Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pulsed co-electrolysis of carbon dioxide and nitrate for sustainable urea synthesis

Abstract

The urea industry is energy intensive and responsible for high levels of carbon emissions. Electrocatalytic co-reduction of carbon dioxide (CO2) and nitrate (NO3) powered by renewable energy offers an alternative and sustainable synthetic pathway to this chemical that is vital in agriculture, chemical engineering and other fields, but the yield rate cannot compete with the state-of-the-art petrochemical processes. Here we show a urea electrosynthesis route using an iron tetraphenylporphyrin molecular electrocatalyst that delivers a maximum Faradaic efficiency of 27.70% for urea while suppressing the competing hydrogen evolution reaction. At the heart of our strategy is electrolysis under pulsed potentials between −0.2 and −0.8 V versus the reversible hydrogen electrode, which increases the local concentration of CO2/NO3 but reduces the local pH to enrich *CO and *NH2 intermediates favoured by C–N coupling. Importantly, our strategy can be applied to more catalyst systems such as ZnO and PdCu, and save more than 41% energy consumption compared with static co-electrolysis, with PdCu enabling a maximum urea Faradaic efficiency of 70.36% for pulsed electrolysis. Our work opens an avenue for efficient urea production and provides insights into the role of the local reaction environment, which can inform the rational design of electrocatalysts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural characterization.
Fig. 2: Electrochemical performance characterization.
Fig. 3: Operando mass spectrum.
Fig. 4: Operando ATR-SEIRAS spectroscopy measurements for the CO2/NO3 co-reduction over Fe-TPP/CNTs at various potentials from OCP to −1.2 V versus RHE.
Fig. 5: Theoretical calculations of the local pH, and concentrations of CO2 and NO3 at the electrode surface.

Similar content being viewed by others

Data availability

All data required to evaluate the conclusions of the paper are present in the paper and/or Supplementary Information. Source data are provided with this paper.

References

  1. Chen, C. et al. Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nat. Chem. 12, 717–724 (2020).

    Article  CAS  Google Scholar 

  2. Li, J., Zhang, Y., Kuruvinashetti, K. & Kornienko, N. Construction of C–N bonds from small-molecule precursors through heterogeneous electrocatalysis. Nat. Rev. Chem. 6, 303–319 (2022).

    Article  CAS  Google Scholar 

  3. Lv, C. et al. Selective electrocatalytic synthesis of urea with nitrate and carbon dioxide. Nat. Sustain. 4, 868–876 (2021).

    Article  Google Scholar 

  4. Peng, X. et al. Electrochemical C–N coupling of CO2 and nitrogenous small molecules for the electrosynthesis of organonitrogen compounds. Chem. Soc. Rev. 52, 2193–2237 (2023).

    Article  CAS  Google Scholar 

  5. Wei, X. et al. Oxygen vacancy-mediated selective C–N coupling toward electrocatalytic urea synthesis. J. Am. Chem. Soc. 144, 11530–11535 (2022).

    Article  CAS  Google Scholar 

  6. Zhang, X. et al. Identifying and tailoring C–N coupling site for efficient urea synthesis over diatomic Fe–Ni catalyst. Nat. Commun. 13, 5337 (2022).

    Article  CAS  Google Scholar 

  7. Zhao, Q. et al. Sustainable and high-rate electrosynthesis of nitrogen fertilizer. Angew. Chem. Int. Ed. 62, e202307123 (2023).

    Article  CAS  Google Scholar 

  8. Zhang, X. et al. Electrocatalytic urea synthesis with 63.5% Faradaic efficiency and 100% N-selectivity via one-step C–N coupling. Angew. Chem. Int. Ed. Engl. 62, e202305447 (2023).

    Article  CAS  Google Scholar 

  9. Yuan, M. et al. Highly selective electroreduction of N2 and CO2 to urea over artificial frustrated Lewis pairs. Energy Environ. Sci. 14, 6605–6615 (2021).

    Article  CAS  Google Scholar 

  10. Lv, Z. et al. Coactivation of multiphase reactants for the electrosynthesis of urea. Adv. Energy Mater. 13, 2300946 (2023).

    Article  CAS  Google Scholar 

  11. Leverett, J. et al. Tuning the coordination structure of Cu–N–C single atom catalysts for simultaneous electrochemical reduction of CO2 and NO3 to urea. Adv. Energy Mater. 12, 2201500 (2022).

    Article  CAS  Google Scholar 

  12. Wang, H. et al. Realizing efficient C–N coupling via electrochemical co-reduction of CO2 and NO3 on AuPd nanoalloy to form urea: key C–N coupling intermediates. Appl. Catal. B 318, 121819 (2022).

    Article  CAS  Google Scholar 

  13. Zhao, Y. et al. Efficient urea electrosynthesis from carbon dioxide and nitrate via alternating Cu–W bimetallic C–N coupling sites. Nat. Commun. 14, 4491 (2023).

    Article  CAS  Google Scholar 

  14. Meng, N. et al. Oxide-derived core–shell Cu@Zn nanowires for urea electrosynthesis from carbon dioxide and nitrate in water. ACS Nano 16, 9095–9104 (2022).

    Article  CAS  Google Scholar 

  15. Huang, Y. et al. Direct electrosynthesis of urea from carbon dioxide and nitric oxide. ACS Energy Lett. 7, 284–291 (2022).

    Article  CAS  Google Scholar 

  16. Wang, D., Chen, C. & Wang, S. Defect engineering for advanced electrocatalytic conversion of nitrogen-containing molecules. Sci. China Chem. 66, 1052–1072 (2023).

    Article  CAS  Google Scholar 

  17. Meng, N., Huang, Y., Liu, Y., Yu, Y. & Zhang, B. Electrosynthesis of urea from nitrite and CO2 over oxygen vacancy-rich ZnO porous nanosheets. Cell Rep. Phys. Sci. 2, 100378 (2021).

    Article  CAS  Google Scholar 

  18. Lv, C. et al. A defect engineered electrocatalyst that promotes high-efficiency urea synthesis under ambient conditions. ACS Nano 16, 8213–8222 (2022).

    Article  CAS  Google Scholar 

  19. Geng, J. et al. Ambient electrosynthesis of urea with nitrate and carbon dioxide over iron-based dual-sites. Angew. Chem. Int. Ed. 135, e202210958 (2023).

    Article  Google Scholar 

  20. Liu, Y. et al. C-bound or O-bound surface: which one boosts electrocatalytic urea synthesis? Angew. Chem. Int. Ed. 135, e202300387 (2023).

    Article  Google Scholar 

  21. Zhang, S.-B. et al. High-efficiency electrosynthesis of urea over bacterial cellulose regulated Pd–Cu bimetallic catalyst. EES Catal. 1, 45–53 (2023).

    Article  CAS  Google Scholar 

  22. Cao, N. et al. Oxygen vacancies enhanced cooperative electrocatalytic reduction of carbon dioxide and nitrite ions to urea. J. Colloid Interface Sci. 577, 109–114 (2020).

    Article  CAS  Google Scholar 

  23. Krzywda, P. M., Paradelo, Rodríguez, A., Benes, N. E., Mei, B. T. & Mul, G. Carbon–nitrogen bond formation on Cu electrodes during CO2 reduction in NO3 solution. Appl. Catal. B 316, 121512 (2022).

    Article  CAS  Google Scholar 

  24. Liu, M. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 537, 382–386 (2016).

    Article  CAS  Google Scholar 

  25. Liu, D. et al. Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat. Energy 4, 512–518 (2019).

    Article  CAS  Google Scholar 

  26. Mi, L. et al. Achieving synchronization of electrochemical production of ammonia from nitrate and ammonia capture by constructing a “two-in-one” flow cell electrolyzer. Adv. Energy Mater. 12, 2202247 (2022).

    Article  CAS  Google Scholar 

  27. Zhang, X.-D. et al. Asymmetric low-frequency pulsed strategy enables ultralong CO2 reduction stability and controllable product selectivity. J. Am. Chem. Soc. 145, 2195–2206 (2023).

    Article  CAS  Google Scholar 

  28. Timoshenko, J. et al. Steering the structure and selectivity of CO2 electroreduction catalysts by potential pulses. Nat. Catal. 5, 259–267 (2022).

    Article  CAS  Google Scholar 

  29. Chang, C.-J. et al. Lewis acidic support boosts C–C coupling in the pulsed electrochemical CO2 reaction. J. Am. Chem. Soc. 145, 6953–6965 (2023).

    Article  CAS  Google Scholar 

  30. Zhang, X. et al. Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction. Nat. Energy 5, 684–692 (2020).

    Article  CAS  Google Scholar 

  31. Costentin, C., Drouet, S., Robert, M. & Saveant, J.-M. A local proton source enhances CO2 electroreduction to CO by a molecular Fe catalyst. Science 338, 90–94 (2012).

    Article  CAS  Google Scholar 

  32. Zhang, W.-D. et al. Fe single-atom catalysts with pre-organized coordination structure for efficient electrochemical nitrate reduction to ammonia. Appl. Catal. B 317, 121750 (2022).

    Article  CAS  Google Scholar 

  33. Wu, Y., Jiang, Z., Lin, Z., Liang, Y. & Wang, H. Direct electrosynthesis of methylamine from carbon dioxide and nitrate. Nat. Sustain. 4, 725–730 (2021).

    Article  Google Scholar 

  34. Liu, X., Jiao, Y., Zheng, Y., Jaroniec, M. & Qiao, S.-Z. Mechanism of C–N bonds formation in electrocatalytic urea production revealed by ab initio molecular dynamics simulation. Nat. Commun. 13, 5471 (2022).

    Article  CAS  Google Scholar 

  35. Kim, C., Weng, L.-C. & Bell, A. T. Impact of pulsed electrochemical reduction of CO2 on the formation of C2+ products over Cu. ACS Catal. 10, 12403–12413 (2020).

    Article  CAS  Google Scholar 

  36. Bui, J. C., Kim, C., Weber, A. Z. & Bell, A. T. Dynamic boundary layer simulation of pulsed CO2 electrolysis on a copper catalyst. ACS Energy Lett. 6, 1181–1188 (2021).

    Article  CAS  Google Scholar 

  37. Wang, X. et al. Anomalous hydrogen evolution behavior in high-pH environment induced by locally generated hydronium ions. Nat. Commun. 10, 4876 (2019).

    Article  CAS  Google Scholar 

  38. Zhang, D., Xue, Y., Zheng, X., Zhang, C. & Li, Y. Multi-heterointerfaces for selective and efficient urea production. Natl Sci. Rev. 10, nwac209 (2023).

    Article  CAS  Google Scholar 

  39. Zhu, S., Jiang, B., Cai, W.-B. & Shao, M. Direct observation on reaction intermediates and the role of bicarbonate anions in CO2 electrochemical reduction reaction on Cu surfaces. J. Am. Chem. Soc. 139, 15664–15667 (2017).

    Article  CAS  Google Scholar 

  40. Sun, K. et al. Interfacial water engineering boosts neutral water reduction. Nat. Commun. 13, 6260 (2022).

    Article  CAS  Google Scholar 

  41. Gupta, N., Gattrell, M. & MacDougall, B. Calculation for the cathode surface concentrations in the electrochemical reduction of CO2 in KHCO3 solutions. J. Appl. Electrochem. 36, 161–172 (2006).

    Article  CAS  Google Scholar 

  42. Chen, G. et al. CoS2 needle arrays induced a local pseudo-acidic environment for alkaline hydrogen evolution. Nanoscale 13, 13604–13609 (2021).

    Article  CAS  Google Scholar 

  43. Shah, A. H. et al. The role of alkali metal cations and platinum-surface hydroxyl in the alkaline hydrogen evolution reaction. Nat. Catal. 5, 923–933 (2022).

    Article  CAS  Google Scholar 

  44. Chen, F.-Y. et al. Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst. Nat. Nanotechnol. 17, 759–767 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (U21A20312, 22379100, 22309115), the Shenzhen Science and Technology Program (grant numbers 20231121200418001, RCYX20200714114535052) and the Guangdong Basic and Applied Basic Research Foundation (2022B1515120084). We also acknowledge the help of the Electron Microscopy Centre of Shenzhen University in testing the HAADF-STEM.

Author information

Authors and Affiliations

Authors

Contributions

C.H. conceived the idea and directed the project. Q. Hu designed the experiments and wrote the paper. W.Z., S.Q., Q. Huo, X.L., M.L. and X. Chen performed the experiments. Q. Hu, W.Z., C.F., J.Y., X. Chai and H.Y. analysed the data.

Corresponding author

Correspondence to Chuanxin He.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Dehui Deng, Min-Rui Gao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1 and 2, Figs. 1–48, Tables 1–4 and References.

Reporting Summary

Source data

Source Data Fig. 1

Structural characterization.

Source Data Fig. 2

Electrochemical performance characterization.

Source Data Fig. 3

Operando mass spectrum.

Source Data Fig. 4

Operando ATR-SEIRAS spectroscopy measurements.

Source Data Fig. 5

Simulation calculations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Q., Zhou, W., Qi, S. et al. Pulsed co-electrolysis of carbon dioxide and nitrate for sustainable urea synthesis. Nat Sustain 7, 442–451 (2024). https://doi.org/10.1038/s41893-024-01302-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-024-01302-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing