Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Orthogonal cross-coupling through intermolecular metathesis of unstrained C(aryl)–C(aryl) single bonds

Abstract

While metathesis reactions involving carbon–carbon double bonds, namely olefin metathesis, have been well established with broad utility in organic synthesis and materials science, direct metathesis of kinetically less accessible C–C single bonds is extremely rare. Here we report a ruthenium-catalysed reversible C–C single-bond metathesis reaction that allows redox- and pH-neutral biaryl synthesis. Assisted by directing groups, unstrained homo-biaryl compounds undergo aryl exchanges to generate cross-biaryl products, catalysed by a well-defined air-stable ruthenium(II) complex. Functional groups reactive under typical cross-coupling reactions, such as halogen, silyl and boronate moieties, are compatible under the metathesis conditions. Mechanistic studies disclose an intriguing ‘olefin-metathesis-like’ pathway that involves an unexpected heptacoordinated, 18-electron closed-shell intermediate. The distinct reaction mode discovered here is expected to inspire the development of more general C–C single-bond metathesis and orthogonal cross-coupling reactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Metathesis reactions of carbon−carbon double and single bonds.
Fig. 2: Exploration of a Ru-catalysed biaryl metathesis reaction.
Fig. 3: Preliminary mechanistic study.
Fig. 4: Further exploration of the reaction scope and limitation.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information.

References

  1. McNaught, A. D. & Wilkinson, A. IUPAC Compendium of Chemical Terminology: The Gold Book 2nd edn (Blackwell Scientific, 1997); https://doi.org/10.1351/goldbook

  2. Fürstner, A. & Davies, P. W. Alkyne metathesis. Chem. Commun. 2307–2320 (2005).

  3. Zhang, W. & Moore, J. S. Alkyne metathesis: catalysts and synthetic applications. Adv. Synth. Catal. 349, 93–120 (2007).

    Article  CAS  Google Scholar 

  4. Diver, S. T. & Gies sert, A. J. Enyne metathesis (enyne bond reorganization). Chem. Rev. 104, 1317–1382 (2004).

    Article  CAS  Google Scholar 

  5. Bhawal, B. N. & Morandi, B. Catalytic isofunctional reactions—expanding the repertoire of shuttle and metathesis reactions. Angew. Chem. Int. Ed. 58, 10074–10103 (2019).

    Article  CAS  Google Scholar 

  6. Schuster, M. & Blechert, S. Olefin metathesis in organic chemistry. Angew. Chem. Int. Ed. 36, 2036–2056 (1997).

    Article  Google Scholar 

  7. Ogba, O. M., Warner, N. C., O’Leary, D. J. & Grubbs, R. H. Recent advances in ruthenium-based olefin metathesis. Chem. Soc. Rev. 47, 4510–4544 (2018).

    Article  CAS  Google Scholar 

  8. Schwager, H., Spyroudis, S. & Vollhardt, K. P. C. Tandem palladium-, cobalt-, and nickel-catalyzed syntheses of polycyclic π-systems containing cyclobutadiene, benzene, and cyclooctatetraene rings. J. Organomet. Chem. 382, 191–200 (1990).

    Article  CAS  Google Scholar 

  9. Edelbach, B. L., Lachicotte, R. J. & Jones, W. D. Mechanistic investigation of catalytic carbon–carbon bond activation and formation by platinum and palladium phosphine complexes. J. Am. Chem. Soc. 120, 2843–2853 (1998).

    Article  CAS  Google Scholar 

  10. Arisawa, M., Kuwajima, M., Toriyama, F., Li, G. & Yamaguchi, M. Rhodium-catalyzed acyl-transfer reaction between benzyl ketones and thioesters: synthesis of unsymmetric ketones by ketone CO–C bond cleavage and intermolecular rearrangement. Org. Lett. 14, 3804–3807 (2012).

    Article  CAS  Google Scholar 

  11. Basset, J.-M., Coperet, C., Soulivong, D., Taoufik, M. & Cazat, J. T. Metathesis of alkanes and related reactions. Acc. Chem. Res. 43, 323–334 (2010).

    Article  CAS  Google Scholar 

  12. Goldman, A. S. et al. Catalytic alkane metathesis by tandem alkane dehydrogenation-olefin metathesis. Science 312, 257 (2006).

    Article  CAS  Google Scholar 

  13. Ahuja, R. et al. Catalytic ring expansion, contraction, and metathesis-polymerization of cycloalkanes. Chem. Commun. 253–255 (2008).

  14. Jia, X., Qin, C., Friedberger, T., Guan, Z. & Huang, Z. Efficient and selective degradation of polyethylenes into liquid fuels and waxes under mild conditions. Sci. Adv. 2, e1501591 (2016).

    Article  Google Scholar 

  15. Haibach, M. C., Kundu, S., Brookhart, M. & Goldman, A. S. Alkane metathesis by tandem alkane-dehydrogenation–olefin-metathesis catalysis and related chemistry. Acc. Chem. Res. 45, 947–958 (2012).

    Article  CAS  Google Scholar 

  16. Dermenci, A., Coe, J. W. & Dong, G. Direct activation of relatively unstrained carbon–carbon bonds in homogeneous systems. Org. Chem. Front. 1, 567–581 (2014).

    Article  CAS  Google Scholar 

  17. Xia, Y. & Dong, G. Temporary or removable directing groups enable activation of unstrained C–C bonds. Nat. Rev. Chem. 4, 600–614 (2020).

    Article  CAS  Google Scholar 

  18. Jean-Louis Hérisson, P. & Chauvin, Y. Catalyse de transformation des oléfines par les complexes du tungstène. II. Télomérisation des oléfines cycliques en présence d’oléfines acycliques. Makromol. Chem. 141, 161–176 (1971).

    Article  Google Scholar 

  19. Sanford, M. S., Love, J. A. & Grubbs, R. H. Mechanism and activity of ruthenium olefin metathesis catalysts. J. Am. Chem. Soc. 123, 6543–6554 (2001).

    Article  CAS  Google Scholar 

  20. Vougioukalakis, G. C. & Grubbs, R. H. Ruthenium-based heterocyclic carbene-coordinated olefin metathesis catalysts. Chem. Rev. 110, 1746–1787 (2010).

    Article  CAS  Google Scholar 

  21. Liu, P., Taylor, B. L. H., Garcia-Lopez, J. & Houk, K. N. in Handbook of Metathesis (eds Grubbs, R. H. & Wenzel, A. G.) 199–252 (Wiley-VCH, 2015).

  22. Zhu, J., Chen, P.-h, Lu, G., Liu, P. & Dong, G. Ruthenium-catalyzed reductive cleavage of unstrained aryl–aryl bonds: reaction development and mechanistic study. J. Am. Chem. Soc. 141, 18630–18640 (2019).

    Article  CAS  Google Scholar 

  23. Gozin, M., Weisman, A., Ben-David, Y. & Milstein, D. Activation of a carbon–carbon bond in solution by transition-metal insertion. Nature 364, 699–701 (1993).

    Article  CAS  Google Scholar 

  24. Gozin, M. et al. Transfer of methylene groups promoted by metal complexation. Nature 370, 42–44 (1994).

    Article  CAS  Google Scholar 

  25. Onodera, S., Ishikawa, S., Kochi, T. & Kakiuchi, F. Direct alkenylation of allylbenzenes via chelation-assisted C–C bond cleavage. J. Am. Chem. Soc. 140, 9788–9792 (2018).

    Article  CAS  Google Scholar 

  26. Zhu, J., Wang, J. & Dong, G. Catalytic activation of unstrained C(aryl)–C(aryl) bonds in 2,2′-biphenols. Nat. Chem. 11, 45–51 (2019).

    Article  CAS  Google Scholar 

  27. Onodera, S., Togashi, R., Ishikawa, S., Kochi, T. & Kakiuchi, F. Catalytic, directed C–C bond functionalization of styrenes. J. Am. Chem. Soc. 142, 7345–7349 (2020).

    Article  CAS  Google Scholar 

  28. Song, F., Gou, T., Wang, B.-Q. & Shi, Z.-J. Catalytic activations of unstrained C–C bond involving organometallic intermediates. Chem. Soc. Rev. 47, 7078–7115 (2018).

    Article  CAS  Google Scholar 

  29. Saavedra-Díaz, O., Cerón-Camacho, R., Hernández, S., Ryabov, A. D. & Le Lagadec, R. Denial of tris(C,N-cyclometalated) ruthenacycle: nine-membered η6-N,N-trans or η2-N,N-cis RuII chelates of 2,2′-bis(2-pyridinyl)-1,1′-biphenyl. Eur. J. Inorg. Chem. 2008, 4866–4869 (2008).

    Article  Google Scholar 

  30. Rogge, T. & Ackermann, L. Arene-free ruthenium(II/IV)-catalyzed bifurcated arylation for oxidative C-H/C-H functionalizations. Angew. Chem. Int. Ed. 58, 15640–15645 (2019).

    Article  CAS  Google Scholar 

  31. Djukic, J.-P. et al. Syntheses of nonracemic ortho-mercurated and ortho-ruthenated complexes of 2-[tricarbonyl(η6-phenyl)chromium]pyridine. Organometallics 23, 5757–5767 (2004).

    Article  CAS  Google Scholar 

  32. Hofmann, N. & Ackermann, L. Meta-selective C–H bond alkylation with secondary alkyl halides. J. Am. Chem. Soc. 135, 5877–5884 (2013).

    Article  CAS  Google Scholar 

  33. Moselage, M., Li, J., Kramm, F. & Ackermann, L. Ruthenium(II)-catalyzed C–C arylations and alkylations: decarbamoylative C–C functionalizations. Angew. Chem. Int. Ed. 56, 5341–5344 (2017).

    Article  CAS  Google Scholar 

  34. Ruan, Z. et al. Ruthenium(II)-catalyzed meta C–H mono- and difluoromethylations by phosphine/carboxylate cooperation. Angew. Chem. Int. Ed. 56, 2045–2049 (2017).

    Article  CAS  Google Scholar 

  35. Wang, X.-G. et al. Three-component ruthenium-catalyzed direct meta-selective C-H activation of arenes: a new approach to the alkylarylation of alkenes. J. Am. Chem. Soc. 141, 13914–13922 (2019).

    Article  CAS  Google Scholar 

  36. Arockiam, P. B., Bruneau, C. & Dixneuf, P. H. Ruthenium(II)-catalyzed C–H bond activation and functionalization. Chem. Rev. 112, 5879–5918 (2012).

    Article  CAS  Google Scholar 

  37. Yang, Y., Lan, J. & You, J. Oxidative C–H/C–H coupling reactions between two (hetero)arenes. Chem. Rev. 117, 8787–8863 (2017).

    Article  CAS  Google Scholar 

  38. Duan, L., Fischer, A., Xu, Y. & Sun, L. Isolated seven-coordinate Ru(IV) dimer complex with [HOHOH] bridging ligand as an intermediate for catalytic water oxidation. J. Am. Chem. Soc. 131, 10397–10399 (2009).

    Article  CAS  Google Scholar 

  39. Zeng, R. & Dong, G. Rh-catalyzed decarbonylative coupling with alkynes via C–C activation of isatins. J. Am. Chem. Soc. 137, 1408–1411 (2015).

    Article  CAS  Google Scholar 

  40. Zeng, R., Chen, P.-h & Dong, G. Efficient benzimidazolidinone synthesis via rhodium-catalyzed double-decarbonylative C–C activation/cycloaddition between isatins and isocyanates. ACS Catal. 6, 969–973 (2016).

    Article  CAS  Google Scholar 

  41. Wang, H., Choi, I., Rogge, T., Kaplaneris, N. & Ackermann, L. Versatile and robust C–C activation by chelation-assisted manganese catalysis. Nat. Catal. 1, 993–1001 (2018).

    Article  CAS  Google Scholar 

  42. Vasconcelos, S. N. S., Reis, J. S., de Oliveira, I. M., Balfour, M. N. & Stefani, H. A. Synthesis of symmetrical biaryl compounds by homocoupling reaction. Tetrahedron 75, 1865–1959 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the University of Chicago and the NIH (2R01GM109054, G.D.) for research support. We are grateful for the support of the Research Computing Center at the University of Chicago for assistance with the calculations carried out in this work. P. Liu from the University of Pittsburgh is acknowledged for DFT advice.

Author information

Authors and Affiliations

Authors

Contributions

J.Z. and G.D. conceived and designed the experiments. J.Z. performed experiments. R.Z. performed additional experiments and the DFT calculations. J.Z., R.Z. and G.D. co-wrote the manuscript.

Corresponding author

Correspondence to Guangbin Dong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Procedural details, synthesis and characterization data, mechanistic experimental details, NMR spectra, X-ray crystallographic data, DFT calculation details, Cartesian coordinates of DFT structures, Supplementary Tables 2.1 and 8.1, Figs. 2.1 and 6.1, and Schemes 9.1–9.4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Zhang, R. & Dong, G. Orthogonal cross-coupling through intermolecular metathesis of unstrained C(aryl)–C(aryl) single bonds. Nat. Chem. 13, 836–842 (2021). https://doi.org/10.1038/s41557-021-00757-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-021-00757-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing