Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Split cross-coupling via Rh-catalysed activation of unstrained aryl–aryl bonds

Abstract

Constructive functionalization of unstrained aryl–aryl bonds has been a fundamental challenge in organic synthesis due to the inertness of these bonds. Here we report a split cross-coupling strategy that allows twofold arylation with diverse aryl iodides through cleaving unstrained aryl–aryl bonds of common 2,2′-biphenols. The reaction is catalysed by a rhodium complex and promoted by a removable phosphinite directing group and an organic reductant such as tetrakis(dimethylamino)ethylene. The combined experimental and computational mechanistic studies reveal a turnover-limiting reductive elimination step that can be accelerated by a Lewis acid co-catalyst. The utility of this coupling method has been illustrated in the modular and simplified syntheses of unsymmetrical 2,6-diarylated phenols and skeletal insertion of phenylene units.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: From activation of unstrained aryl–aryl bonds to SXC.
Fig. 2: Substrate scope for the SXC reaction.
Fig. 3: Mechanistic studies.
Fig. 4: Synthesis of unsymmetrical 2,6-diarylated phenols.
Fig. 5: Phenylene insertion into 2,2′-biphenols via a cut-and-sew transformation.

Similar content being viewed by others

Data availability

All data are available in the main text or Supplementary Information. Additional data are available from the corresponding authors upon request. Metrical parameters for the structure of 1i are available free of charge from the Cambridge Crystallographic Data Centre (https://www.ccdc.cam.ac.uk/) under reference number CCDC 2240576.

References

  1. Torssell, K. G. B. Natural Product Chemistry (Wiley, 1983).

  2. Zhu, J., Wang, J. & Dong, G. Catalytic activation of unstrained C(aryl)–C(aryl) bonds in 2,2′-biphenols. Nat. Chem. 11, 45–51 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Zhu, J. et al. Ruthenium-catalyzed reductive cleavage of unstrained aryl–aryl bonds: reaction development and mechanistic study. J. Am. Chem. Soc. 141, 18630–18640 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sojdak, C. A. & Kozlowski, M. C. HAT catalysts to facilitate acid mediated cleavage of biaryl C–C bonds in binaphthols. Org. Lett. 24, 8326–8330 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhu, J., Zhang, R. & Dong, G. Orthogonal cross-coupling through intermolecular metathesis of unstrained C(aryl)–C(aryl) single bonds. Nat. Chem. 13, 836–842 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Onodera, S., Ishikawa, S., Kochi, T. & Kakiuchi, F. Direct alkenylation of allylbenzenes via chelation-assisted C–C bond cleavage. J. Am. Chem. Soc. 140, 9788–9792 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Onodera, S. et al. Catalytic, directed C–C bond functionalization of styrenes. J. Am. Chem. Soc. 142, 7345–7349 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Gozin, M., Weisman, A., Ben-David, Y. & Milstein, D. Activation of a carbon–carbon bond in solution by transition-metal insertion. Nature 364, 699–701 (1993).

    Article  CAS  Google Scholar 

  9. Horton, D. A., Bourne, G. T. & Smythe, M. L. The combinatorial synthesis of bicyclic privileged structures or privileged substructures. Chem. Rev. 103, 893–930 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Wu, J. M. & Kozlowski, C. Catalytic oxidative coupling of phenols and related compounds. ACS Catal. 12, 6532–6549 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brown, A. G. & Edwards, P. D. Synthesis of analogues of the bafilomycin antibiotics. Tetrahedron Lett. 131, 6581–6584 (1990).

    Article  Google Scholar 

  12. Egami, H. & Katsuki, T. Iron-catalyzed asymmetric aerobic oxidation: oxidative coupling of 2-naphthols. J. Am. Chem. Soc. 131, 6082–6083 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Guo, Q.-X. et al. Highly enantioselective oxidative couplings of 2-naphthols catalyzed by chiral bimetallic oxovanadium complexes with either oxygen or air as oxidant. J. Am. Chem. Soc. 129, 13927–13938 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Elsler, B., Schollmeyer, D., Dyballa, K. M., Franke, R. & Waldvogel, S. R. Metal‐ and reagent‐free highly selective anodic cross‐coupling reaction of phenols. Angew. Chem. Int. Ed. 53, 5210–5213 (2014).

    Article  CAS  Google Scholar 

  15. Dermenci, A., Coe, J. W. & Dong, G. Direct activation of relatively unstrained carbon–carbon bonds in homogeneous systems. Org. Chem. Front. 1, 567–581 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xia, Y. & Dong, G. Temporary or removable directing groups enable activation of unstrained C–C bonds. Nat. Rev. Chem. 4, 600–614 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen, F., Wang, T. & Jiao, N. Recent advances in transition-metal-catalyzed functionalization of unstrained carbon–carbon bonds. Chem. Rev. 114, 8613–8661 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Song, F. et al. Catalytic activations of unstrained C–C bond involving organometallic intermediates. Chem. Soc. Rev. 47, 7078–7115 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. van der Boom, M. E. & Milstein, D. Cyclometalated phosphine-based pincer complexes: mechanistic insight in catalysis, coordination, and bond activation. Chem. Rev. 103, 1759–1792 (2003).

    Article  PubMed  Google Scholar 

  20. Lewis, L. N. & Smith, J. F. Catalytic carbon–carbon bond formation via ortho-metalated complexes. J. Am. Chem. Soc. 108, 2728–2735 (1986).

    Article  CAS  Google Scholar 

  21. Bedford, R. B. et al. The catalytic intermolecular orthoarylation of phenols. Angew. Chem. Int. Ed. 42, 112–114 (2003).

    Article  CAS  Google Scholar 

  22. Schlosser, M., Mangano, G. & Leroux, F. The superbase-mediated pairwise substitution of the 2,2′- and 6,6′-positions in a biphenyl derivative. Eur. J. Org. Chem. 5, 1014–1017 (2004).

    Article  Google Scholar 

  23. Wiberg, N. Tetraaminoäthylene als starke Elektronendonoren. Angew. Chem. Int. Ed. 7, 766–779 (1968).

    Article  CAS  Google Scholar 

  24. Lyu, H. et al. Boron insertion into alkyl ether bonds via zinc/nickel tandem catalysis. Science 372, 175–182 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Forrester, J. D., Zalkin, A. & Templeton, D. H. Crystal and molecular structure of indium(III) iodide (In2I6). Inorg. Chem. 3, 63–67 (1964).

    Article  CAS  Google Scholar 

  26. Lin, D. et al. Structural derivatization strategies of natural phenols by semi-synthesis and total-synthesis. Nat. Prod. Bioprospect. 12, 8 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Youn, S. W. & Cho, C.-G. Transition-metal-catalyzed ortho-selective C–H functionalization reactions of free phenols. Org. Biomol. Chem. 19, 5028–5047 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Liu, Q.-S. et al. P(NMe2)3-promoted ortho-selective arylation of phenols with diaryliodonium triflates via rhodium catalysis. Tetrahedron 73, 3591–3595 (2017).

    Article  CAS  Google Scholar 

  29. Gaster, E. et al. Significant enhancement in the efficiency and selectivity of iron-catalyzed oxidative cross-coupling of phenols by fluoroalcohols. Angew. Chem. Int. Ed. 54, 4198–4202 (2015).

    Article  CAS  Google Scholar 

  30. Zhuravel, M. A. & Nguyen, S. T. Preparation of 3-aryl-substituted salicylaldehydes via Suzuki coupling. Tetrahedron Lett. 42, 7925–7928 (2001).

    Article  CAS  Google Scholar 

  31. Bedford, R. B. et al. The catalytic ortho-arylation of tyrosine. Org. Biomol. Chem. 7, 3119–3127 (2009).

    Article  CAS  Google Scholar 

  32. Yang, J.-F. et al. Ligand-accelerated direct C-H arylation of BINOL: a rapid one-step synthesis of racemic 3,3′-diaryl BINOLs. Angew. Chem. Int. Ed. 55, 14116–14120 (2016).

    Article  CAS  Google Scholar 

  33. Correa, A. Metal-catalyzed C(sp2)–H functionalization processes of phenylalanine- and tyrosine-containing peptides. Eur. J. Inorg. Chem. 2928–2941 (2021).

  34. Noisier, A. F. M. & Brimble, M. A. C–H functionalization in the synthesis of amino acids and peptides. Chem. Rev. 114, 8775–8806 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Chen, P.-H. et al. “Cut and sew” transformations via transition-metal-catalyzed carbon–carbon bond activation. ACS Catal. 7, 1340–1360 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xue, Y. & Dong, G. Deconstructive synthesis of bridged and fused rings via transition-metal-catalyzed “cut-and-sew” reactions of benzocyclobutenones and cyclobutanones. Acc. Chem. Res. 55, 2341–2354 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Albrecht, M. & Schneider, M. Dinuclear triple-stranded helicates from rigid oligo-p-phenylene ligands: self-assembly and ligand self-recognition. Eur. J. Inorg. Chem. 1301–1306 (2002).

Download references

Acknowledgements

Financial supports from NIGMS (2R01GM109054) and the University of Chicago are acknowledged. Umicore AG & Co. KG is thanked for a generous donation of Rh salts. We are grateful for the support of the Research Computing Center at the University of Chicago for the calculation performed in this work. R. Zhang from the University of Chicago is thanked for checking the experimental procedures.

Author information

Authors and Affiliations

Authors

Contributions

C.Y. discovered the reaction. C.Y. and G.D. conceived the idea. C.Y. conducted the experimental investigation. Z.Z. conducted the DFT calculation. C.Y., Z.Z. and G.D. wrote the manuscript. G.D. directed the research.

Corresponding author

Correspondence to Guangbin Dong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, discussion, note, references, Figs. 1–14 and Tables 1–4.

Supplementary Data

.cif file of the X-ray structure of 1i.

Supplementary Data

Structure factors for the X-ray structure of 1i.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, C., Zhang, Z. & Dong, G. Split cross-coupling via Rh-catalysed activation of unstrained aryl–aryl bonds. Nat Catal 7, 432–440 (2024). https://doi.org/10.1038/s41929-024-01120-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-024-01120-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing