Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Design of a redox-proficient Escherichia coli for screening terpenoids and modifying cytochrome P450s

Abstract

High-value terpenoids are found in plants, animals and microbes, with applications spanning health to agriculture. However, moving their biosynthetic pathways to a new host is challenging when cytochrome P450 (CYP) enzymes are needed for function. Here we engineer Escherichia coli to facilitate discovery by introducing 31 recombinant genes that enhance precursor supply, combine electron transfer pathways and implement regulatory control. We successfully produce terpenoids from different classes and species. By screening 64 bacterial CYPs found in genomes near terpenoid cyclase genes, we identify 40 functional CYPs and combine them with 17 cyclases to create 1,088 pathways. Using a kaurene scaffold, we show that bacterial CYPs can substitute 16 of 44 modifications made by plants. This strain enables high-throughput exploration of terpenoids and their chemical diversification, with a high success rate and reliable titres.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design of E. coli MEV.
Fig. 2: Production of terpenoid scaffolds in E. coli MEV15/20.
Fig. 3: Characterization of the redox array.
Fig. 4: Terpenoid titre optimization.
Fig. 5: Production of LRD scaffolds in E. coli MEV20.
Fig. 6: Production of bacterial CYP-modified LRDs in E. coli MEV20.
Fig. 7: Comparison of plant and bacterial CYP modification of ent-kaurene (LRD04).

Similar content being viewed by others

Data availability

E. coli MEV15 (https://www.addgene.org/197112/) and E. coli MEV20 (https://www.addgene.org/197113/) are available from Addgene. All the raw MS and NMR data can be accessed from https://doi.org/10.5281/zenodo.8243444. The data that support the findings of this study are available within the main text and its Supplementary Information file. Source data are provided with this paper. Data are also available from the corresponding author upon request.

Code availability

The Jupyter Notebooks used for analysing GNN results and metabolomic analysis are available at https://doi.org/10.5281/zenodo.8353604.

References

  1. Zeng, T. et al. TeroKit: a database-driven web server for terpenome research. J. Chem. Inf. Model. 60, 2082–2090 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Martin, V. J. J., Pitera, D. J., Withers, S. T., Newman, J. D. & Keasling, J. D. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat. Biotechnol. 21, 796–802 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Ajikumar, P. K. et al. Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science 330, 70–74 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Paddon, C. J. et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496, 528–532 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Ma, Y., Zu, Y., Huang, S. & Stephanopoulos, G. Engineering a universal and efficient platform for terpenoid synthesis in yeast. Proc. Natl Acad. Sci. USA 120, e2207680120 (2023).

    Article  CAS  PubMed  Google Scholar 

  6. Christianson, D. W. Structural and chemical biology of terpenoid cyclases. Chem. Rev. 117, 11570–11648 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bathe, U. & Tissier, A. Cytochrome P450 enzymes: a driving force of plant diterpene diversity. Phytochemistry 161, 149–162 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Urlacher, V. B. & Girhard, M. Cytochrome P450 monooxygenases in biotechnology and synthetic biology. Trends Biotechnol. 37, 882–897 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Xiao, H., Zhang, Y. & Wang, M. Discovery and engineering of cytochrome P450s for terpenoid biosynthesis. Trends Biotechnol. 37, 618–631 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Kaspera, R. & Croteau, R. Cytochrome P450 oxygenases of Taxol biosynthesis. Phytochem. Rev. 5, 433–444 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Smanski, M. J. et al. Synthetic biology to access and expand nature’s chemical diversity. Nat. Rev. Microbiol. 14, 135–149 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Baltz, R. H. Genome mining for drug discovery: progress at the front end. J. Ind. Microbiol. Biotechnol. 48, kuab044 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yamada, Y. et al. Terpene synthases are widely distributed in bacteria. Proc. Natl Acad. Sci. USA 112, 857–862 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Burkhardt, I., de Rond, T., Chen, P. Y.-T. & Moore, B. S. Ancient plant-like terpene biosynthesis in corals. Nat. Chem. Biol. 18, 664–669 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Scesa, P. D., Lin, Z. & Schmidt, E. W. Ancient defensive terpene biosynthetic gene clusters in the soft corals. Nat. Chem. Biol. 18, 659–663 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mafu, S. et al. Probing the promiscuity of ent-kaurene oxidases via combinatorial biosynthesis. Proc. Natl Acad. Sci. USA 113, 2526–2531 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Reed, J. et al. A translational synthetic biology platform for rapid access to gram-scale quantities of novel drug-like molecules. Metab. Eng. 42, 185–193 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hernandez-Ortega, A., Vinaixa, M., Zebec, Z., Takano, E. & Scrutton, N. S. A toolbox for diverse oxyfunctionalisation of monoterpenes. Sci. Rep. 8, 14396 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tang, M.-C., Shen, C., Deng, Z., Ohashi, M. & Tang, Y. Combinatorial biosynthesis of terpenoids through mixing-and-matching sesquiterpene cyclase and cytochrome P450 pairs. Org. Lett. 24, 4783–4787 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hannemann, F., Bichet, A., Ewen, K. M. & Bernhardt, R. Cytochrome P450 systems—biological variations of electron transport chains. Biochim. Biophys. Acta 1770, 330–344 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Pandey, B. P. et al. Identification of the specific electron transfer proteins, ferredoxin, and ferredoxin reductase, for CYP105D7 in Streptomyces avermitilis MA4680. Appl. Microbiol. Biotechnol. 98, 5009–5017 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Ortega Ugalde, S. et al. Linking cytochrome P450 enzymes from Mycobacterium tuberculosis to their cognate ferredoxin partners. Appl. Microbiol. Biotechnol. 102, 9231–9242 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Senate, L. M. et al. Similarities, variations, and evolution of cytochrome P450s in Streptomyces versus Mycobacterium. Sci. Rep. 9, 3962 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Haslinger, K. & Prather, K. L. J. Heterologous caffeic acid biosynthesis in Escherichia coli is affected by choice of tyrosine ammonia lyase and redox partners for bacterial cytochrome P450. Microb. Cell Fact. 19, 26 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gold, N. D. et al. A combinatorial approach to study cytochrome P450 enzymes for de novo production of steviol glucosides in baker’s yeast. ACS Synth. Biol. 7, 2918–2929 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Park, S. Y., Eun, H., Lee, M. H. & Lee, S. Y. Metabolic engineering of Escherichia coli with electron channelling for the production of natural products. Nat. Catal. 5, 726–737 (2022).

    Article  CAS  Google Scholar 

  27. Karplus, P. A., Daniels, M. J. & Herriott, J. R. Atomic structure of ferredoxin-NADP+ reductase: prototype for a structurally novel flavoenzyme family. Science 251, 60–66 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Tripathi, S., Li, H. & Poulos, T. L. Structural basis for effector control and redox partner recognition in cytochrome P450. Science 340, 1227–1230 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Zhu, D., Seo, M.-J., Ikeda, H. & Cane, D. E. Genome mining in Streptomyces. Discovery of an unprecedented P450-catalyzed oxidative rearrangement that is the final step in the biosynthesis of pentalenolactone. J. Am. Chem. Soc. 133, 2128–2131 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jenkins, C. M. & Waterman, M. R. NADPH-flavodoxin reductase and flavodoxin from Escherichia coli: characteristics as a soluble microsomal P450 reductase. Biochemistry 37, 6106–6113 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Rudolf, J. D., Chang, C.-Y., Ma, M. & Shen, B. Cytochromes P450 for natural product biosynthesis in Streptomyces: sequence, structure, and function. Nat. Prod. Rep. 34, 1141–1172 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Daletos, G., Katsimpouras, C. & Stephanopoulos, G. Novel strategies and platforms for industrial isoprenoid engineering. Trends Biotechnol. 38, 811–822 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Leonard, E. et al. Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control. Proc. Natl Acad. Sci. USA 107, 13654–13659 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kirby, J. et al. Enhancing terpene yield from sugars via novel routes to 1-deoxy-d-xylulose 5-phosphate. Appl. Environ. Microbiol. 81, 130–138 (2015).

    Article  PubMed  Google Scholar 

  35. King, J. R., Woolston, B. M. & Stephanopoulos, G. Designing a new entry point into isoprenoid metabolism by exploiting fructose-6-phosphate aldolase side reactivity of Escherichia coli. ACS Synth. Biol. 6, 1416–1426 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Chatzivasileiou, A. O., Ward, V., Edgar, S. M. & Stephanopoulos, G. Two-step pathway for isoprenoid synthesis. Proc. Natl Acad. Sci. USA 116, 506–511 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Zangar, R. C., Davydov, D. R. & Verma, S. Mechanisms that regulate production of reactive oxygen species by cytochrome P450. Toxicol. Appl. Pharmacol. 199, 316–331 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Biggs, B. W. et al. Overcoming heterologous protein interdependency to optimize P450-mediated Taxol precursor synthesis in Escherichia coli. Proc. Natl Acad. Sci. USA 113, 3209–3214 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kim, S. K. et al. CRISPR interference-guided balancing of a biosynthetic mevalonate pathway increases terpenoid production. Metab. Eng. 38, 228–240 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Meyer, A. J., Segall-Shapiro, T. H., Glassey, E., Zhang, J. & Voigt, C. A. Escherichia coli ‘Marionette’ strains with 12 highly optimized small-molecule sensors. Nat. Chem. Biol. 15, 196–204 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Shin, J., South, E. J. & Dunlop, M. J. Transcriptional tuning of mevalonate pathway enzymes to identify the impact on limonene production in Escherichia coli. ACS Omega 7, 18331–18338 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chang, M. C. Y., Eachus, R. A., Trieu, W., Ro, D.-K. & Keasling, J. D. Engineering Escherichia coli for production of functionalized terpenoids using plant P450s. Nat. Chem. Biol. 3, 274–277 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Li, S., Du, L. & Bernhardt, R. Redox partners: function modulators of bacterial P450 enzymes. Trends Microbiol. 28, 445–454 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Zhang, W. et al. Mechanistic insights into interactions between bacterial Class I P450 enzymes and redox partners. ACS Catal. 8, 9992–10003 (2018).

    Article  CAS  Google Scholar 

  45. Ren, X. et al. Drug oxidation by cytochrome P450BM3: metabolite synthesis and discovering new P450 reaction types. Chemistry 21, 15039–15047 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Alonso-Gutierrez, J. et al. Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production. Metab. Eng. 19, 33–41 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Peters, R. J. Two rings in them all: the labdane-related diterpenoids. Nat. Prod. Rep. 27, 1521–1530 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Riehl, P. S., DePorre, Y. C., Armaly, A. M., Groso, E. J. & Schindler, C. S. New avenues for the synthesis of ent-kaurene diterpenoids. Tetrahedron 71, 6629–6650 (2015).

    Article  CAS  Google Scholar 

  49. Sun, Y. et al. De novo production of versatile oxidized kaurene diterpenes in Escherichia coli. Metab. Eng. 73, 201–213 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Dong, L.-B. et al. Cryptic and stereospecific hydroxylation, oxidation, and reduction in platensimycin and platencin biosynthesis. J. Am. Chem. Soc. 141, 4043–4050 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bassalo, M. C. et al. Rapid and efficient one-step metabolic pathway integration in E. coli. ACS Synth. Biol. 5, 561–568 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Park, Y., Espah Borujeni, A., Gorochowski, T. E., Shin, J. & Voigt, C. A. Precision design of stable genetic circuits carried in highly-insulated E. coli genomic landing pads. Mol. Syst. Biol. 16, e9584 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jahn, M., Vorpahl, C., Hübschmann, T., Harms, H. & Müller, S. Copy number variability of expression plasmids determined by cell sorting and droplet digital PCR. Microb. Cell Fact. 15, 211 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Shao, B. et al. Single-cell measurement of plasmid copy number and promoter activity. Nat. Commun. 12, 1475 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Alonso-Gutierrez, J. et al. Principal component analysis of proteomics (PCAP) as a tool to direct metabolic engineering. Metab. Eng. 28, 123–133 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Lou, C., Stanton, B., Chen, Y. J., Munsky, B. & Voigt, C. A. Ribozyme-based insulator parts buffer synthetic circuits from genetic context. Nat. Biotechnol. 30, 1137–1142 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Clifton, K. P. et al. The genetic insulator RiboJ increases expression of insulated genes. J. Biol. Eng. 12, 23 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Salis, H. M., Mirsky, E. A. & Voigt, C. A. Automated design of synthetic ribosome binding sites to control protein expression. Nat. Biotechnol. 27, 946–950 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Armenteros, J. J. A. et al. Detecting sequence signals in targeting peptides using deep learning. Life Sci. Alliance 2, e201900429 (2019).

    Article  Google Scholar 

  60. Toyomasu, T. et al. Fusicoccins are biosynthesized by an unusual chimera diterpene synthase in fungi. Proc. Natl Acad. Sci. USA 104, 3084–3088 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Park, J. H. et al. Design of four small-molecule-inducible systems in the yeast chromosome, applied to optimize terpene biosynthesis. ACS Synth. Biol. 12, 1119–1132 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kim, S. Y. et al. Cloning and heterologous expression of the cyclooctatin biosynthetic gene cluster afford a diterpene cyclase and two P450 hydroxylases. Chem. Biol. 16, 736–743 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Kelly, J. R. et al. Measuring the activity of BioBrick promoters using an in vivo reference standard. J. Biol. Eng. 3, 4 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ikeda, H., Shin-ya, K., Nagamitsu, T. & Tomoda, H. Biosynthesis of mercapturic acid derivative of the labdane-type diterpene, cyslabdan that potentiates imipenem activity against methicillin-resistant Staphylococcus aureus: cyslabdan is generated by mycothiol-mediated xenobiotic detoxification. J. Ind. Microbiol. Biotechnol. 43, 325–342 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Ma, S. M. et al. Optimization of a heterologous mevalonate pathway through the use of variant HMG-CoA reductases. Metab. Eng. 13, 588–597 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Belin, B. J. et al. Hopanoid lipids: from membranes to plant–bacteria interactions. Nat. Rev. Microbiol. 16, 304–315 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hedden, P. The current status of research on gibberellin biosynthesis. Plant Cell Physiol. 61, 1832–1849 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dugé de Bernonville, T., Papon, N., Clastre, M., O’Connor, S. E. & Courdavault, V. Identifying missing biosynthesis enzymes of plant natural products. Trends Pharmacol. Sci. 41, 142–146 (2020).

    Article  PubMed  Google Scholar 

  69. Yu, T. et al. Enzyme function prediction using contrastive learning. Science 1363, 1358–1363 (2023).

    Article  Google Scholar 

  70. Jung, S. T., Lauchli, R. & Arnold, F. H. Cytochrome P450: taming a wild type enzyme. Curr. Opin. Biotechnol. 22, 809–817 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. The UniProt, C. UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 51, D523–D531 (2023).

    Article  Google Scholar 

  72. Zhang, X. et al. Divergent synthesis of complex diterpenes through a hybrid oxidative approach. Science 369, 799–806 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhao, X., Cacherat, B., Hu, Q. & Ma, D. Recent advances in the synthesis of ent-kaurane diterpenoids. Nat. Prod. Rep. 39, 119–138 (2022).

    Article  CAS  PubMed  Google Scholar 

  74. St-Pierre, F. et al. One-step cloning and chromosomal integration of DNA. ACS Synth. Biol. 2, 537–541 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Sharan, S. K., Thomason, L. C., Kuznetsov, S. G. & Court, D. L. Recombineering: a homologous recombination-based method of genetic engineering. Nat. Protoc. 4, 206–223 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Madeira, F. et al. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res. 50, W276–W279 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Potter, S. C. et al. HMMER web server: 2018 update. Nucleic Acids Res. 46, W200–W204 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Blackwell, G. A. et al. Exploring bacterial diversity via a curated and searchable snapshot of archived DNA sequences. PLoS Biol. 19, e3001421 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zallot, R., Oberg, N. & Gerlt, J. A. The EFI Web resource for genomic enzymology tools: leveraging protein, genome, and metagenome databases to discover novel enzymes and metabolic pathways. Biochemistry 58, 4169–4182 (2019).

    Article  CAS  PubMed  Google Scholar 

  80. Lin, G.-M. gengminlin/GNN-and-Metabolomics-Analysis-for-LRD (Version 1.0.0). Zenodo https://doi.org/10.5281/zenodo.8353604 (2023).

  81. O’Callaghan, S. et al. PyMS: a Python toolkit for processing of gas chromatography–mass spectrometry (GC–MS) data. Application and comparative study of selected tools. BMC Bioinf. 13, 115 (2012).

    Article  Google Scholar 

  82. Koo, I., Kim, S. & Zhang, X. Comparative analysis of mass spectral matching-based compound identification in gas chromatography–mass spectrometry. J. Chromatogr. A 1298, 132–138 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Davis-Foster, D. pynist. GitHub https://github.com/domdfcoding/pynist (2020).

Download references

Acknowledgements

This research was funded by a research award from Novartis Institute for BioMedical Research (Cambridge, USA), Defense Advanced Research Projects Agency Biological Technologies Office (BTO) Program: ReVector Issued by DARPA/CMO under Cooperative Agreement No. HR00112020030, and US Defense Advanced Research Projects Agency’s Living Foundries Program Award (HR0011-15-C-0084). We appreciate W. Massefski, B. Adams and J. Grimes in the Department of Chemistry Instrumentation Facility at the Massachusetts Institute of Technology for their assistance in acquiring NMR spectra.

Author information

Authors and Affiliations

Authors

Contributions

G.-M.L. and C.A.V. conceived the study, designed the experiments and wrote the manuscript. G.-M.L. performed the experiments and analysed the data.

Corresponding author

Correspondence to Christopher A. Voigt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Sijin Li, Reuben Peters and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–33, Tables 1–38 and Methods.

Reporting Summary

Supplementary Data 1

Genetic parts and plasmids used in this study.

Supplementary Data 2

All data required to reproduce supplementary figures and tables.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

GC–MS data.

Source Data Fig. 6

List of biosynthetic gene clusters and CYPs, statistical source data.

Source Data Fig. 7

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, GM., Voigt, C.A. Design of a redox-proficient Escherichia coli for screening terpenoids and modifying cytochrome P450s. Nat Catal 6, 1016–1029 (2023). https://doi.org/10.1038/s41929-023-01049-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-01049-5

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research