Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Visualizing big science projects

Abstract

The number, size and complexity of ‘big science’ projects are growing — as are the size, complexity and value of the data sets and software services they produce. In this context, big data gives a new way to analyse, understand, manage and communicate the inner workings of collaborations that often involve thousands of experts, thousands of scholarly publications, hundreds of new instruments and petabytes of data. We compare the evolving geospatial and topical impact of big science projects in physics, astronomy and biomedical sciences. A total of 13,893 publications and 1,139 grants by 21,945 authors cited more than 333,722 times are analysed and visualized to help characterize the distinct phases of big science projects, document increasing internationalization and densification of collaboration networks, and reveal the increase in interdisciplinary impact over time. All data sets and visual analytics workflows are freely available on GitHub in support of future big science studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The data compilation, analysis and visualization workflow.
Fig. 2: Number of publications, citations, authors and author affiliations for six big science projects.
Fig. 3: Geodistributed collaboration network of institutions for ATLAS.
Fig. 4: Citations breakdown by disciplines and subdisciplines.

Similar content being viewed by others

Code availability

Data details and code77,78 are available at https://bigscience.github.io.

References

  1. Price, D. J. D. S. Little Science, Big Science (Columbia Univ. Press, 1963).

  2. Capshew, J. H. & Rader, K. A. Big science: price to the present. Osiris 7, 3–25 (1992).

    Article  Google Scholar 

  3. Smith, R. W. in Big Science: The Growth of Large-Scale Research (eds Galison, P. & Hevley, B.) 184–211 (Stanford Univ. Press, 1992).

  4. Knight, D. M. The Nature of Science: The History of Science in Western Culture Since 1600 (A. Deutsch, 1976).

  5. Daston, L. in Sciences in the Archives: Pasts, Presents, Futures (ed. Daston, L.) 159–182 (Univ. Chicago Press, 2017).

  6. Galison, P. in Big Science: The Growth of Large-Scale Research (eds Galison, P. & Hevley, B.) (Stanford Univ. Press, 1992).

  7. Hiltzik, M. Big Science: Ernest Lawrence and the Invention That Launched the Military-Industrial Complex (Simon & Schuster, 2016).

  8. Weinberg, A. M. Impact of large-scale science on the United States. Science 134, 161–164 (1961).

    Article  ADS  Google Scholar 

  9. Weinberg, A. M. Reflections on Big Science (MIT Press, 1967).

  10. Hallonsten, O. Big Science Transformed: Science, Politics and Organization in Europe and the United States (Springer, 2016).

  11. Wagner, C. S. The New Invisible College: Science for Development (Brookings Institution Press, 2009).

  12. Weinberg, A. M. Scientific choice and biomedical science. Minerva 4, 3–14 (1965).

    Article  Google Scholar 

  13. Kevles, D. & Hood, L. in The Code of Codes: Scientific and Social Issues in the Human Genome Project (eds Kevles, D. & Hood, L.) 300–331 (Harvard Univ. Press, 1992).

  14. Vermeulen, N. Supersizing Science: On the Building of Large-Scale Research Projects in Biology (Maastricht Univ. Press, 2009).

  15. Cetina, K. K. Epistemic Cultures: How the Sciences Make Knowledge (Harvard Univ. Press, 2009).

  16. No authors listed. No final frontier. Nat. Rev. Phys. 1, 231 (2019).

    Article  Google Scholar 

  17. Smith, R. W. Engines of discovery: scientific instruments and the history of astronomy and planetary science in the United States in the twentieth century. J. Hist. Astron. 28, 49–77 (1997).

    Article  ADS  Google Scholar 

  18. Price, D. J. D. Of sealing wax and string. Nat. Hist. 93, 48–56 (1984).

    Google Scholar 

  19. Ziman, J. M. Prometheus Bound (Cambridge Univ. Press, 1994).

  20. Helden, A. V. & Hankins, T. L. Introduction: instruments in the history of science. Osiris 9, 1–6 (1994).

    Article  ADS  Google Scholar 

  21. Shapin, S. The Scientific Life: A Moral History of a Late Modern Vocation (Univ. Chicago Press, 2008).

  22. Hoddeson, L. & Kolb, A. W. The Superconducting Super Collider’s Frontier Outpost, 1983–1988. Minerva 38, 271–310 (2000).

    Article  Google Scholar 

  23. Collins, R. The Sociology of Philosophies: A Global Theory of Intellectual Change (Harvard Univ. Press, 1998).

  24. Mody, C. C. M. Instrumental Community: Probe Microscopy and the Path to Nanotechnology (MIT Press, 2011).

  25. Brooks, H. The relationship between science and technology. Res. Policy 23, 477–486 (1994).

    Article  Google Scholar 

  26. Meyer, E. T. & Schroeder, R. Knowledge Machines: Digital Transformations of the Sciences and Humanities (MIT Press, 2015).

  27. Schroeder, R. Rethinking Science, Technology, and Social Change (Stanford Univ. Press, 2007).

  28. Biagioli, M. Galileo’s Instruments of Credit: Telescopes, Images, Secrecy (Univ. Chicago Press, 2007).

  29. Gleick, J. Isaac Newton (Vintage, 2004).

  30. Hughes, T. P. in The Social Construction of Technological Systems (eds Bijker, W. E., Hughes, T P. & Pinch, T.) 51–82 (MIT Press, 1989).

  31. Galison, P. L. Image & Logic: A Material Culture of Microphysics (Univ. Chicago Press, 1997).

  32. Pickering, A. Constructing Quarks: A Sociological History of Particle Physics (Univ. Chicago Press, 1984).

  33. Collins, H. Gravity’s Shadow: The Search for Gravitational Waves (Univ. Chicago Press, 2004).

  34. Smith, R. W. & Tatarewicz, J. N. Counting on invention: devices and black boxes in very big science. Osiris 9, 101–123 (1994).

    Article  ADS  Google Scholar 

  35. Sklair, L. Organized Knowledge: A Sociological View of Science and Technology (Hart-Davis MacGibbon, 1973).

  36. Galison, P. & Hevley, B. Big science: The Growth of Large-Scale Research (Stanford Univ. Press, 1992).

  37. Lambright, W. H. Downsizing big science: Strategic choices. Public Adm. Rev. 58, 259–268 (1998).

    Article  Google Scholar 

  38. The ATLAS Collaboration. ATLAS: A 25-Year Insider Story of the LHC Experiment (World Scientific, 2019).

  39. Quinn, H. R. & Harrison, P. F. The BaBar Physics Book: Physics at an Asymmetric B Factor (SLAC, 1998).

  40. Barish, B. C. in Einstein Was Right: The Science and History of Gravitational Waves (ed. Buchwald, J. Z.) 6–18 (Princeton Univ. Press, 2020).

  41. Collins, H. Gravity’s Ghost: Scientific Discovery in the 21st Century (Univ. Chicago Press, 2010).

  42. Collins, H. Gravity’s Kiss: The Detection of Gravitational Waves (MIT Press, 2017).

  43. Thorne, K. S. in Einstein Was Right: The Science and History of Gravitational Waves (ed. Buchwald, J. Z.) 19–46 (Princeton Univ. Press, 2020).

  44. Bowen, M. The Telescope in the Ice: Inventing a New Astronomy at the South Pole Vol. 212 (St. Martin’s Press, 2017).

  45. Huerta, E. A. et al. Enabling real-time multi-messenger astrophysics discoveries with deep learning. Nat. Rev. Phys. 1, 600–608 (2019).

    Article  Google Scholar 

  46. Bodmer, W. & McKie, R. The Book of Man: The Human Genome Project and the Quest to Discover Our Genetic Heritage (Oxford Univ. Press, 1997).

  47. Kevles, D. & Hood, L. The Code of Codes (Harvard Univ. Press, 1992).

  48. Hilgartner, S. in Handbook of Science and Technology Studies (eds Jasanoff, S., Markle, G. E., Petersen, J. C. & Pinch, T.) 302–315 (SAGE Publications, 1995).

  49. Watson, J. D. The Human Genome Project: Past, present, and future. Science 248, 44–49 (1990).

    Article  ADS  Google Scholar 

  50. Gates, A. J., Gysi, D. M., Kellis, M. & Barabási, A. L. A wealth of discovery built on the human genome project — by the numbers. Nature 590, 212–215 (2021).

    Article  ADS  Google Scholar 

  51. Rosen-Rozenblatt, O., Stubbington, M. J. T., Regev, A. & Teichmann, S. A. The Human Cell Atlas: from vision to reality. Nature 550, 451–453 (2017).

    Article  ADS  Google Scholar 

  52. Snyder, M. et al. The human body at cellular resolution: the NIH Human Biomolecular Atlas Program. Nature 574, 187–192 (2019).

    Article  ADS  Google Scholar 

  53. Sinha, A. et al. in Proceedings of the 24th International Conference on World Wide Web 243–246 (ACM, 2015).

  54. Shrum, W., Genuth, J. & Chompalov, I. Structures of Scientific Collaboration (MIT Press, 2007).

  55. Milojević, S. Principles of scientific research team formation and evolution. Proc. Natl Acad. Sci. USA 111, 3984–3989 (2014).

    Article  ADS  Google Scholar 

  56. Wuchty, S., Jones, B. F. & Uzzi, B. The increasing dominance of teams in production of knowledge. Science 316, 1036–1039 (2007).

    Article  ADS  Google Scholar 

  57. Dennis, C., Gallagher, R. & Campbell, P. The human genome. Nature 409, 814–816 (2001).

    Google Scholar 

  58. Jasny, B. R. & Kennedy, D. (eds) The human genome. Science 291, 1177–1180 (2001).

  59. Jones, B. F., Wuchty, S. & Uzzi, B. Multi-university research teams: shifting impact, geography, and stratification in science. Science 322, 1259–1262 (2008).

    Article  ADS  Google Scholar 

  60. Wagner, C. S. The Collaborative Era in Science: Governing the Network (Palgrave Macmillan, 2018).

  61. Serrano, M. Á., Boguná, M. & Vespignani, A. Extracting the multiscale backbone of complex weighted networks. Proc. Natl Acad. Sci. USA 106, 6483–6488 (2009).

    Article  ADS  Google Scholar 

  62. Galison, P. in Scientific Authorship: Credit and Intellectual Property in Science (eds Biagioli, M. & Galison, P.) 325–355 (Routledge, 2003).

  63. Collins, H. in Einstein Was Right: The Science and History of Gravitational Waves (ed. Buchwald, J. Z.) 111–128 (Princeton Univ. Press, 2020).

  64. Borgman, C. L. Big Data, Little Data, No Data: Scholarship in the Networked World (MIT Press, 2015).

  65. Borgman, C. L. Scholarship in the Digital Age: Information, Infrastructure, and the Internet (MIT Press, 2007).

  66. Roberts, L. Genome project: an experiment in sharing. Science 248, 953 (1990).

    Article  ADS  Google Scholar 

  67. No authors listed. The big three. Nat. Rev. Phys. 1, 579 (2019).

    Article  Google Scholar 

  68. Zheng, Y., Venters, W. & Cornford, T. Collective agility, paradox and organizational improvisation: the development of a particle physics grid. Inf. Syst. 21, 303–333 (2010).

    Article  Google Scholar 

  69. National Academies of Sciences, Engineering and Medicine. Future Directions for NSF Advanced Computing Infrastructure to Support U.S. Science and Engineering in 2017–2020 (National Academies, 2016).

  70. Kurczynski, P. & Milojević, S. Enabling discoveries: a review of 30 years of advanced technologies and instrumentation at the National Science Foundation. J. Astron. Telesc. Instum. Syst. 6, 030901 (2020).

    ADS  Google Scholar 

  71. Traweek, S. Beamtimes and Lifetimes: The World of High Energy Physicists (Harvard Univ. Press, 1988).

  72. Leja, D. Human Genome Project Timeline (Department of Energy, 2003).

  73. National Academies of Sciences, Engineering and Medicine. Continuing Innovation in Information Technology: Workshop Report (National Academies, 2016).

  74. National Research Council. Innovation in Information Technology (National Academies, 2003).

  75. Börner, K. et al. Design and update of a classification system: the UCSD map of science. PLoS ONE 7, e39464 (2012).

    Article  ADS  Google Scholar 

  76. Chao, A., Chu, C.-H. & Jost, L. Phylogenetic diversity measures and their decomposition: a framework based on Hill numbers. Biodivers. Conserv. Phylogenet. Syst. 14, 141–172 (2016).

    Article  Google Scholar 

  77. Börner, K., Silva, F. N. & Milojević, S. Visualizing big science projects — Institution collaboration maps. zenodo https://doi.org/10.5281/zenodo.4835034 (2021).

  78. Herr, B. W. II et al. Visualizing big science projects — Science maps. zenodo https://doi.org/10.5281/zenodo.4884741 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the interviewed experts for their time and expert input. T. Schwander gave guidance for compiling the INSPIRE data sets. B. W. Herr II implemented the interactive science maps. T. N. Theriault compiled references and provided professional copy-editing support. This work is funded by the NSF under grants NRT-1735095, AISL-1713567 and DMS-1839167 and the Precision Health Initiative as part of Indiana University’s Grand Challenges programme. In addition, this material is based upon work supported by the Air Force Office of Scientific Research under award number FA9550-19-1-0391. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the NSF.

Author information

Authors and Affiliations

Authors

Contributions

S.M. led the literature review, K.B. led the expert survey and science mapping effort and F.N.S. led the data analysis and visualization. All authors contributed equally to the write-up of other article parts.

Corresponding author

Correspondence to Katy Börner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Physics thanks Junming Huang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Council for Chemical Research. Chemical R&D Powers the US Innovation Engine: https://scimaps.org/map/5/6

Human Cell Atlas. Publications: https://www.humancellatlas.org/publications

Human Genome Project Information Archive, 1990–2003: landmark HGP papers: https://web.ornl.gov/sci/techresources/Human_Genome/project/journals.shtml

INSPIRE: https://inspirehep.net

National Institutes of Health. NIH Research Portfolio Online Reporting Tools (RePORT): https://reporter.nih.gov/

National Science Foundation. BaBar award search results: https://www.nsf.gov/awardsearch/simpleSearchResult?queryText=babar

National Science Foundation. IceCube award search results: https://www.nsf.gov/awardsearch/simpleSearchResult?queryText=icecube

National Science Foundation. LIGO award search results: https://www.nsf.gov/awardsearch/simpleSearchResult?queryText=ligo

National Institutes of Health. NIH RePORTER search results (I): https://reporter.nih.gov/search/bC3_awAf4U6Hl7zF9rQEZQ/projects?shared=true

National Institutes of Health. NIH RePORTER search results (II): https://reporter.nih.gov/search/BwnasVXfbUiGwaac353HGw/projects?shared=true

NIH Science and Technology Research Infrastructure for Discovery, Experimentation, and Sustainability (STRIDES) Initiative: https://datascience.nih.gov/strides

Nominatim. Home page: https://nominatim.org

Vera C. Rubin Observatory. Rubin Observatory System & LSST survey key numbers: https://www.lsst.org/scientists/keynumbers

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Börner, K., Silva, F.N. & Milojević, S. Visualizing big science projects. Nat Rev Phys 3, 753–761 (2021). https://doi.org/10.1038/s42254-021-00374-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-021-00374-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing