Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Metal-free organocatalytic S-formylation of thiols using CO2

Abstract

S-formylation of thiols is achieved via an enzymatic process catalysed by formate dehydrogenase enzyme that fixes CO2 onto substrates, which plays a crucial role in regulating important biological pathways in living organisms. The achievement of this reactivity through a chemical approach could also be advantageous, which would allow the fixation of CO2 on a diverse range of thiols. Here we demonstrate a chemical process to prepare S-formyl thiols from CO2 using a mesoionic N-heterocyclic olefin under metal-free conditions. This catalytic reaction is used to diversify a variety of biologically active thiols obtained from natural terpenoids, fatty alcohols, antioxidants, and commercially accessible analgesic and anti-inflammatory medication molecules, as well as preparation of 13C-labelled formyl coenzyme A. Furthermore, we establish a one-pot S-formylation-olefination process for the synthesis of vinyl sulfides under completely metal-free conditions in the presence of CO2. Overall, this study provides a platform to transform thiols and CO2 into value-added products.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: S-formylation of thiols.
Fig. 2: Interaction of mNHO with CO2.
Fig. 3: Catalytic S-formylation of thiols using CO2.
Fig. 4: Scope of S-formylation.
Fig. 5: Mechanistic investigations.
Fig. 6: Application.
Fig. 7: One-pot metal-free synthesis of vinyl sulfides from CO2/13CO2.

Similar content being viewed by others

Data availability

All the data generated in this study are available within the main text and Supplementary Information. Data are also available from the corresponding author upon request. Crystallographic data for structure 2 reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition number CCDC 2244147. Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Lee, S., Chen, M., Yang, W. & Richards, N. G. J. Sampling long time scale protein motions: OSRW simulation of active site loop conformational free energies in formyl-CoA:oxalate CoA transferase. J. Am. Chem. Soc. 132, 7252–7253 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mullins, E. A. et al. Formyl-coenzyme A (CoA): oxalate CoA-transferase from the acidophile Acetobacter aceti has a distinctive electrostatic surface and inherent acid stability. Protein Sci. 21, 686–696 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sly, W. S. & Stadtman, E. R. Formate Metabolism: formyl coenzyme A, an intermediate in the formate-dependent decomposition of acetyl phosphate in Clostridium kluyveri. J. Biol. Chem. 238, 2632–2638 (1963).

    Article  CAS  PubMed  Google Scholar 

  4. Kullin, B. et al. A functional analysis of the formyl-coenzyme A (frc) gene from Lactobacillus reuteri 100-23C. J. Appl. Microbiol. 116, 1657–1667 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Legler, P. M., Kumaran, D., Swaminathan, S., Studier, F. W. & Millard, C. B. Structural characterization and reversal of the natural organophosphate resistance of a D-type esterase, Saccharomyces cerevisiae S-formylglutathione hydrolase. Biochemistry 47, 9592–9601 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Koivusalo, M., Lapatto, R. & Uotila, L. Enzymology and Molecular Biology of Carbonyl Metabolism 5. Advances in Experimental Medicine and Biology Vol. 372 (Springer, 1995).

  7. Wu, J.-L. et al. Brain metabolomic profiling of eastern honey bee (Apis cerana) infested with the mite Varroa destructor. PLoS ONE 12, e0175573 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Uotila, L. & Koivusalo, M. Purification and properties of S-formylglutathione hydrolase from human liver. J. Biol. Chem. 249, 7664–7672 (1974).

    Article  CAS  PubMed  Google Scholar 

  9. Neben, I., Sahm, H. & Kula, M.-R. Studies on an enzyme, S-formylglutathione hydrolase, of the dissimilatory pathway of methanol in Candida boidinii. Biochim. Biophys. Acta 614, 81–91 (1980).

    Article  CAS  PubMed  Google Scholar 

  10. Shaw, W. H., Arioli, T. & Plazinski, J. Cloning and sequencing of a S-formylglutathione hydrolase gene from the cyanobacterium Anabaena azollae. Plant Physiol. Plant Gene Register 116, 868–869 (1998).

    Google Scholar 

  11. Harms, N., Ras, J., Reijnders, W. N. M., van Spanning, R. J. M. & Stouthamer, A. H. S-formylglutathione hydrolase of Paracoccus denitrificans is homologous to human esterase D: a universal pathway for formaldehyde detoxification? J. Bacteriol. 178, 6296–6299 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Haslam, R., Rust, S., Pallett, K., Cole, D. & Coleman, J. Cloning and characterisation of S-formylglutathione hydrolase from Arabidopsis thaliana: a pathway for formaldehyde detoxification. Plant Physiol. Biochem. 40, 281–288 (2002).

    Article  CAS  Google Scholar 

  13. Bar-Even, A. Formate assimilation: the metabolic architecture of natural and synthetic pathways. Biochemistry 55, 3851–3863 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Bang, J. et al. Synthetic formatotrophs for one-carbon biorefinery. Adv. Sci. 8, 2100199 (2021).

    Article  CAS  Google Scholar 

  15. Siegel, J. B. et al. Computational protein design enables a novel one-carbon assimilation pathway. Proc. Natl Acad. Sci. USA 112, 3704–3709 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang, J., Anderson, K., Yang, E., He, L. & Lidstrom, M. E. Enzyme engineering and in vivo testing of a formate reduction pathway. Synth. Biol. 6, 1–14 (2021).

    Article  Google Scholar 

  17. Calzadiaz-Ramirez, L. & Meyer, A. S. Formate dehydrogenases for CO2 utilization. Curr. Opin. Biotechnol. 73, 95–100 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Maia, L. B., Moura, J. J. G. & Moura, I. Molybdenum and tungsten-dependent formate dehydrogenases. J. Biol. Inorg. Chem. 20, 287–309 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Hansmann, M. M., Antoni, P. W. & Pesch, H. Stable mesoionic N-heterocyclic olefins (mNHOs). Angew. Chem. Int. Ed. 59, 5782–5787 (2020).

    Article  CAS  Google Scholar 

  20. Antoni, P. W., Golz, C., Holstein, J. J., Pantazis, D. A. & Hansmann, M. M. Isolation and reactivity of an elusive diazoalkene. Nat. Chem. 13, 587–593 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Maji, S., Das, A. & Mandal, S. K. Mesoionic N-heterocyclic olefin catalysed reductive functionalization of CO2 for consecutive N-methylation of amines. Chem. Sci. 12, 12174–12180 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liang, Q. & Song, D. Recent advances of mesoionic N-heterocyclic olefins. Dalton Trans. 51, 9191–9198 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Aldeco-Perez, E. et al. Isolation of a C5-deprotonated imidazolium, a crystalline ‘abnormal’ N-heterocyclic carbene. Science 326, 556–559 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sau, S. C., Hota, P. K., Mandal, S. K., Soleilhavoup, M. & Bertrand, G. Stable abnormal N-heterocyclic carbenes and their applications. Chem. Soc. Rev. 49, 1233–1252 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Bartholomew, C. H., Agrawal, P. K. & Katzer, J. R. in Advances in Catalysis Vol. 31 (eds Eley, D. D., Pines, H. & Weisz, P. B.) 135–242 (Academic Press, 1982).

  26. Dunleavy, J. Sulfur as a catalyst poison. Platin. Met. Rev. 50, 110 (2006).

    Article  CAS  Google Scholar 

  27. Zhou, Z.-G. et al. Integration of CO2 capture, activation, and conversion with a ternary acetylglucosyl 2-methyl-imidazolium modified Pd catalyst. Org. Chem. Front. 10, 2045–2053 (2023).

    Article  CAS  Google Scholar 

  28. Wang, Y.-B., Wang, Y.-M., Zhang, W.-Z. & Lu, X.-B. Fast CO2 sequestration, activation, and catalytic transformation using N-heterocyclic olefins. J. Am. Chem. Soc. 135, 11996–12003 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Glockler, G. Carbon–oxygen bond energies and bond distances. J. Phys. Chem. 62, 1049–1054 (1958).

    Article  CAS  Google Scholar 

  30. Jacquet, O., Gomes, C. D. N., Ephritikhine, M. & Cantat, T. Recycling of carbon and silicon wastes: room temperature formylation of N–H bonds using carbon dioxide and polymethylhydrosiloxane. J. Am. Chem. Soc. 134, 2934–2937 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Hota, P. K., Sau, S. C. & Mandal, S. K. Metal-free catalytic formylation of amides using CO2 under ambient conditions. ACS Catal. 8, 11999–12003 (2018).

    Article  CAS  Google Scholar 

  32. Sanchez, S., Bateson, J. H., O’Hanlon, P. J. & Gallagher, T. S-alkyl dithioformates as 1,3 dipolarophiles. Generation of C2-unsubstituted penems. Org. Lett. 6, 2781–2783 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Babin, V., Taran, F. & Audisio, D. Late-stage carbon-14 labeling and isotope exchange: emerging opportunities and future challenges. JACS Au 2, 1234–1251 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pirali, T., Serafini, M., Cargnin, S. & Genazzani, A. A. Applications of deuterium in medicinal chemistry. J. Med. Chem. 62, 5276–5297 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Fernandez-Salas, J. A., Manzini, S. & Nolan, S. P. Efficient ruthenium-catalysed S–S, S–Si and S–B bond forming reactions. Chem. Commun. 49, 5829–5831 (2013).

    Article  CAS  Google Scholar 

  36. Bołt, M. & ŻaK, P. Application of bulky NHC–rhodium complexes in efficient S–Si and S–S bond forming reactions. Inorg. Chem. 60, 17579–17585 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kucinski, K. & Hreczycho, G. Catalytic formation of silicon–heteroatom (N, P, O, S) bonds. ChemCatChem 9, 1868–1885 (2017).

    Article  CAS  Google Scholar 

  38. Bratz, M., Bullock, W. H., Overman, L. E. & Takemoto, T. Total synthesis of (+)-laurencin. Use of acetal-vinyl sulfide cyclizations for forming highly functionalized eight-membered cyclic ethers. J. Am. Chem. Soc. 117, 5958–5966 (1995).

    Article  CAS  Google Scholar 

  39. Narasaka, K., Hayashi, Y., Shimadzu, H. & Niihata, S. Asymmetric [2 + 2] cycloaddition reaction catalyzed by a chiral titanium reagent. J. Am. Chem. Soc. 114, 8869 (1992).

    Article  CAS  Google Scholar 

  40. Beletskaya, I. P. & Ananikov, V. P. Transition-metal-catalyzed C–S, C–Se, and C–Te bond formation via cross-coupling and atom-economic addition reaction. Chem. Rev. 111, 1596–1636 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Sasmal, P. K. & Maier, M. E. Formation of bicyclic ethers from Lewis acid promoted cyclizations of cyclic oxonium ions. Org. Lett. 4, 1271–1274 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Feldman, K. S. & Skoumbourdis, A. P. Regioselective ring-opening/cross-metathesis reactions of norbornene derivatives with electron-rich olefins. Org. Lett. 7, 131–134 (2005).

    Article  Google Scholar 

  43. Liu, Z. et al. Thio-Claisen rearrangement used in preparing anti-β-functionalized γ,δ-unsaturated amino acids: scope and limitations. J. Org. Chem. 77, 1289–1300 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Meng, D., Chen, W. & Zhao, W. Sulfur-containing spiroketal glycosides from Breynia fruticose. J. Nat. Prod. 70, 824–829 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Szilágyi, A. et al. Synthesis and cytotoxicity of leinamycin antibiotic analogues. J. Med. Chem. 49, 5626–5630 (2006).

    Article  PubMed  Google Scholar 

  46. Kausar, A., Zulfiqar, S. & Sarwar, M. I. Recent developments in sulfur-containing polymers. Polym. Rev. 54, 185–267 (2014).

    Article  CAS  Google Scholar 

  47. Scharf, D. H., Habel, A., Heinekamp, T., Brakhage, A. A. & Hertweck, C. Opposed effects of enzymatic gliotoxin N- and S-methylations. J. Am. Chem. Soc. 136, 11674–11679 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Beletskaya, I. P. & Ananikov, V. P. Transition-metal-catalyzed C–S, C–Se, and C–Te bond formations via cross-coupling and atom-economic addition reactions. achievements and challenges. Chem. Rev. 122, 16110–16293 (2022).

    Article  CAS  PubMed  Google Scholar 

  49. Kuniyasu, H. et al. The first example of transition-metal-catalyzed addition of aromatic thiols to acetylenes. J. Am. Chem. Soc. 114, 5902–5903 (1992).

    Article  CAS  Google Scholar 

  50. Castarlenas, R., Giuseppe, A. D., Pérez-Torrente, J. J. & Oro, L. A. The emergence of transition-metal-mediated hydrothiolation of unsaturated carbon–carbon bonds: a mechanistic outlook. Angew. Chem. Int. Ed. 52, 211–222 (2013).

    Article  CAS  Google Scholar 

  51. Di Giuseppe, A. et al. Ligand-controlled regioselectivity in the hydrothiolation of alkynes by rhodium N-heterocyclic carbene catalysts. J. Am. Chem. Soc. 134, 8171–8183 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Wittig, G. & Schllkopf, U. Über Triphenyl-PhosphinMethylene als Olefinbildende Reagenzien (I. Mitteil.). Chem. Ber. 87, 1318–1330 (1954).

    Article  Google Scholar 

  53. Hoffmann, R. W. Wittig and his accomplishments: still relevant beyond his 100th birthday. Angew. Chem. Int. Ed. 40, 1411–1416 (2001).

    Article  CAS  Google Scholar 

  54. Ahmadi, R. & Emami, S. Recent applications of vinyl sulfone motif in drug design and discovery. Eur. J. Med. Chem. 234, 114255 (2022).

    Article  CAS  PubMed  Google Scholar 

  55. Ledovskaya, M. S., Voronin, V. V., Rodygina, K. S. & Ananikov, V. P. Efficient labelling of organic molecules using 13C elemental carbon: universal access to 13C2-labeled synthetic building blocks, polymers and pharmaceuticals. Org. Chem. Front. 7, 638–647 (2020).

    Article  CAS  Google Scholar 

  56. Whaley, T. W. & Ott, D. G. Syntheses with stable isotopes: acetylene-13C2 and lithium acetylide-13C2 ethylenediamine complex. J. Label. Compd Radiopharm. 10, 461–468 (1974).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S.K.M. thanks the SERB (DST), India (grant no. CRG/2022/000471). S.M. thanks the CSIR, India for a research fellowship (09/921(0233)/2019-EMR-I). A.D. thanks the IISER Kolkata for a research fellowship.

Author information

Authors and Affiliations

Authors

Contributions

S.K.M. and S.M. conceived the idea of this work. S.M. carried out all synthetic and catalytic experiments. A.D. contributed to crystallization and X-ray structure determination. M.M.B. carried out the experiments for thiol synthesis. S.K.M. supervised the overall work. The manuscript was written through the contributions of all authors. All authors have given approval for the final version of the manuscript.

Corresponding author

Correspondence to Swadhin K. Mandal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Vania Andre and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Figs. 1–206 and references.

Supplementary Data 1

CIF file of the crystal structure of compound 2.

Supplementary Data 2

Check CIF file of the crystal structure of compound 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maji, S., Das, A., Bhatt, M.M. et al. Metal-free organocatalytic S-formylation of thiols using CO2. Nat Catal 7, 375–385 (2024). https://doi.org/10.1038/s41929-024-01114-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-024-01114-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing