Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selective electrochemical synthesis of urea from nitrate and CO2 via relay catalysis on hybrid catalysts

Abstract

The nitrogen cycle needed for scaled agriculture relies on energy- and carbon-intensive processes and generates nitrate-containing wastewater. Here we focus on an alternative approach—the electrified co-electrolysis of nitrate and CO2 to synthesize urea. When this is applied to industrial wastewater or agricultural runoff, the approach has the potential to enable low-carbon-intensity urea production while simultaneously providing wastewater denitrification. We report a strategy that increases selectivity to urea using a hybrid catalyst: two classes of site independently stabilize the key intermediates needed in urea formation, *CO2NO2 and *COOHNH2, via a relay catalysis mechanism. A Faradaic efficiency of 75% at wastewater-level nitrate concentrations (1,000 ppm NO3 [N]) is achieved on Zn/Cu catalysts. The resultant catalysts show a urea production rate of 16 µmol h−1 cm−2. Life-cycle assessment indicates greenhouse gas emissions of 0.28 kg CO2e per kg urea for the electrochemical route, compared to 1.8 kg CO2e kg−1 for the present-day route.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nitrogen cycles and their energetics.
Fig. 2: Screening of single-component and hybrid catalysts.
Fig. 3: Steering selectivity to C–N coupling on Zn/Cu hybrid catalysts.
Fig. 4: Mechanistic study elucidating a chemical picture of relay catalysis.
Fig. 5: 3D hybrid catalyst for urea synthesis at 16 µmol h−1 cm−2.
Fig. 6: Life cycle assessment.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the Article and Supplementary Information. Source data are provided with this paper.

References

  1. Fowler, D. et al. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. B 368, 20130164 (2013).

    Article  Google Scholar 

  2. Hattori, M., Iijima, S., Nakao, T., Hosono, H. & Hara, M. Solid solution for catalytic ammonia synthesis from nitrogen and hydrogen gases at 50 °C. Nat. Commun. 11, 2001 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Molecule of the Week Archive: Ammonia (ACS); www.acs.org/content/acs/en/molecule-of-the-week/archive/a/ammonia.html

  4. Molecule of the Week Archive: Urea (ACS); www.acs.org/content/acs/en/molecule-of-the-week/archive/u/urea.html

  5. Lv, C. et al. Selective electrocatalytic synthesis of urea with nitrate and carbon dioxide. Nat. Sustain. 4, 868–876 (2021).

    Article  Google Scholar 

  6. Ammonia Technology Roadmap (International Energy Agency, 2021).

  7. Cogert, K. I., Ziels, R. M. & Winkler, M. K. H. Reducing cost and environmental impact of wastewater treatment with denitrifying methanotrophs, anammox and mainstream anaerobic treatment. Environ. Sci. Technol. 53, 12935–12944 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Damma, D., Ettireddy, P., Reddy, B. & Smirniotis, P. A review of low temperature NH3-SCR for removal of NOx. Catalysts 9, 349 (2019).

    Article  CAS  Google Scholar 

  9. Wu, Y., Jiang, Z., Lin, Z., Liang, Y. & Wang, H. Direct electrosynthesis of methylamine from carbon dioxide and nitrate. Nat. Sustain. 4, 725–730 (2021).

    Article  Google Scholar 

  10. Saravanakumar, D., Song, J., Lee, S., Hur, N. H. & Shin, W. Electrocatalytic conversion of carbon dioxide and nitrate ions to urea by a titania–Nafion composite electrode. ChemSusChem 10, 3999–4003 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Lv, C. et al. A defect engineered electrocatalyst that promotes high-efficiency urea synthesis under ambient conditions. ACS Nano 16, 8213–8222 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Li, J., Zhang, Y., Kuruvinashetti, K. & Kornienko, N. Construction of C–N bonds from small-molecule precursors through heterogeneous electrocatalysis. Nat. Rev. Chem. 6, 303–319 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Jouny, M. et al. Formation of carbon–nitrogen bonds in carbon monoxide electrolysis. Nat. Chem. 11, 846–851 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Tao, Z., Rooney, C. L., Liang, Y. & Wang, H. Accessing organonitrogen compounds via C−N coupling in electrocatalytic CO2 reduction. J. Am. Chem. Soc. 143, 19630–19642 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Meng, N. et al. Oxide-derived core-shell Cu@Zn nanowires for urea electrosynthesis from carbon dioxide and nitrate in water. ACS Nano 16, 9095–9104 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Fernandez-Nava, Y., Maranon, E., Soons, J. & Castrillon, L. Denitrification of wastewater containing high nitrate and calcium concentrations. Bioresour. Technol. 99, 7976–7981 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Moloantoa, K. M., Khetsha, Z. P., van Heerden, E., Castillo, J. C. & Cason, E. D. Nitrate water contamination from industrial activities and complete denitrification as a remediation option. Water 14, 799 (2022).

    Article  CAS  Google Scholar 

  18. Shi, L., Liu, L., Yang, B., Sheng, G. & Xu, T. Evaluation of industrial urea energy consumption (EC) based on life cycle assessment (LCA). Sustainability 12, 3793 (2020).

    Article  CAS  Google Scholar 

  19. Bargiacchi, E., Antonelli, M. & Desideri, U. A comparative assessment of power-to-fuel production pathways. Energy 183, 1253–1265 (2019).

    Article  CAS  Google Scholar 

  20. Shibata, M., Yoshida, K. & Furuya, N. Electrochemical synthesis of urea on reduction of carbon dioxide with nitrate and nitrite ions using Cu-loaded gas-diffusion electrode. J. Electroanal. Chem. 387, 143–145 (1995).

    Article  Google Scholar 

  21. Shibata, M., Yoshida, K. & Furuya, N. Electrochemical synthesis of urea at gas-diffusion electrodes—IV. Simultaneous reduction of carbon dioxide and nitrate ions with various metal catalysts. J. Electrochem. Soc. 145, 2348–2353 (1998).

    Article  CAS  Google Scholar 

  22. Wang, Y. et al. Enhanced nitrate-to-ammonia activity on copper-nickel alloys via tuning of intermediate adsorption. J. Am. Chem. Soc. 142, 5702–5708 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Keuleers, R., Desseyn, H. O., Rousseau, B. & Alsenoy, C. V. Vibrational analysis of urea. J. Phys. Chem. A 103, 4621–4630 (1999).

    Article  CAS  Google Scholar 

  24. Manivannan, M. Investigation of inhibitive action of urea−Zn2+ system in the corrosion control of carbon steel in sea water. Int. J. Eng. Sci. Technol. 3, 8084–8060 (2011).

    Google Scholar 

  25. Bossa, J. B., Theulé, P., Duvernay, F., Borget, F. & Chiavassa, T. Carbamic acid and carbamate formation in NH3:CO2 ices—UV irradiation versus thermal processes. Astron. Astrophys. 492, 719–724 (2008).

    Article  CAS  Google Scholar 

  26. Lam, K. L., Zlatanović, L. & van der Hoek, J. P. Life cycle assessment of nutrient recycling from wastewater: a critical review. Water Res. 173, 115519 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Gowd, S. C. et al. Life cycle assessment of comparing different nutrient recovery systems from municipal wastewater: a path towards self-reliance and sustainability. J. Clean. Prod. 410, 137331 (2023).

    Article  CAS  Google Scholar 

  28. Xia, R., Overa, S. & Jiao, F. Emerging electrochemical processes to decarbonize the chemical industry. JACS Au 2, 1054–1070 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Net Zero by 2050 (International Energy Agency, 2021); https://www.iea.org/reports/net-zero-by-2050

  30. Arquer, F. P. G. D. et al. CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2. Science 367, 661–666 (2020).

    Article  Google Scholar 

  31. Rahmatullah, M. & Boyde, T. R. C. Improvements in the determination of urea using diacetylmonoxime; methods with and without deproteinization. Clin. Chim. Acta 107, 3–9 (1980).

    Article  CAS  PubMed  Google Scholar 

  32. Chen, C. et al. Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nat. Chem. 12, 717–724 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  34. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article  CAS  Google Scholar 

  35. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  37. Montoya, J. H., Shi, C., Chan, K. & Nørskov, J. K. Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. J. Phys. Chem. Lett. 6, 2032–2037 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the Banting Postdoctoral Fellowships Program (no. 01353-000, Y.L.) and the National Science Fund of China for Distinguished Young Scholars (no. 52125309, B.L.). We thank the staff at the BL11B beamline of Shanghai Synchrotron Radiation Facility (SSRF) for their technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

Y.L. and K.X. proposed the idea. Y.L. contributed to all experimental work, data analysis and the paper. K.X. contributed to the catalytic performance tests of the 2D hybrid catalysts and analysis. P.O. contributed to DFT calculations, with feedback from X.-Y.L. C.L. and J.B.D. contributed to LCA analysis with Y.L., with K.X.’s feedback. T.P. contributed to in situ IRRAS experiments. Z.Z. and B.L. contributed to in situ XAS characterization. Z.C. and Y.L. performed the in situ SERS characterization and analysis. N.W. and I.G. contributed to material synthesis. D.S. contributed to the discussion of the work. E.H.S. supervised the study.

Corresponding authors

Correspondence to Jennifer B. Dunn or Edward H. Sargent.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Feng Jiao, Yafei Li and Heiko Keller for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–35, Tables 1–12 and Notes 1 and 2.

Supplementary Data

The atomic coordinates of the optimized models.

Source data

Source Data Fig. 2–6

Numerical data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Xie, K., Ou, P. et al. Selective electrochemical synthesis of urea from nitrate and CO2 via relay catalysis on hybrid catalysts. Nat Catal 6, 939–948 (2023). https://doi.org/10.1038/s41929-023-01020-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-01020-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing