Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Photoelectrochemical asymmetric dehydrogenative [2 + 2] cycloaddition between C–C single and double bonds via the activation of two C(sp3)–H bonds

Abstract

The efficient generation of high structural complexity, which correlates with the number of stereocentres, is an important objective in organic synthesis. Ideally, from a perspective of economy and sustainability, the conversion should include the direct functionalization of unactivated C(sp3)–H bonds. Here we introduce a methodology that enables the generation of complex cyclobutanes with up to four consecutive stereocentres, including all-carbon quaternary stereocentres, from a direct reaction of C–C single bonds with C=C double bonds. The asymmetric photoelectrocatalysis combines photocatalysis, electrochemical redox catalysis and asymmetric catalysis. It avoids the use of chemical oxidants, exhibits excellent enantioselectivity and diastereoselectivity, reveals high functional group compatibility, and also succeeds in the simultaneous conversion of two C(sp3)–H bonds into consecutive carbon stereocentres. This work demonstrates the power of combining electrochemistry with photochemistry and asymmetric catalysis to generate complex structures in an economic and sustainable fashion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: [2π + 2π] and [2π + 2σ] photocycloadditions, and this work.
Fig. 2: Scope of ketones and alkenes.
Fig. 3: Synthetic applications of the photoelectrochemical asymmetric dehydrogenative [2 + 2] cycloaddition.
Fig. 4: Mechanistic studies.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information, or from the authors on reasonable request. Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre under deposition number CCDC 2258577 (11) and CCDC 2258578 (28). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Kobayashi, S. & Jørgensen, K. A. Cycloaddition Reactions in Organic Synthesis (Wiley‐VCH, 2002).

  2. Nishiwaki, N. Methods and Applications of Cycloaddition Reactions in Organic Syntheses (Wiley‐VCH, 2014).

  3. Schreiber, S. L. [2 + 2] photocycloadditions in the synthesis of chiral molecules. Science 227, 857–863 (1985).

    CAS  PubMed  Google Scholar 

  4. Crimmins, M. T. Synthetic applications of intramolecular enone–olefin photocycloadditions. Chem. Rev. 88, 1453–1473 (1988).

    CAS  Google Scholar 

  5. Schuster, D. I., Lem, G. & Kaprinidis, N. A. New insights into an old mechanism: [2 + 2] photocycloaddition of enones to alkenes. Chem. Rev. 93, 3–22 (1993).

    CAS  Google Scholar 

  6. Xu, Y., Conner, M. L. & Brown, M. K. Cyclobutane and cyclobutene synthesis: catalytic enantioselective [2 + 2] cycloadditions. Angew. Chem. Int. Ed. 54, 11918–11928 (2015).

    CAS  Google Scholar 

  7. Poplata, S., Tröster, A., Zou, Y.-Q. & Bach, T. Recent advances in the synthesis of cyclobutanes by olefin [2 + 2] photocycloaddition reactions. Chem. Rev. 116, 9748–9815 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Sarkar, D., Bera, N. & Ghosh, S. [2 + 2] photochemical cycloaddition in organic synthesis. Eur. J. Org. Chem. 2020, 1310–1326 (2020).

    CAS  Google Scholar 

  9. Sicignano, M., Rodríguez, R. I. & Alemán, J. Recent visible light and metal free strategies in [2 + 2] and [4 + 2] photocycloadditions. Eur. J. Org. Chem. 2021, 3303–3321 (2021).

    CAS  Google Scholar 

  10. Yang, P., Jia, Q., Song, S. & Huang, X. [2+2]-Cycloaddition-derived cyclobutane natural products: structural diversity, sources, bioactivities, and biomimetic syntheses. Nat. Prod. Rep. 40, 1094–1129 (2023).

    PubMed  Google Scholar 

  11. Cox, B., Booker-Milburn, K. I., Elliott, L. D., Robertson-Ralph, M. & Zdorichenko, V. Escaping from flatland: [2 + 2] photocycloaddition; conformationally constrained sp3-rich scaffolds for lead generation. ACS Med. Chem. Lett. 10, 1512–1517 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. van der Kolk, M. R., Janssen, M., Rutjes, F. & Blanco-Ania, D. Cyclobutanes in small-molecule drug candidates. ChemMedChem 17, e202200020 (2022).

    PubMed  PubMed Central  Google Scholar 

  13. Winkler, J. D., Bowen, C. M. & Liotta, F. [2 + 2] photocycloaddition/fragmentation strategies for the synthesis of natural and unnatural products. Chem. Rev. 95, 2003–2020 (1995).

    CAS  Google Scholar 

  14. Murakami, M. & Ishida, N. Cleavage of carbon–carbon σ-bonds of four-membered rings. Chem. Rev. 121, 264–299 (2021).

    CAS  PubMed  Google Scholar 

  15. Kleinmans, R. et al. Intermolecular [2π + 2σ]-photocycloaddition enabled by triplet energy transfer. Nature 605, 477–482 (2022).

    CAS  PubMed  Google Scholar 

  16. Guo, R. et al. Strain-release [2π + 2σ] cycloadditions for the synthesis of bicyclo[2.1.1]hexanes initiated by energy transfer. J. Am. Chem. Soc. 144, 7988–7994 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang, H. et al. Electrophotocatalysis with a trisaminocyclopropenium radical dication. Angew. Chem. Int. Ed. 58, 13318–13322 (2019).

    CAS  Google Scholar 

  18. Wang, F. & Stahl, S. S. Merging photochemistry with electrochemistry: functional-group tolerant electrochemical amination of C(sp3)−H bonds. Angew. Chem. Int. Ed. 58, 6385–6390 (2019).

    CAS  Google Scholar 

  19. Yan, H., Hou, Z.-W. & Xu, H.-C. Photoelectrochemical C−H alkylation of heteroarenes with organotrifluoroborates. Angew. Chem. Int. Ed. 58, 4592–4595 (2019).

    CAS  Google Scholar 

  20. Zhang, L. et al. Photoelectrocatalytic arene C–H amination. Nat. Catal. 2, 366–373 (2019).

    CAS  Google Scholar 

  21. Moutet, J.-C. & Reverdy, G. Photochemistry of cation radicals in solution: photoinduced oxidation by the phenothiazine cation radical. Tetrahedron Lett. 20, 2389–2392 (1979).

    Google Scholar 

  22. Moutet, J.-C. & Reverdy, G. Phototochemistry of cation radicals in solution: photoinduced electron-transfer reactions between alcholos and the N,N,N’,N’-tetraphenyl-p-phenylenediamine cation radical. Chem. Commun. 654–655 (1982).

  23. Barham, J. P. & König, B. Synthetic photoelectrochemistry. Angew. Chem. Int. Ed. 59, 11732–11747 (2020).

    CAS  Google Scholar 

  24. Liu, J., Lu, L., Wood, D. & Lin, S. New redox strategies in organic synthesis by means of electrochemistry and photochemistry. ACS Cent. Sci. 6, 1317–1340 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Huang, H., Steiniger, K. A. & Lambert, T. H. Electrophotocatalysis: combining light and electricity to catalyze reactions. J. Am. Chem. Soc. 144, 12567–12583 (2022).

    CAS  PubMed  Google Scholar 

  26. Wu, S., Kaur, J., Karl, T. A., Tian, X. & Barham, J. P. Synthetic molecular photoelectrochemistry: new frontiers in synthetic applications, mechanistic insights and scalability. Angew. Chem. Int. Ed. 61, e202107811 (2022).

    CAS  Google Scholar 

  27. Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Meyer, T. H., Choi, I., Tian, C. & Ackermann, L. Powering the future: how can electrochemistry make a difference in organic synthesis? Chem 6, 2484–2496 (2020).

    CAS  Google Scholar 

  29. Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Stephenson, C., Yoon, T. & MacMillan, D. W. C. Visible Light Photocatalysis in Organic Chemistry (Wiley‐VCH, 2018).

  31. Cai, C.-Y. et al. Photoelectrochemical asymmetric catalysis enables site- and enantioselective cyanation of benzylic C–H bonds. Nat. Catal. 5, 943–951 (2022).

    CAS  Google Scholar 

  32. Fan, W. et al. Electrophotocatalytic decoupled radical relay enables highly efficient and enantioselective benzylic C–H functionalization. J. Am. Chem. Soc. 144, 21674–21682 (2022).

    CAS  PubMed  Google Scholar 

  33. Huang, X. et al. Direct visible-light-excited asymmetric Lewis acid catalysis of intermolecular [2 + 2] photocycloadditions. J. Am. Chem. Soc. 139, 9120–9123 (2017).

    CAS  PubMed  Google Scholar 

  34. Huang, X. & Meggers, E. Asymmetric photocatalysis with bis-cyclometalated rhodium complexes. Acc. Chem. Res. 52, 833–847 (2019).

    CAS  PubMed  Google Scholar 

  35. Huang, X., Zhang, Q., Lin, J., Harms, K. & Meggers, E. Electricity-driven asymmetric Lewis acid catalysis. Nat. Catal. 2, 34–40 (2019).

    CAS  Google Scholar 

  36. Xiong, P., Hemming, M., Ivlev, S. I. & Meggers, E. Electrochemical enantioselective nucleophilic α-C(sp3)–H alkenylation of 2-acyl imidazoles. J. Am. Chem. Soc. 144, 6964–6971 (2022).

    CAS  PubMed  Google Scholar 

  37. Liang, K., Zhang, Q. & Guo, C. Nickel-catalyzed switchable asymmetric electrochemical functionalization of alkenes. Sci. Adv. 8, eadd7134 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Jie, X., Shang, Y., Zhang, X. & Su, W. Cu-catalyzed sequential dehydrogenation–conjugate addition for β-functionalization of saturated ketones: scope and mechanism. J. Am. Chem. Soc. 138, 5623–5633 (2016).

    CAS  PubMed  Google Scholar 

  39. Li, J., He, L., Liu, X., Cheng, X. & Li, G. Electrochemical hydrogenation with gaseous ammonia. Angew. Chem. Int. Ed. 58, 1759–1763 (2018).

    Google Scholar 

  40. Huang, B., Li, Y., Yang, C. & Xia, W. Electrochemical 1,4-reduction of α,β-unsaturated ketones with methanol and ammonium chloride as hydrogen sources. Chem. Commun. 55, 6731–6734 (2019).

    CAS  Google Scholar 

  41. Nguyen, T. H. et al. Three quinolinone alkaloid–phenylpropanoid adducts from Melicope pteleifolia. Nat. Prod. Res. 36, 3858–3864 (2022).

    CAS  PubMed  Google Scholar 

  42. Schmittel, M. & Burghart, A. Understanding reactivity patterns of radical cations. Angew. Chem. Int. Ed. 36, 2550–2589 (1997).

    Google Scholar 

  43. Ohmatsu, K., Nakashima, T., Sato, M. & Ooi, T. Direct allylic C–H alkylation of enol silyl ethers enabled by photoredox–Brønsted base hybrid catalysis. Nat. Commun. 10, 2706 (2019).

    PubMed  PubMed Central  Google Scholar 

  44. Nakashima, T., Fujimori, H., Ohmatsu, K. & Ooi, T. Exploiting transient radical cations as Brønsted acids for allylic C–H heteroarylation of enol silyl ethers. Chem. Eur. J. 27, 9253–9256 (2021).

    CAS  PubMed  Google Scholar 

  45. Shono, T., Matsumura, Y. & Nakagawa, Y. Electroorganic chemistry. XII. Anodic oxidation of enol esters. J. Am. Chem. Soc. 96, 3532–3536 (1974).

    CAS  Google Scholar 

  46. Shono, T., Okawa, M. & Nishiguchi, I. Electroorganic chemistry. XXI. Selective formation of α-acetoxy ketones and general synthesis of 2,3-disubstituted 2-cyclopentenones through the anodic oxidation of enol acetates. J. Am. Chem. Soc. 97, 6144–6147 (1975).

    CAS  Google Scholar 

  47. Wilsey, S., González, L., Robb, M. A. & Houk, K. N. Ground- and excited-state surfaces for the [2 + 2]-photocycloaddition of α,β-enones to alkenes. J. Am. Chem. Soc. 122, 5866–5876 (2000).

    CAS  Google Scholar 

  48. Chiba, K., Miura, T., Kim, S., Kitano, Y. & Tada, M. Electrocatalytic intermolecular olefin cross-coupling by anodically induced formal [2 + 2] cycloaddition between enol ethers and alkenes. J. Am. Chem. Soc. 123, 11314–11315 (2001).

    CAS  PubMed  Google Scholar 

  49. Miura, T., Kim, S., Kitano, Y., Tada, M. & Chiba, K. Electrochemical enol ether/olefin cross-metathesis in a lithium perchlorate/nitromethane electrolyte solution. Angew. Chem. Ed. 45, 1461–1463 (2006).

    CAS  Google Scholar 

  50. Elgrishi, N. et al. A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ. 95, 197–206 (2018).

    CAS  Google Scholar 

  51. McKenzie, E. C. R. et al. Versatile tools for understanding electrosynthetic mechanisms. Chem. Rev. 122, 3229–3335 (2022).

    Google Scholar 

  52. Gnaim, S. et al. Electrochemically driven desaturation of carbonyl compounds. Nat. Chem. 13, 367–372 (2021).

    CAS  PubMed  Google Scholar 

  53. Jung, H. et al. Understanding the mechanism of direct visible-light-activated [2+2] cycloadditions mediated by Rh and Ir photocatalysts: combined computational and spectroscopic studies. Chem. Sci. 12, 9673–9681 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful for funding from the Deutsche Forschungsgemeinschaft (ME 1805/17-1 for E.M.) and to X. Huang for his early related explorations. P.X. is grateful for a postdoctoral fellowship from the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Contributions

E.M. and P.X. wrote the manuscript. E.M. and P.X. conceived of the project and devised the synthetic experiments. P.X. performed the synthetic experiments and analysed the data. S.I. collected the crystallographic data and solved and refined the X-ray crystal structures.

Corresponding author

Correspondence to Eric Meggers.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Qingquan Lu, Maurizio Benaglia and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–68, Tables 1–5, experimental procedures and characterization data, HPLC and NMR spectra.

Supplementary Data 1

CIF file of the crystal structure of compound 11.

Supplementary Data 2

CIF file of the crystal structure of compound 28.

Supplementary Data 3

Checkcif file of the crystal structure of compound 11.

Supplementary Data 4

Checkcif file of the crystal structure of compound 28.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, P., Ivlev, S.I. & Meggers, E. Photoelectrochemical asymmetric dehydrogenative [2 + 2] cycloaddition between C–C single and double bonds via the activation of two C(sp3)–H bonds. Nat Catal 6, 1186–1193 (2023). https://doi.org/10.1038/s41929-023-01050-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-01050-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing