Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Solution-based Cu+ transient species mediate the reconstruction of copper electrocatalysts for CO2 reduction

Abstract

Understanding metal surface reconstruction is of the utmost importance in electrocatalysis, as this phenomenon directly affects the nature of available active sites. However, its dynamic nature renders surface reconstruction notoriously difficult to study. Here, we report on the intermediates that drive the rearrangement of copper catalysts for the electrochemical CO2 reduction reaction (CO2RR). Online MS and UV–vis absorption spectroscopy data are consistent with a dissolution–redeposition process, as previously demonstrated by in situ electron microscopy. The data indicate that the soluble transient species contain copper in the +1 oxidation state. Density functional theory identifies copper–adsorbate complexes that can exist in solution under operating conditions. Copper carbonyls and oxalates are suggested as the major reaction-specific species driving copper reconstruction during CO2RR. This work motivates future methodological studies to enable the direct detection of these compounds and strategies that specifically target them to improve the catalyst operational stability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization of the as-synthesized Cu catalyst.
Fig. 2: Online ICP-MS measuring the dissolution rate of Cu NPs under cathodic bias.
Fig. 3: Detection of Cu species via UV–vis spectroscopy.
Fig. 4: Adsorbates-driven dissolution of Cu under cathodic bias.
Fig. 5: Schematic illustration of the copper reconstruction mechanism under CO2RR conditions.

Similar content being viewed by others

Data availability

The datasets generated though DFT and analysed during the current study are available from the ioChem-BD database65 at https://doi.org/10.19061/iochem-bd-1-231. Experimental data are openly available in Zenodo at https://doi.org/10.5281/zenodo.6724739.

References

  1. Nitopi, S. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019).

    Article  PubMed  CAS  Google Scholar 

  2. Hahn, C. et al. Engineering Cu surfaces for the electrocatalytic conversion of CO2: controlling selectivity toward oxygenates and hydrocarbons. Proc. Natl Acad. Sci. USA 114, 5918–5923 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Kim, Y. G., Baricuatro, J. H., Javier, A., Gregoire, J. M. & Soriaga, M. P. The evolution of the polycrystalline copper surface, first to Cu(111) and then to Cu(100), at a fixed CO2RR potential: a study by operando EC-STM. Langmuir 30, 15053–15056 (2014).

    Article  PubMed  CAS  Google Scholar 

  4. Manthiram, K., Beberwyck, B. J. & Alivisatos, A. P. Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst. J. Am. Chem. Soc. 136, 13319–13325 (2014).

    Article  PubMed  CAS  Google Scholar 

  5. Gunathunge, C. M. et al. Spectroscopic observation of reversible surface reconstruction of copper electrodes under CO2 reduction. J. Phys. Chem. C 121, 12337–12344 (2017).

    Article  CAS  Google Scholar 

  6. Kim, D., Kley, C. S., Li, Y. & Yang, P. Copper nanoparticle ensembles for selective electroreduction of CO2 to C2–C3 products. Proc. Natl Acad. Sci. USA 114, 10560–10565 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Grosse, P. et al. Dynamic changes in the structure, chemical state and catalytic selectivity of Cu Nanocubes during CO2 electroreduction: size and support effects. Angew. Chem. 130, 6300–6305 (2018).

    Article  Google Scholar 

  8. Huang, J. et al. Potential-induced nanoclustering of metallic catalysts during electrochemical CO2 reduction. Nat. Commun. 9, 3117–3126 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Osowiecki, W. T. et al. Factors and dynamics of Cu nanocrystal reconstruction under CO2 reduction. ACS Appl. Energy Mater. 2, 7744–7749 (2019).

    Article  CAS  Google Scholar 

  10. Jung, H. et al. Electrochemical fragmentation of Cu2O nanoparticles enhancing selective C-C coupling from CO2 reduction reaction. J. Am. Chem. Soc. 141, 4624–4633 (2019).

    Article  PubMed  CAS  Google Scholar 

  11. Grosse, P. et al. Dynamic transformation of cubic copper catalysts during CO2 electroreduction and its impact on catalytic selectivity. Nat. Commun. 12, 6736 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Vavra, J., Shen, T. H., Stoian, D., Tileli, V. & Buonsanti, R. Real-time monitoring reveals dissolution/redeposition mechanism in copper nanocatalysts during the initial stages of the CO2 reduction reaction. Angew. Chem. Int. Ed. 60, 1347–1354 (2021).

    Article  CAS  Google Scholar 

  13. Hong Lee, S. et al. Oxidation state and surface reconstruction of Cu under CO2 reduction conditions from in situ X-ray characterization. J. Am. Chem. Soc. 143, 588–592 (2021).

    Article  Google Scholar 

  14. Phan, T. H. et al. Emergence of potential-controlled Cu-nanocuboids and graphene-covered Cu-nanocuboids under operando CO2 electroreduction. Nano Lett. 21, 2059–2065 (2021).

    Article  PubMed  CAS  Google Scholar 

  15. Speck, F. D. & Cherevko, S. Electrochemical copper dissolution: a benchmark for stable CO2 reduction on copper electrocatalysts. Electrochem. Commun. 115, 106739 (2020).

    Article  CAS  Google Scholar 

  16. Simon, G. H., Kley, C. S. & Roldan Cuenya, B. Potential-dependent morphology of copper catalysts during CO2 electroreduction revealed by in situ atomic force microscopy. Angew. Chem. Int. Ed. 60, 2561–2568 (2021).

    Article  CAS  Google Scholar 

  17. Raaijman, S. J., Arulmozhi, N. & Koper, M. T. M. Morphological stability of copper surfaces under reducing conditions. ACS Appl. Mater. Interfaces 13, 48730–48744 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Hochfilzer, D. et al. The importance of potential control for accurate studies of electrochemical CO reduction. ACS Energy Lett. 6, 1879–1885 (2021).

    Article  CAS  Google Scholar 

  19. Li, Y. et al. Structure-sensitive CO2 electroreduction to hydrocarbons on ultrathin 5-fold twinned copper nanowires. Nano Lett. 17, 1312–1317 (2017).

    Article  PubMed  CAS  Google Scholar 

  20. Popovic, S., Bele, M. & Hodnik, N. Reconstruction of copper nanoparticles at electrochemical CO2 reduction reaction conditions occurs via two-step dissolution/redeposition mechanism. ChemElectroChem 8, 2634–2639 (2021).

    Article  CAS  Google Scholar 

  21. McCafferty, E. in Introduction to Corrosion Science 95–117 (Springer, 2010).

  22. Eren, B., Weatherup, R. S., Liakakos, N., Somorjai, G. A. & Salmeron, M. Dissociative carbon dioxide adsorption and morphological changes on Cu(100) and Cu(111) at ambient pressures. J. Am. Chem. Soc. 138, 8207–8211 (2016).

    Article  PubMed  CAS  Google Scholar 

  23. Eren, B. et al. Activation of Cu(111) surface by decomposition into nanoclusters driven by CO adsorption. Science 351, 475–478 (2016).

    Article  PubMed  CAS  Google Scholar 

  24. Xu, L. et al. Formation of active sites on transition metals through reaction-driven migration of surface atoms. Science 380, 70–76 (2023).

    Article  PubMed  CAS  Google Scholar 

  25. Amirbeigiarab, R. et al. Atomic-scale surface restructuring of copper electrodes under CO2 electroreduction conditions. Nat. Catal. 6, 837–846 (2023).

    Article  CAS  Google Scholar 

  26. Li, Y. et al. Electrochemically scrambled nanocrystals are catalytically active for CO2-to-multicarbons. Proc. Natl Acad. Sci. USA 117, 9194–9201 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Yang, Y. et al. Operando studies reveal active Cu nanograins for CO2 electroreduction. Nature 614, 262–269 (2023).

    Article  PubMed  CAS  Google Scholar 

  28. Kasian, O., Geiger, S., Mayrhofer, K. J. J. & Cherevko, S. Electrochemical on-line ICP-MS in electrocatalysis research. Chem. Rec. 19, 2130–2142 (2019).

    Article  PubMed  CAS  Google Scholar 

  29. Cherevko, S. Electrochemical dissolution of noble metals native oxides. J. Electroanal. Chem. 787, 11–13 (2017).

    Article  CAS  Google Scholar 

  30. Armaroli, N. Photoactive mono- and polynuclear Cu(I)-phenanthrolines. A viable alternative to Ru(II)-polypyridines? Chem. Soc. Rev. 30, 113–124 (2001).

    Article  CAS  Google Scholar 

  31. Wang, J. et al. A water-soluble Cu complex as molecular catalyst for electrocatalytic CO2 reduction on graphene-based electrodes. Adv. Energy Mater. 9, 1803151 (2019).

    Article  Google Scholar 

  32. Soo, J. L., Doo, R. B., Won, S. H., Shim, S. L. & Jong, H. J. Different morphological organic-inorganic hybrid nanomaterials as fluorescent chemosensors and adsorbents for CuII ions. Eur. J. Inorg. Chem. 2008, 1559–1564 (2008).

    Article  Google Scholar 

  33. Taki, M., Iyoshi, S., Ojida, A., Hamachi, I. & Yamamoto, Y. Development of highly sensitive fluorescent probes for detection of intracellular copper(I) in living systems. J. Am. Chem. Soc. 132, 5938–5939 (2010).

    Article  PubMed  CAS  Google Scholar 

  34. Smith, G. F. & McCurdy, W. H. Jr. 2,9-Dimethyl-1,10-phenanthroline. Anal. Chem. 24, 371–373 (1952).

    Article  CAS  Google Scholar 

  35. Fishman, M., Zhuang, H. L., Mathew, K., Dirschka, W. & Hennig, R. G. Accuracy of exchange-correlation functionals and effect of solvation on the surface energy of copper. Phys. Rev. B Condens. Matter Mater. Phys. 87, 245402 (2013).

    Article  Google Scholar 

  36. Velasco-Vélez, J. J. et al. The role of the copper oxidation state in the electrocatalytic reduction of CO2 into valuable hydrocarbons. ACS Sustain. Chem. Eng. 7, 1485–1492 (2019).

    Article  Google Scholar 

  37. Dattila, F., Garcia-Muelas, R. & López, N. Active and selective ensembles in oxide-derived copper catalysts for CO2 reduction. ACS Energy Lett. 5, 3176–3184 (2020).

    Article  CAS  Google Scholar 

  38. McCrum, I. T., Bondue, C. J. & Koper, M. T. M. Hydrogen-induced step-edge roughening of platinum electrode surfaces. J. Phys. Chem. Lett. 10, 6842–6849 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Hersbach, T. J. P. & Koper, M. T. M. Cathodic corrosion: 21st century insights into a 19th century phenomenon. Curr. Opin. Electrochem. 26, 100653 (2021).

    Article  CAS  Google Scholar 

  40. Kreizer, I. V., Tutukina, N. M., Zartsyn, I. D. & Marshakov, I. K. The dissolution of a copper cathode in acidic chloride solutions. Prot. Met. 38, 226–232 (2002).

    Article  CAS  Google Scholar 

  41. Kreizer, I. V., Marshakov, I. K., Tutukina, N. M. & Zartsyn, I. D. Partial reactions of copper dissolution under cathodic polarization in acidic media. Prot. Met. 40, 23–25 (2004).

    Article  CAS  Google Scholar 

  42. Kreizer, V., Marshakov, I. K., Tutukina, N. M. & Zartsyn, I. D. The effect of oxygen on copper dissolution during cathodic polarization. Prot. Met. 39, 30–33 (2003).

    Article  CAS  Google Scholar 

  43. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  PubMed  CAS  Google Scholar 

  44. Moradzaman, M. & Mul, G. In situ Raman study of potential-dependent surface adsorbed carbonate, CO, OH and C species on Cu electrodes during electrochemical reduction of CO2. ChemElectroChem 8, 1478–1485 (2021).

    Article  CAS  Google Scholar 

  45. Calle-Vallejo, F., Martínez, J. I., García-Lastra, J. M., Sautet, P. & Loffreda, D. Fast prediction of adsorption properties for platinum nanocatalysts with generalized coordination numbers. Angew. Chem. Int. Ed. 53, 8316–8319 (2014).

    Article  CAS  Google Scholar 

  46. Pasquali, M., Floriani, C. & Gaetani-Manfredotti, A. Carbon monoxide absorption by copper(I) halides in organic solvents: isolation and structure of µ-halogeno-dicopper(I) carbonyl complexes. Inorg. Chem. 20, 3382–3388 (1981).

    Article  CAS  Google Scholar 

  47. Pike, R. D. Structure and bonding in copper(I) carbonyl and cyanide complexes. Organometallics 31, 7647–7660 (2012).

    Article  CAS  Google Scholar 

  48. Wuttig, A. et al. Tracking a common surface-bound intermediate during CO2-to-fuels catalysis. ACS Cent. Sci. 2, 522–528 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Clark, E. L. & Bell, A. T. Direct observation of the local reaction environment during the electrochemical reduction of CO2. J. Am. Chem. Soc. 140, 7012–7020 (2018).

    Article  PubMed  CAS  Google Scholar 

  50. Wilde, P. et al. Is Cu instability during the CO2 reduction reaction governed by the applied potential or the local CO concentration? Chem. Sci. 12, 4028–4033 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Zhang, X. Y. et al. Selective methane electrosynthesis enabled by a hydrophobic carbon coated copper core-shell architecture. Energy Environ. Sci. 15, 234–243 (2022).

    Article  Google Scholar 

  52. Zhang, L. et al. A polymer solution to prevent nanoclustering and improve the selectivity of metal nanoparticles for electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. 58, 15834–15840 (2019).

    Article  CAS  Google Scholar 

  53. Timoshenko, J. et al. Steering the structure and selectivity of CO2 electroreduction catalysts by potential pulses. Nat. Catal. 5, 259–267 (2022).

    Article  CAS  Google Scholar 

  54. Hung, L.-I., Tsung, C.-K., Huang, W. & Yang, P. Room-temperature formation of hollow Cu2O nanoparticles. Adv. Mater. 22, 1910–1914 (2010).

    Article  PubMed  CAS  Google Scholar 

  55. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    Article  PubMed  CAS  Google Scholar 

  56. Bučko, T., Hafner, J., Lebègue, S. & Ángyán, J. G. Improved description of the structure of molecular and layered crystals: ab initio DFT calculations with van der Waals corrections. J. Phys. Chem. A 114, 11814–11824 (2010).

    Article  PubMed  Google Scholar 

  57. Almora-Barrios, N., Carchini, G., Błoński, P. & López, N. Costless derivation of dispersion coefficients for metal surfaces. J. Chem. Theory Comput. 10, 5002–5009 (2014).

    Article  PubMed  CAS  Google Scholar 

  58. Chen, L. D., Urushihara, M., Chan, K. & Nørskov, J. K. Electric field effects in electrochemical CO2 reduction. ACS Catal. 6, 7133–7139 (2016).

    Article  CAS  Google Scholar 

  59. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  60. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  61. Kim, Y. G. et al. Surface reconstruction of pure-Cu single-crystal electrodes under CO-reduction potentials in alkaline solutions: a study by seriatim ECSTM-DEMS. J. Electroanal. Chem. 780, 290–295 (2016).

    Article  CAS  Google Scholar 

  62. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  63. Makov, G. & Payne, M. C. Periodic boundary conditions in ab initio calculations. Phys. Rev. B 51, 4014–4022 (1995).

    Article  CAS  Google Scholar 

  64. Granda-Marulanda, L. P. et al. A semiempirical method to detect and correct DFT-based gas-phase errors and its application in electrocatalysis. ACS Catal. 10, 6900–6907 (2020).

    Article  CAS  Google Scholar 

  65. Álvarez-Moreno, M. et al. Managing the computational chemistry big data problem: the ioChem-BD platform. J. Chem. Inf. Model. 55, 95–103 (2015).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

G.P.L.R. acknowledges financial support from the Ecole Normale Supérieure Paris Saclay. P.P.A. thanks NCCR Catalysis (grant no. 180544), a National Centre of Competence in Research funded by the Swiss National Science Foundation, for financial support. F.D. and N.L. acknowledge financial support by the Spanish Ministry of Science and Innovation (RTI2018-101394-B-I00, Severo Ochoa CEX2019-000925-S) and thank the Barcelona Supercomputing Center (BSC-RES) for providing generous computational resources. F.D. and N.L. thank M. A. Ortuño and S. J. Raaijman for fruitful scientific discussions. We thank M. Newton for assistance in the operando X-ray absorption measurements and analysis of the corresponding data reported in the Supplementary Information. O. Wenger is acknowledged for discussions on the phenanthroline ligands. The Swiss Norwegian beamlines (SNBL) at ESRF are acknowledged for the provision of beamtime and its staff are thanked for invaluable support. The BM31 set-up was funded by the Swiss National Science Foundation (grant no. 206021_189629) and the Research Council of Norway (grant no. 296087). N. Gasilova is acknowledged for assistance with ex situ ICP-MS measurements.

Author information

Authors and Affiliations

Authors

Contributions

J.V. carried out structural analysis of the catalyst and part of the electrocatalytic measurements, performed initial experiments with the phenanthroline ligand and wrote the first version of the manuscript. G.P.L.R. performed the UV–vis absorption, the ex situ ICP-MS, part of the electrocatalytic measurements and analysed the corresponding data. F.D. and N.L. carried out the computational simulations. A.K., T.P. and S.C. performed and analysed the data from the online ICP-MS measurements. P.P.A. contributed with electrocatalytic measurements and microscopy analysis. A.L. collected microscopy data and provided daily guidance to G.P.L.R. R.B. coordinated the entire work. All authors discussed, read and commented on the manuscript.

Corresponding author

Correspondence to Raffaella Buonsanti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Youngku Sohn and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs 1–18, Tables 1–6 and Notes 1-5

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vavra, J., Ramona, G.P.L., Dattila, F. et al. Solution-based Cu+ transient species mediate the reconstruction of copper electrocatalysts for CO2 reduction. Nat Catal 7, 89–97 (2024). https://doi.org/10.1038/s41929-023-01070-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-01070-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing