spin–orbit interactions of light. Nat. Photon. 9, 796–808 (2015).

    Article  ADS  CAS  Google Scholar 

  115. Mitsch, R., Sayrin, C., Albrecht, B., Schneeweiss, P. & Rauschenbeutel, A. Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide. Nat. Commun. 5, 5713 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  116. Sayrin, C. et al. Nanophotonic optical isolator controlled by the internal state of cold atoms. Phys. Rev. X 5, 41036 (2015).

    Google Scholar 

  117. Söllner, I. et al. Deterministic photon–emitter coupling in chiral photonic circuits. Nat. Nanotechnol. 10, 775–778 (2015).

    Article  ADS  PubMed  Google Scholar 

  118. Barik, S. et al. A topological quantum optics interface. Science 359, 666–668 (2018).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  119. Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221 (1997).

    Article  ADS  CAS  Google Scholar 

  120. Schrinski, B., Lamaison, M. & Sørensen, A. S. Passive quantum phase gate for photons based on three level emitters. Phys. Rev. Lett. 129, 130502 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  121. Skirlo, S. A., Lu, L. & Soljačić, M. Multimode one-way waveguides of large Chern numbers. Phys. Rev. Lett. 113, 113904 (2014).

    Article  ADS  PubMed  Google Scholar 

  122. Skirlo, S. A. et al. Experimental observation of large Chern numbers in photonic crystals. Phys. Rev. Lett. 115, 253901 (2015).

    Article  ADS  PubMed  Google Scholar 

  123. Vega, C., Porras, D. & González-Tudela, A. Topological multimode waveguide QED. Phys. Rev. Res. 5, 023031 (2023).

    Article  CAS  Google Scholar 

  124. Hood, J. D. et al. Atom–atom interactions around the band edge of a photonic crystal waveguide. Proc. Natl Acad. Sci. USA 113, 10507–10512 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  125. John, S. & Quang, T. Spontaneous emission near the edge of a photonic band gap. Phys. Rev. A 50, 1764–1769 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  126. Bykov, V. P. Spontaneous emission from a medium with a band spectrum. Sov. J. Quantum Electron. 4, 861 (1975).

    Article  ADS  Google Scholar 

  127. Kurizki, G. Two-atom resonant radiative coupling in photonic band structures. Phys. Rev. A 42, 2915–2924 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  128. John, S. & Wang, J. Quantum optics of localized light in a photonic band gap. Phys. Rev. B 43, 12772–12789 (1991).

    Article  ADS  CAS  Google Scholar 

  129. Shahmoon, E., Grišins, P., Stimming, H. P., Mazets, I. & Kurizki, G. Highly nonlocal optical nonlinearities in atoms trapped near a waveguide. Optica 3, 725–733 (2016).

    Article  ADS  CAS  Google Scholar 

  130. Douglas, J. S. et al. Quantum many-body models with cold atoms coupled to photonic crystals. Nat. Photon. 9, 326–331 (2015).

    Article  ADS  CAS  Google Scholar 

  131. González-Tudela, A., Hung, C.-L., Chang, D. E., Cirac, J. I. & Kimble, H. J. Subwavelength vacuum lattices and atom–atom interactions in two-dimensional photonic crystals. Nat. Photon. 9, 320–325 (2015).

    Article  ADS  Google Scholar 

  132. González-Tudela, A. & Cirac, J. Exotic quantum dynamics and purely long-range coherent interactions in Dirac conelike baths.Phys. Rev. A 97, 043831 (2018).

    Article  ADS  Google Scholar 

  133. Perczel, J. & Lukin, M. D. Theory of dipole radiation near a Dirac photonic crystal. Phys. Rev. A 101, 033822 (2020).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  134. Navarro-Barón, E. P., Vinck-Posada, H. & González-Tudela, A. Photon-mediated interactions near a Dirac photonic crystal slab. ACS Photonics 8, 3209–3217 (2021).

    Article  Google Scholar 

  135. Hung, C.-L., González-Tudela, A., Cirac, J. I. & Kimble, H. J. Quantum spin dynamics with pairwise-tunable, long-range interactions. Proc. Natl Acad. Sci. USA 113, E4946–E4955 (2016).

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  136. Tabares, C., Zohar, E. & González-Tudela, A. Tunable photon-mediated interactions between spin-1 systems. Phys. Rev. A https://doi.org/10.1103/PhysRevA.106.033705 (2022).

  137. Kim, J., Yu, S. & Park, N. Universal design platform for an extended class of photonic Dirac cones. Phys. Rev. Appl. 13, 044015 (2020).

    Article  ADS  CAS  Google Scholar 

  138. Bello, M., Platero, G. & González-Tudela, A. Spin many-body phases in standard- and topological-waveguide QED simulators. PRX Quantum 3, 010336 (2022).

    Article  ADS  Google Scholar 

  139. Tabares, C., Heras, A. Mdl, Tagliacozzo, L., Porras, D. & González-Tudela, A. Variational quantum simulators based on waveguide QED. Phys. Rev. Lett. 131, 073602 (2023).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  140. Scigliuzzo, M. et al. Controlling atom–photon bound states in an array of Josephson-junction resonators. Phys. Rev. X 12, 031036 (2022).

    CAS  Google Scholar 

  141. Zhang, X., Kim, E., Mark, D. K., Choi, S. & Painter, O. A superconducting quantum simulator based on a photonic-bandgap metamaterial. Science 379, 278–283 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  142. González-Tudela, A., Huidobro, P. A., Martín-Moreno, L., Tejedor, C. & García-Vidal, F. J. Theory of strong coupling between quantum emitters and propagating surface plasmons. Phys. Rev. Lett. 110, 126801 (2013).

    Article  ADS  PubMed  Google Scholar 

  143. Garcia-Vidal, F. J., Ciuti, C. & Ebbesen, T. W. Manipulating matter by strong coupling to vacuum fields. Science https://doi.org/10.1126/science.abd0336 (2021).

    Article  PubMed  Google Scholar 

  144. Flick, J., Rivera, N. & Narang, P. Strong light–matter coupling in quantum chemistry and quantum photonics. Nanophotonics 7, 1479–1501 (2018).

    Article  CAS  Google Scholar 

  145. Orgiu, E. et al. Conductivity in organic semiconductors hybridized with the vacuum field. Nat. Mater. 14, 1123–1129 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  146. Balasubrahmaniyam, M. et al. From enhanced diffusion to ultrafast ballistic motion of hybrid light–matter excitations. Nat. Mater. 22, 338–344 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  147. Feist, J., Galego, J. & Garcia-Vidal, F. J. Polaritonic chemistry with organic molecules. ACS Photonics 5, 205–216 (2018).

    Article  CAS  Google Scholar 

  148. Curtis, J. B., Raines, Z. M., Allocca, A. A., Hafezi, M. & Galitski, V. M. Cavity quantum Eliashberg enhancement of superconductivity. Phys. Rev. Lett. 122, 167002 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  149. Thomas, A. et al. Large enhancement of ferromagnetism under a collective strong coupling of YBCO nanoparticles. Nano Lett. 21, 4365–4370 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  150. Ashida, Y. et al. Quantum electrodynamic control of matter: cavity-enhanced ferroelectric phase transition. Phys. Rev. X 10, 041027 (2020).

    CAS  Google Scholar 

  151. Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99 (1954).

    Article  ADS  CAS  Google Scholar 

  152. Gonzalez-Tudela, A., Laussy, F., Tejedor, C., Hartmann, M. & Del Valle, E. Two-photon spectra of quantum emitters. New J. Phys. 15, 033036 (2013).

  153. Pichler, H., Ramos, T., Daley, A. J. & Zoller, P. Quantum optics of chiral spin networks. Phys. Rev. A 91, 42116 (2015).

    Article  ADS  Google Scholar 

  154. Paulisch, V., Kimble, H. J. & González-Tudela, A. Universal quantum computation in waveguide QED using decoherence free subspaces. New J. Phys. 18, 043041 (2016).

    Article  ADS  Google Scholar 

  155. Zanner, M. et al. Coherent control of a multi-qubit dark state in waveguide quantum electrodynamics. Nat. Phys. 18, 538–543 (2022).

    Article  CAS  Google Scholar 

  156. González-Tudela, A., Paulisch, V., Chang, D. E., Kimble, H. J. & Cirac, J. I. Deterministic generation of arbitrary photonic states assisted by dissipation. Phys. Rev. Lett. 115, 163603 (2015).

    Article  ADS  PubMed  Google Scholar 

  157. González-Tudela, A., Paulisch, V., Kimble, H. J. & Cirac, J. I. Efficient multiphoton generation in waveguide quantum electrodynamics. Phys. Rev. Lett. 118, 213601 (2017).

    Article  ADS  PubMed  Google Scholar 

  158. Stannigel, K., Rabl, P. & Zoller, P. Driven-dissipative preparation of entangled states in cascaded quantum-optical networks. New J. Phys. 14, 063014 (2012).

    Article  ADS  Google Scholar 

  159. Metelmann, A. & Clerk, A. A. Quantum-limited amplification via reservoir engineering. Phys. Rev. Lett. 112, 133904 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  160. Ramos, T., Pichler, H., Daley, A. J. & Zoller, P. Quantum spin dimers from chiral dissipation in cold-atom chains. Phys. Rev. Lett. 113, 237203 (2014).

    Article  ADS  PubMed  Google Scholar 

  161. Ramos, T., Vermersch, B., Hauke, P., Pichler, H. & Zoller, P. Non-Markovian dynamics in chiral quantum networks with spins and photons. Phys. Rev. A 93, 62104 (2016).

    Article  ADS  Google Scholar 

  162. Liedl, C., Pucher, S., Tebbenjohanns, F., Schneeweiss, P. & Rauschenbeutel, A. Collective radiation of a cascaded quantum system: from timed Dicke states to inverted ensembles. Phys. Rev. Lett. 13, 163602 (2023).

    Article  ADS  Google Scholar 

  163. Liedl, C. et al. Observation of superradiant bursts in waveguide QED. Preprint at https://arxiv.org/abs/2211.08940v1 (2022).

  164. Evans, R. E. et al. Photon-mediated interactions between quantum emitters in a diamond nanocavity. Science 362, 662–665 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  165. Tiranov, A. et al. Collective super- and subradiant dynamics between distant optical quantum emitters. Science 379, 389–393 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  166. Asenjo-Garcia, A., Moreno-Cardoner, M., Albrecht, A., Kimble, H. J. & Chang, D. E. Exponential improvement in photon storage fidelities using subradiance and ‘selective radiance’ in atomic arrays. Phys. Rev. X 7, 031024 (2017).

    Google Scholar 

  167. González-Tudela, A. & Porras, D. Mesoscopic entanglement induced by spontaneous emission in solid-state quantum optics. Phys. Rev. Lett. 110, 080502 (2013).

    Article  ADS  PubMed  Google Scholar 

  168. Ask, A. & Johansson, G. Non-Markovian steady states of a driven two-level system. Phys. Rev. Lett. 128, 083603 (2022).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  169. Forn-Díaz, P., Lamata, L., Rico, E., Kono, J. & Solano, E. Ultrastrong coupling regimes of light–matter interaction. Rev. Mod. Phys. 91, 025005 (2019).

    Article  ADS  Google Scholar 

  170. Kockum, A. F., Miranowicz, A., De Liberato, S., Savasta, S. & Nori, F. Ultrastrong coupling between light and matter. Nat. Rev. Phys. 1, 19 (2019).

    Article  Google Scholar 

  171. Sanchez-Burillo, E., Zueco, D., Garcia-Ripoll, J. J. & Martin-Moreno, L. Scattering in the ultrastrong regime: nonlinear optics with one photon. Phys. Rev. Lett. 113, 263604 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  172. Schiró, M., Bordyuh, M., Ztop, B. & Türeci, H. E. Phase transition of light in cavity QED lattices. Phys. Rev. Lett. 109, 053601 (2012).

    Article  ADS  PubMed  Google Scholar 

  173. Kurcz, A., Bermudez, A. & García-Ripoll, J. J. Hybrid quantum magnetism in circuit QED: from spin-photon waves to many-body spectroscopy. Phys. Rev. Lett. 112, 180405 (2014).

    Article  ADS  PubMed  Google Scholar 

  174. Román-Roche, J., Sánchez-Burillo, E. & Zueco, D. Bound states in ultrastrong waveguide QED. Phys. Rev. A 102, 023702 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  175. Rivera, N. & Kaminer, I. Light–matter interactions with photonic quasiparticles. Nat. Rev. Phys. 2, 538–561 (2020).

    Article  Google Scholar 

  176. Muñoz-Matutano, G. et al. Emergence of quantum correlations from interacting fibre-cavity polaritons. Nat. Mater. 18, 213–218 (2019).

    Article  PubMed  Google Scholar 

  177. Delteil, A. et al. Towards polariton blockade of confined exciton-polaritons. Nat. Mater. 18, 219–222 (2019).

    Article  CAS  PubMed  Google Scholar 

  178. Blanco-Redondo, A., Bell, B., Oren, D., Eggleton, B. J. & Segev, M. Topological protection of biphoton states. Science 362, 568–571 (2018).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  179. Blanco-Redondo, A. Topological nanophotonics: toward robust quantum circuits. Proc. IEEE 108, 837–849 (2020).

    Article  Google Scholar 

  180. Tschernig, K. et al. Topological protection versus degree of entanglement of two-photon light in photonic topological insulators. Nat. Commun. 12, 1974 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  181. Heuck, M., Jacobs, K. & Englund, D. R. Controlled-phase gate using dynamically coupled cavities and optical nonlinearities. Phys. Rev. Lett. 124, 160501 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  182. Tomm, N. et al. Photon bound state dynamics from a single artificial atom. Nat. Phys. 19, 857–862 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Jeannic, H. L. et al. Dynamical photon–photon interaction mediated by a quantum emitter. Nat. Phys. 18, 1191–1195 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.G.-T., J.J.G.-R. and F.J.G.-V acknowledge support from the Proyecto Sinérgico CAM 2020 Y2020/TCS-6545 (NanoQuCo-CM). A.G.-T. and J.J.G.-R. acknowledge support from the CSIC Interdisciplinary Thematic Platform (PTI) Quantum Technologies (PTI-QTEP+) and from Spanish projects PID2021-127968NB-I00. A.G.-T. also acknowledges the project TED2021-130552B-C22 funded by MCIN/AEI/10.13039/501100011033/FEDER UE and MCIN/AEI/10.13039/501100011033, respectively, and the support from a 2022 Leonardo Grant for Researchers and Cultural Creators, BBVA. A.R. acknowledges support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) via the project RE 3967/1 and by the German Federal Ministry of Education and Research (BMBF) via the grant agreements no. 13N15907 and 16KISQ046. F.J.G.-V. acknowledges financial support by the Spanish Ministry for Science and Innovation-Agencia Estatal de Investigacion (AEI) through grants PID2021-125894NB-I00 and CEX2018-000805-M and by the Comunidad de Madrid and the Spanish State through the Recovery, Transformation, and Resilience Plan (“MATERIALES DISRUPTIVOS BIDIMENSIONALES (2D)” (MAD2D-CM)-UAM7), and the European Union through the Next Generation EU funds.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Alejandro González-Tudela or Francisco J. García-Vidal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Salvatore Savasta and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Tudela, A., Reiserer, A., García-Ripoll, J.J. et al. Light–matter interactions in quantum nanophotonic devices. Nat Rev Phys 6, 166–179 (2024). https://doi.org/10.1038/s42254-023-00681-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-023-00681-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing